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Abstract—Rendezvous is a vital process for connection es-
tablishment and recovery in dynamic spectrum access (DSA)
networks. Frequency hopping (FH) is an effective rendezvous
method that does not rely on a predetermined control channel.
Recently, quorum-based FH approaches have been proposed
for enabling asynchronous rendezvous between two or more
secondary users (SUs). In this paper, we consider two collocated
secondary networks, each represented by a pair of SUs. Both net-
works try to rendezvous concurrently, each aiming at maximizing
its rendezvous performance, as measured by the average time-to-
rendezvous and the number of rendezvous opportunities. To study
this form of coexistence rendezvous, we follow a non-cooperative
combinatorial game-theoretic framework, which we refer to
as CORE. In this framework, SUs have different preferences
towards various available licensed channels. Assuming first that
SUs are time-synchronized, we formulate the interactions between
the two networks as a two-player symmetric combinatorial game.
We show the existence and uniqueness of a finite-population evolu-
tionary stable strategy for this game. Furthermore, we conjecture
that the game attains a pure-strategy Nash equilibrium (NE) for
a wide range of design parameters. We also show that when SU
pairs have the same preference towards all available channels,
our game is an exact potential game, and hence the sequential
best-response update is guaranteed to converge to a pure-strategy
NE. We then study the time-asynchronous rendezvous game when
SU pairs have the same preference towards all available channels.
In this case, the game is also shown to be an exact potential game.

I. INTRODUCTION

To achieve efficient utilization of the licensed spectrum,
significant research has been conducted towards enabling dy-
namic spectrum access (DSA) networks. The communicating
entities in these networks, called secondary users (SUs), can
utilize the available spectrum in a dynamic and opportunis-
tic fashion without interfering with co-located primary users
(PUs). Enabling opportunistic operation requires addressing
various challenges, including channel access and device co-
ordination.

Establishing a link between SU devices requires them
to rendezvous, i.e., meet on a common frequency channel
at the same time, and exchange control messages needed
for connection establishment. In the absence of centralized
control, the rendezvous problem is quite challenging because
of the spatiotemporal variations in channel availability. Further
challenges arise in the absence of node synchronization. To
address the rendezvous problem, many existing MAC proto-
cols for DSA networks rely on a dedicated control channel
(e.g., [1], [2], [3]). While presuming a common control channel
(CCC) simplifies the rendezvous process, it comes with two

main drawbacks. First, a CCC can easily become a network
bottleneck and a prime target for selective jamming attacks [4].
Second, PU dynamics and spectrum heterogeneity make it
difficult to always maintain a dedicated CCC [5].

Frequency hopping (FH) provides an alternative method for
rendezvousing without relying on a predetermined CCC. One
systematic way of constructing FH sequences is to use quorum
systems [6]. Quorum-based FH designs have two key advan-
tages. First, they deterministically guarantee that two FH se-
quences will overlap within a certain duration of time. Second,
they are robust to synchronization errors [7]. Several quorum-
based FH schemes have been recently proposed to enable ren-
dezvous between SUs that belong to the same network (see, for
example, [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]).
The authors in [18] proposed the first game-theoretic frame-
work for quorum-based anti-jamming rendezvous in DSA
networks. They considered a pair of SUs that attempt to
rendezvous in the presence of a jammer, whose objective is
to hinder the rendezvous process. The interactions between
the SUs and the jammer were formulated as a three-player
game, but the treatment was restricted to a single rendezvous
channel.

In this paper, we consider two coexisting secondary net-
works, each represented by a link (see Figure 1(a))1. Both SU
links try to rendezvous concurrently, each aiming to maximize
its rendezvous performance. The rendezvous performance is
measured by the average time-to-rendezvous (TTR), defined
as the first time until the two SUs meet on a common
channel, and the rate of rendezvous occurrence. To study this
coexistence rendezvous problem, we propose a non-cooperative
combinatorial game-theoretic framework, which we refer to as
CORE. Figure 1 shows two such SU pairs, A1–A2 and B1–B2.
To rendezvous, they rely, for example, on a grid-quorum-based
FH approach. Each FH sequence is divided into frames (in
Figure 1(b), the frame length is nine slots). The slots of a frame
are arranged into a square grid (a 3 × 3 grid in our example).
Each SU selects a column and a row from the grid. The slots
that correspond to the selected column and row are assigned
a channel called the outer rendezvous channel (channel f1
in Figure 1), and the remaining slots are assigned another
channel called the inner rendezvous channel (channel f2 in
Figure 1). An SU pair, say A1–A2, successfully rendezvous
if both A1 and A2 are tuned to the same channel while both
B1 and B2 are on a different channel. Because we consider
a two-channel system in Figure 1, successful rendezvous of

1Secondary networks typically execute the rendezvous process in a sequen-
tial way (i.e., one link at a time). Therefore, we represent each secondary
network with a link.978-1-4673-7331-9/15/$31.00 c© 2015 IEEE
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Fig. 1. (a) Two coexisting SU pairs, A1–A2 and B1–B2, attempt to concurrently rendezvous in a DSA network, (b) SUs rely on a grid-
quorum-based FH approach, with a frame length of nine slots.

A1–A2 on one channel yields successful rendezvous of B1–
B2 on the other channel (this is not generally the case if the
system has more than two channels). As Figure 1 shows, A1
and A2 successfully rendezvous on f2 during the second time
slot when B1 and B2 successfully rendezvous on f1 (similarly,
A1 and A2 successfully rendezvous on f1 during the sixth slot
when B1 and B2 successfully rendezvous on f2). Although
A1 and A2 are both tuned to f1 during the seventh time slot,
they cannot successfully rendezvous because B1 is also on f1
(similarly, B1 and B2 cannot successfully rendezvous on f1
during the fifth slot because A2 is also on f1 during this slot).

Our Contributions–Assuming first that all SUs are time-
synchronized, we formulate the interactions between these SUs
as a non-cooperative four-player combinatorial game played on
a common grid quorum system. We reformulate the four-player
game as a two-player game between the two SU pairs. We
show that this two-player non-zero-sum game is symmetric,
and it has a unique finite-population evolutionary stable strat-
egy (FESS). Furthermore, a pure-strategy Nash equilibrium
(NE) exists if the frame length of the FH sequence and the
SUs preference of the outer rendezvous channel compared to
the inner rendezvous channel are set properly. Moreover, we
show that when SU pairs do not differentiate between the
outer and inner rendezvous channels, our game is an exact
potential game, and hence a sequential best-response update is
guaranteed to converge to a pure-strategy NE. Next, we study
the rendezvous game in the absence of time synchronization.
Specifically, we consider the case when the outer and inner
rendezvous channels are treated equally by SUs. In this case,
we show that the game is also an exact potential game,
and hence a sequential best-response update is guaranteed to
converge to a pure-strategy NE. Our numerical results show
that if the design parameters are set properly, the rendezvous
performance at the NE, as characterized by the price of anarchy
(PoA), is very close to optimal (i.e., PoA is very close to 1).

Paper Organization–The rest of the paper is organized
as follows. In Section II, we propose a grid-quorum-based

FH scheme that guarantees rendezvous on two frequency
channels within a prespecified frame duration. We refer to
this scheme as GQFH-2. We study the coexistence rendezvous
problem applied to GQFH-2 through a non-cooperative game-
theoretical framework in Section III. Our numerical results are
presented in Section IV. Finally, Section V concludes the paper
and provides directions for future research.

II. GRID-QUORUM-BASED FH RENDEZVOUS

Before explaining the proposed rendezvous scheme, we
provide preliminary definitions related to quorum systems,
which facilitates understanding of the rest of the paper.

A. Quorum Systems

Definition 1: Given the set Zm = {0, 1, . . . , m − 1}, a
quorum system Q under Zm is a collection of non-empty
subsets of Zm, each called a quorum, such that:

∀G, H ∈ Q : G ∩ H 6= ∅. (1)

In other words, any two quorums in Q overlap by at least one
element.

Definition 2: Given a non-negative integer i and a quorum
G in a quorum system Q under Zm, we define the operation
rotate(G, i) = {(x + i) mod m, x ∈ G} to denote a cyclic
rotation of quorum G by i times.

Definition 3: A quorum system Q under Zm is said to
satisfy the rotation closure property if:

∀G, H ∈ Q, i ∈ {0, 1, . . . , m−1} : G∩rotate(H, i) 6= ∅. (2)

The rotation closure property is what makes quorum systems
suitable for operating in asynchronous FH settings [7].

Definition 4: A grid quorum system arranges the elements
of Zm as a

√
m ×

√
m array, where m is the square of some



positive integer. A quorum is formed from the elements of one
column and one row of the grid (see Figure 1).

The grid quorum system satisfies the rotation closure prop-
erty [7].

B. Grid-quorum-based FH Rendezvous Algorithm (GQFH-2)

In this section, we explain the two-channel rendezvous
scheme that we adopt in this paper. Time is divided into equal-
length frames, each containing m slots (m needs to be the
square of a positive integer). The slots of each frame are
formed as a

√
m ×

√
m grid, from which the quorums are

derived. For each FH sequence, a grid quorum (a column and
a row) is randomly selected. Given a set of available channels,
a channel is assigned to all quorum slots of that frame
(henceforth, called the outer rendezvous channel). A second
rendezvous channel (henceforth, called the inner rendezvous
channel) is then assigned to each of the remaining slots in the
frame. The example in Figure 1 illustrates the idea for m = 9.
The procedure in Figure 1 is repeated for all the frames in the
FH sequence.

Proposition 1: The complement of a grid quorum system
Q under Zm, where m ≥ 9, is also a quorum system.

Proof: Consider two quorums, G1 and G2, from the grid
quorum system Q. Then, G1 ∩ G2 6= ∅. The subsets Zm \ G1
and Zm \ G2 can be expressed as:

Zm \ G1 = {Zm \ {G1 ∪ G2}} ∪ {G2 \ {G1 ∩ G2}} (3)

Zm \ G2 = {Zm \ {G1 ∪ G2}} ∪ {G1 \ {G1 ∩ G2}} . (4)

Note that G2 \{G1 ∩G2} and G1 \{G1 ∩G2} are disjoint.
Hence,

(Zm \ G1) ∩ (Zm \ G2) = Zm \ {G1 ∪ G2}
(⋆)
6= ∅ (5)

where (⋆) is because:

• |G1| = |G2| = 2
√

m − 1 and |G1 ∩ G2| ≥ 2. Hence,
|G1 ∪ G2| ≤ 2(2

√
m − 1) − 2 = 4(

√
m − 1).

• |Zm| = m

• m − 4(
√

m − 1) ≥ 0, ∀m ≥ 4 (note that m = 4 is the
smallest frame length used in GQFH-2).

Because the intersection of Zm \ G1 and Zm \ G2 is non-
empty for every G1, G2 ∈ Q, the complement of a grid quorum
system of size m ≥ 9 is indeed a quorum system.

Proposition 2: The complement of a grid quorum system
of size m ≥ 9 satisfies the rotation closure property.

Proof: Let Q be a grid quorum system. We want to show
that:

∀G1, G2 ∈ Q, i ∈ {0, 1, . . . , m − 1} :

Zm \ G1 ∩ rotate(Zm \ G2, i) 6= ∅.
(6)

Note that:

rotate(Zm \ G2, i) = Zm \ rotate(G2, i),
∀i ∈ {0, 1, . . . , m − 1}, ∀G2 ∈ Q.

(7)

From (5),

(Zm \ G1) ∩ (Zm \ rotate(G2, i))

= Zm \ {G1 ∪ rotate(G2, i)}
(⋆⋆)
6= ∅.

(8)

where (⋆⋆) is because |G1 ∪ rotate(G2, i)| ≤ 4(
√

m − 1),
|Zm| = m, and m − 4(

√
m − 1) ≥ 0, ∀m ≥ 4.

Theorem 1: Using GQFH-2, a pair of SUs are guaranteed
to rendezvous on two different channels if m ≥ 9, under any
arbitrary time-misalignment.

Proof: From Propositions 1 and 2, the complement of
a grid quorum system is a quorum system that satisfies the
rotation closure property. Hence, the theorem holds.

III. COEXISTENCE RENDEZVOUS GAME

In this section, we formulate a non-cooperative rendezvous
game between two SU pairs, and study the equilibrium strate-
gies of the game. We first consider the case when SUs are
time-synchronized, and then study the asynchronous case.

A. Game Formulation

A game is characterized by a set of players, a set of actions
for each player, and a payoff (utility) function for each player.
In the following, we define these components.

Players: The underlying game has four players: A1, A2,
B1, and B2 (as shown in Figure 1).

Actions: The actions that can be taken by each of the four
players are the m different grid quorums. All players have the
same strategy space, denoted by S , {1, 2, . . . , m}, which
consists of all quorums (pure strategies). The ith strategy in

S corresponds to row
⌊

i−1√
m

⌋

+ 1 and column i −
√

m
⌊

i−1√
m

⌋

in the
√

m ×
√

m grid quorum system. We denote the actions
(strategies) taken by A1, A2, B1, and B2 by sA1 , sA2 , sB1 ,
and sB2 , respectively. Each strategy (i.e., quorum selection)
results in a corresponding FH sequence. We refer to the FH
sequences of A1, A2, B1, and B2 by SA1 , SA2 , SB1 , and

SB2 , respectively, where SA1 ,

(

s(1)
A1

, . . . , s(m)
A1

)

and s(i)
A1

is

the frequency used during slot i. FH sequences SA2 , SB1 , and
SB2 are defined in a similar way.

Payoff (Utility). One important metric for evaluating a
rendezvous scheme is the TTR. Another metric is the rate
of rendezvous instances (i.e., the number of successful ren-
dezvous slots per frame). Considering only one of these metrics
is not sufficient. For instance, if only the TTR is considered,
a strategy that results in one rendezvous slot that comes early
in the frame (say, the first slot) will be preferred over another
strategy that yields many rendezvous slots, all located after
the first slot. On the other hand, the TTR can be used to
differentiate between two strategies that result in the same
number of rendezvous slots per frame, so that the one with the
smaller average TTR (over all rendezvous slots) is selected.
Each SU pair aims to maximize the number of rendezvous
slots per frame and, at the same time, minimize the average
TTR. Accordingly, we define the utility that each player wants
to maximize as the number of rendezvous slots per frame
divided by the average TTR. Furthermore, our utility function



UA(sA1 , sA2 ,sB1 , sB2 ) = q(f1)
# of rendezvous slots per frame over f1

Average TTR over f1
+ q(f2)

# of rendezvous slots per frame over f2

Average TTR over f2

= q(f1)

(
m∑

i=1

1
[
s
(i)
A1

= s
(i)
A2

= f1, s
(i)
B1

= s
(i)
B2

= f2

])2

m∑

i=1

i 1
[
s
(i)
A1

= s
(i)
A2

= f1, s
(i)
B1

= s
(i)
B2

= f2

] + q(f2)

(
m∑

i=1

1
[
s
(i)
A1

= s
(i)
A2

= f2, s
(i)
B1

= s
(i)
B2

= f1

])2

m∑

i=1

i 1
[
s
(i)
A1

= s
(i)
A2

= f2, s
(i)
B1

= s
(i)
B2

= f1

]

(9)

differentiates between the rendezvous instances on f1 and
those on f2.

The utility of A1 (also, A2), denoted by UA, is given by (9),
where q(f1) (q(f2)) reflects the SUs preference of the outer
(inner) rendezvous channel and 1[·] is the indicator function.
The utility of B1 is the same as the utility of B2 and is denoted
by UB . UB can be expressed similar to (9).

B. Reducing the Size of the Game

The four-player game formulated in Section III-A is an
m×m×m×m game. In this section, we reformulate this game
into a two-player game, in which each SU pair constitutes one
player. The resulted two-player game is an m × m game.

First, treating each SU pair as one player (i.e., A1–A2 is
one player and B1–B2 is the second player), our game can be
reformulated as an m2 × m2 two-player game. Next, note that
for any fixed strategies of B1 and B2, there is no incentive
for A1 and A2 to select different strategies (i.e., quorums). In
other words, it can be easily shown that:

UA(sA1 , sA1 , sB1 , sB2) ≥ UA(sA1 , sA2 6= sA1 , sB1 , sB2),
∀sA1 , sA2 , sB1 , sB2 ∈ S.

Similarly, it can be shown that:

UB(sA1 , sA2 , sB1 , sB1) ≥ UB(sA1 , sA2 , sB1 , sB2 6= sB1),
∀sA1 , sA2 , sB1 , sB2 ∈ S.

Accordingly, considering link A, any strategy (sA1 , sA2 )
with sA2 6= sA1 is weakly-dominated by each of the strategies
(sA1 , sA1 ), ∀ sA1 ∈ S. Therefore, starting with the m2 × m2

two-player game, iterative elimination of weakly-dominated
strategies yields an m×m two-player game. Although iterative
elimination of weakly-dominated strategies might be order
dependent [19], in here elimination is done offline before the
game starts. The two SU pairs start playing the m × m game
from the beginning.

The reduced game is a non-zero-sum two-player game. The
strategy space of each player (SU pair) is S = {1, 2, . . . , m},
where strategy i ∈ S means that both SUs of the considered
pair (player) are using grid quorum i. The utility function in (9)
can be written in a simpler way. Let sA1 = sA2 , sA and
sB1 = sB2 , sB (also, let SA1 = SA2 , SA and SB1 =

(a) UA

(b) UB

Fig. 2. UA and UB for m = 4 and q(f1) = 1.5q(f2).

SB2 , SB). Then, UA can be written as follows:

UA(sA,sB) = q(f1)

(
m∑

i=1

1
[
s
(i)
A

= f1, s
(i)
B

= f2

])2

m∑

i=1

i 1
[
s
(i)
A

= f1, s
(i)
B

= f2

]

+ q(f2)

(
m∑

i=1

1
[
s
(i)
A

= f2, s
(i)
B

= f1

])2

m∑

i=1

i 1
[
s
(i)
A

= f2, s
(i)
B

= f1

] .

(10)

Figure 2 shows UA and UB for m = 4 and q(f1) =
1.5q(f2). Next, we show that our non-zero-sum two-player
m × m game is symmetric.

Definition 5: Consider a two-player game. Let SA and
SB be the strategy spaces of players A and B, respectively. Let
UA and UB be the utilities of players A and B, respectively.
Then, the game (SA, SB , UA, UB) is symmetric if the
following two conditions are satisfied:

• SA = SB .

• UA(sA, sB) = UB(sB , sA), ∀ sA ∈ SA, ∀ sB ∈ SB .



If the game (SA, SB , UA, UB) is symmetric, we refer to it
as (S, U ) where S = SA = SB and U = UA.

Proposition 3: Our two-player m×m game is symmetric.

Proof: First, both players in our game have a common
strategy space which is S = {1, 2, . . . , m}. Second, from (10),

UA(sA, sB) = UB(sB , sA), ∀sA ∈ SA, ∀sB ∈ SB . (11)

Hence, the game is symmetric. Equation 11 says that if one
SU pair follows strategy sA while the other SU pair follows
strategy sB , then the utility of the player who plays sA, for
instance, is the same whether it is player A or player B.

C. Equilibrium Analysis

1) Finite Population Evolutionary Stable Strategy (FESS):

In symmetric two-player games, the notion of a finite
population evolutionary stable strategy (FESS), introduced by
Schaffer [20], [21], is typically considered. Schaffer observed
that a FESS of an arbitrary symmetric game coincides with
the NE of its zero-sum relative payoff game.

Definition 6: A strategy s
∗ ∈ S is an FESS of the two-

player symmetric game (S, U) if:

U(s∗, s) ≥ U(s, s∗), ∀s ∈ S. (12)

Definition 7: Given a symmetric two-player game (S, U).
The associated relative payoff game of (S, U) is denoted by
(S, Ū), where Ū is the relative payoff function (defined as the
difference between the player’s payoff and the payoff of its
opponent). Ū can be expressed as:

Ū(sA, sB) = U(sA, sB) − U(sB , sA), ∀sA, sB ∈ S. (13)

Schaffer observed that s
∗ is an FESS of the symmetric

game (S, U) if and only if (s∗, s∗) is a pure-strategy NE of
the associated relative payoff game. In the following, we will
show that the associated relative payoff game with our two-
player game has a pure-strategy NE.

2) Generalized Rock-Paper-Scissors Matrix:

The generalized rock-paper-scissors (gRPS) matrix plays
an important role in determining the existence of a pure-
strategy NE in symmetric games.

Definition 8: A symmetric two-player zero-sum game
(S, U ) is a gRPS matrix if in each column there exists a
row with a strictly positive payoff to the row player, i.e., if
∀ sB ∈ S, ∃ sA ∈ S such that U(sA, sB) > 0.

Next, we state a theorem taken from [22] about the
existence of a pure-strategy NE in symmetric games.

Theorem 2: A symmetric two-player zero-sum game
(S, U) possesses a pure-strategy NE if and only if it is not
a gRPS matrix [22].

Proof: See [22].

3) Existence of an FESS:

Proposition 4: The relative payoff game associated with
our two-player m × m game is symmetric.

Proof: First, note that in the relative payoff game, both
players have a common strategy space. Second,

ŪB(sB , sA) = UB(sB , sA) − UB(sA, sB)
= UA(sA, sB) − UA(sB , sA)
= ŪA(sA, sB). (14)

Hence, the relative payoff game is symmetric.

Proposition 5: The relative payoff game associated with
our two-player game is not a gRPS.

Proof: From Definition 8, in order to prove that the game
is not a gRPS, we want to a find a strategy of the column player
that yields a non-positive payoff to the row player irrespective
of the strategy played by the row player. In other words, we
want to find an s

∗
B ∈ S such that:

ŪB(s, s∗B) ≤ 0, ∀s ∈ S
⇒ U(s, s∗B) − U(s∗B , s) ≤ 0, ∀s ∈ S
⇒ U(s∗B , s) ≥ U(s, s∗B), ∀s ∈ S. (15)

The value of s
∗
B ∈ S that satisfies (15) depends on

q(f1)/q(f2). Specifically, we will show that:

s
∗
B =

{

1, if q(f1)/q(f2) > 1

m, if q(f1)/q(f2) < 1.
(16)

To prove (16), let us simplify the expressions of UA and

UB in (10) as follows. Let UA , q(f1)
α

(A)
1

β
(A)
1

+ q(f2)
α

(A)
2

β
(A)
2

and UB , q(f1)
α

(B)
1

β
(B)
1

+ q(f2)
α

(B)
2

β
(B)
2

. Recall that a successful

rendezvous instance of SU pair A on channel f1 is also a
successful rendezvous instance of SU pair B on channel f2.
Similarly, a successful rendezvous instance of SU pair A on
channel f2 is also a successful rendezvous instance of SU pair
B on channel f1. Hence,

α(A)
1

β(A)
1

=
α(B)

2

β(B)
2

α(A)
2

β(A)
2

=
α(B)

1

β(B)
1

. (17)

Therefore,
α

(A)
1

β
(A)
1

+
α

(A)
2

β
(A)
2

=
α

(B)
1

β
(B)
1

+
α

(B)
2

β
(B)
2

. Hence, if q(f1) =

q(f2), UA = UB . Furthermore, note from (10) that α(A)
1 =

α(B)
1 = α(B)

2 and α(A)
2 = α(B)

2 = α(B)
1 .

Now, if sA = 1, then the average TTR of SU pair A over
channel f1 is less than or equal to the average TTR of SU

pair B over channel f1 irrespective of sB , i.e., β(A)
1 ≤ β(B)

1 .

Because α(A)
1 = α(B)

1 , we have:

α(A)
1

β(A)
1

≥
α(B)

1

β(B)
1

=
α(A)

2

β(A)
2

. (18)



Accordingly, if q(f1) > q(f2), U(1, s) ≥ U(s, 1), ∀ s∈ S.
The second case in (16) can be shown in a similar way.

Theorem 3: The relative payoff game associated with our
two-player game has a pure-strategy NE. Furthermore, the
pure-strategy NE is unique if q(f1) 6= q(f2) and is given by:

(s∗A, s∗B) =
{

(1, 1), if q(f1)/q(f2) > 1

(m, m), if q(f1)/q(f2) < 1.
(19)

Proof: The relative payoff game is symmetric, zero-sum,
and is not a gRPS matrix. Hence, it has a pure-strategy NE.
If q(f1) 6= q(f2), there will be exactly one strategy of the
column player, s∗B , such that:

Ū(sA, s∗B) < 0, ∀sA ∈ S \ s
∗
B

Ū(s∗B , s∗B) = 0.

In this case, (s∗B , s∗B) is the pure-strategy NE. If the row
player deviates from following the strategy s

∗
B , it will lose;

because Ū(sA, s∗B) < 0, ∀ sA ∈ S\ s
∗
B . Moreover, because

the relative payoff game is symmetric and zero-sum, Ū(s∗B ,
sB) > 0, ∀ sB ∈ S\ s

∗
B , and the column player will lose if it

deviates from s
∗
B (recall that the utility of the column player in

the relative payoff game is −Ū ). From Proposition 5, s∗B = 1
if q(f1) > q(f2) and s

∗
B = m if q(f1) < q(f2).

Corollary 1: Our two-player symmetric game has a
unique FESS, s∗B , if q(f1) 6= q(f2). s

∗
B is given by (16).

Proof: Since the relative payoff game associated with our
symmetric game has a unique pure-strategy NE (s∗B , s∗B), our
game has a unique FESS, s∗B .

Although our game has a unique FESS, the utility of both
players at the FESS strategy is zero. Accordingly, both players
have an incentive to deviate from the FESS strategy.

4) Existence of a Pure-strategy NE:

The existence of a pure-strategy NE for our symmetric
game, and the convergence of the sequential best-response
update to a pure-strategy NE depends on: (i) the frame length
(m) and (ii) q(f1)/q(f2).

Result 1: For certain values of m and q(f1)/q(f2), start-
ing from the unique FESS strategy (given by Corollary 1), if
each SU pair plays a best-response strategy to the other pair’s
strategy in a sequential way, both SU pairs converge to a pure-
strategy NE.

Note that m is a design parameter. Furthermore, q(f1) and
q(f2), which represent the SUs’ preferences of f1 and f2, can
be considered as design parameters. If m and q(f1)/q(f2) are
set properly, a sequential best-response update converges to a
pure-strategy NE. In Section IV, we study the rendezvous per-
formance at the NE for different values of m and q(f1)/q(f2).

Proposition 6: If q(f1) = q(f2) (i.e., SU pairs do not
differentiate between rendezvousing on f1 or f2), then a
sequential best-response update is guaranteed to converge to a
pure-strategy NE.

Proof: If q(f1) = q(f2), then both SU pairs have the same
utility, as can be seen from (10). In this case, our symmetric

game is also an exact potential game, and the potential function
is equal to the utility of SU pair A (which is the same as the
utility of SU pair B). In this case, a sequential best-response
update is guaranteed to converge to a pure-strategy NE that
maximizes the potential function [23].

D. Asynchronous Rendezvous

Maintaining time synchronization between SUs in an op-
portunistic ad-hoc network is challenging. In this section,
we study the rendezvous game in the absence of time-
synchronization between SUs. One way to analyze this game is
to treat it as a four-player game, in which the utility of each SU
depends on the time-misalignment between this SU and each
of the three other SUs. Another way of analyzing this game
is to treat it as a two-player game, similar to the synchronous
case, where each player represents an SU pair. In this paper,
we follow the latter approach. We assume that the two SUs
in each pair are time-synchronized. They can achieve this
time synchronization by exchanging their timing information
during the first rendezvous instance. Note that the rendezvous
process is intended for establishing new communication links
as well as recovering disrupted communications (e.g., due to
the sudden appearance of a PU). Therefore, rendezvous is not
a one-time process and it might be needed any time during the
network operation.

The asynchronous two-player game formulation is similar
to the synchronous case, except that in the asynchronous case
the utility is computed by taking the expectation over all
time-shifts between the two SU pairs. Similar to [18], we
assume that a half time slot is enough for exchanging a pair
of rendezvous messages. Therefore, if two SUs met on a
half (or more) slot it is treated as if they met on the whole
slot. On the other hand, if they met on less than a half slot
then it is the same as if they did not meet. This way, the
misalignment between the two SU pairs takes integer values
only. Accordingly, the utility of SU pair A in the asynchronous
game is given by (similarly for SU pair B):

UA(sA, sB) =
m
∑

i=−m

p(i)UA (sA, rotate(sB , i)) (20)

where p(i) is the probability that SU pair A’s frame starts i
slots before SU pair B’s frame and rotate(sB , i) is the cyclic
rotation of SU pair B’s frame by i, as defined in Definition 2.

Proposition 7: If q(f1) = q(f2), then a sequential best-
response update of the asynchronous rendezvous game is
guaranteed to converge to a pure-strategy NE.

Proof: When q(f1) = q(f2), it can be easily shown that
UA = UB and the game is an exact potential game where the
potential function is equal to UA = UB . Hence, a sequential
best-response update is guaranteed to converge to a pure-
strategy NE that maximizes the potential function [23].

Remark 1: When q(f1) 6= q(f2), the equilibrium analy-
sis of the asynchronous game depends on the misalignment
distribution (i.e., p(i), i ∈ {−m, . . . , −1, 0, 1, . . . , m}). In this
paper, we consider the asynchronous rendezvous game only
when q(f1) = q(f2).
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Fig. 3. (a) The utilities, (b) number of rendezvous slots, and (c) average TTR of SU pairs A and B vs. the frame length when q(f1) = 0.5q(f2)
(SUs are time-synchronized).

E. Deducing the Strategy of the Other Player

In order to perform a sequential best-response update, an
SU pair needs to deduce the strategy played by its opponent.
In Algorithm 1, we present a simple procedure that SU pair
A follows to deduce the strategy followed by SU pair B.

Algorithm 1 Strategy Deduction Procedure

Input: SA =
(

s(1)
A , . . . , s(m)

A

)

Output: SB =
(

s(1)
B , . . . , s(m)

B

)

1: for i = 1 : m do
2: if rendezvous is successful during slot i then
3: if s(i)

A == f1 then s(i)
B = f2

4: else s(i)
B = f1

5: end if
6: else
7: if s(i)

A == f1 then s(i)
B = f1

8: else s(i)
B = f2

9: end if
10: end if
11: end for

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed rendezvous games. We implement our games in MAT-
LAB.

A. Synchronous Rendezvous Game

Figure 3(a) shows the utility of SU pairs A and B at the
NE vs. the frame length when q(f1) = 0.5q(f2). In this case,
starting at the FESS strategy, which is (m, m), the SU pairs
converge to the pure-strategy NE (s∗A, s∗B) given by:

(s∗

A, s
∗

B) =






(
√
m, 2

√
m), if 25 ≤ m ≤ 100

(1,m), if 9 ≤ m ≤ 16
(3, 4), if m = 4.

(21)

In addition to the utility, we show in Figure 3(b) the number
of rendezvous slots of each pair over channels f1 and f2 as

a function of the frame length. Furthermore, the average TTR
of both SU pairs is depicted in Figure 3(c). In the legend
of Figure 3, (I , fj), I = A, B, j = 1, 2, means that only
the rendezvous instances of SU pair I over channel fj are
considered. Note that although the average TTR increases with
the frame length, the number of rendezvous slots also increases
and the utilities of both SU pairs increase with the frame
length, except when the frame length increases from 9 to 16.

Figure 4 shows the same metrics as Figure 3, but with
q(f1) = 1.5q(f2). In this case, starting at the FESS strategy,
which is (1, 1), the SU pairs converge to the pure-strategy NE
(s∗A, s∗B) given by:

(s∗

A, s
∗

B) =






(
√
m + 1, 1), if 25 ≤ m ≤ 100

(8, 4), if m = 16
(9, 1), if m = 9
(4, 3), if m = 4.

(22)

To quantify the quality of the pure-strategy NE, we calcu-
late the PoA, defined as the maximum sum-utility that the two
SU pairs can achieve divided by the sum of their utilities at
the NE. Figure 5 shows the PoA for the two above cases: (i)
q(f1) = 0.5q(f2) and (ii) q(f1) = 1.5q(f2). Note that for most
of the frame lengths, the PoA when q(f1) < q(f2) is signifi-
cantly lower than that when q(f1) > q(f2). To understand the
reason behind this, consider Figure 6. In Figure 6, we plot the
percentage of time slots in a frame that are assigned channels
f1 and f2 according to GQFH-2. As shown in Figure 6, when
m ≥ 16 the number of slots assigned f2 is significantly larger
than the number of slots assigned f1. Therefore, it is preferable
to have q(f2) > q(f1) (i.e., assign the better quality channel
to the non-grid-quorum slots in the frame and assign the lower
quality channel to the grid-quorum slots).

B. Asynchronous Rendezvous Game

Assuming that the time shift between the two SU pairs
follows a uniform distribution (i.e., p(i) = 1

2m+1 in (20)), we
plot in Figure 7 the utility, number of rendezvous slots, and
average TTR vs. the frame length when q(f1) = q(f2). Recall
that in this case both links have the same utility and the game
is an exact potential game. Figure 7(a) shows that the utility
under the uniform distribution increases with the frame length
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Fig. 4. (a) The utilities, (b) number of rendezvous slots, and (c) average TTR of SU pairs A and B vs. the frame length when q(f1) = 1.5q(f2)
(SUs are time-synchronized).
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f2 in a frame, according to GQFH-2.

up to a certain value, beyond which it starts decreasing. The
maximum utility is attained when m = 25. The pure-strategy
NE of the potential game, (s∗A, s∗B), is given by:

(s∗

A, s
∗

B) =






(2, 1), if m = 16, 64 ≤ m ≤ 100
(2, 43), if m = 49
(2, 13), if m = 36
(2, 6), if m = 25
(9, 8), if m = 9
(4, 1), if m = 4.

(23)

Figure 8 shows the PoA for the asynchronous game under
the uniform distribution. As shown in the figure, the PoA is
very close to 1 (< 1.09).

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we investigated the non-cooperative co-
existence rendezvous problem, in which two SU pairs that
belong to two collocated secondary networks try to rendezvous
concurrently. We studied this problem through a combinatorial
game-theoretic framework. We considered both cases, when
SUs are time-synchronized and when there is a time misalign-
ment between the SU pairs. Our key observations are: (i) When
SUs are time-synchronized, large frame lengths (in general)
result in better rendezvous performance, (ii) in the presence
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Fig. 8. PoA vs. the frame length (misalignment between SU pairs is
uniform).

of a uniform time-misalignment between the SU pairs the
rendezvous performance is a concave function with the frame
length, (iii) assigning the better quality channel to the non-
grid-quorum slots in the frame leads to a better performance
at the NE, as characterized by the price of anarchy.

As a future research, the developed coexistence rendezvous
framework can be extended to the multicast case, where each
secondary network consists of a multicast group of SUs.



Frame Length
4 9 16 25 36 49 64 81 100

U
ti

li
ty

0.95

1

1.05

1.1

1.15

1.2

1.25

SU pair A, SU pair B

4 9 16 25 36 49 64 81 100
0

5

10

15

20

25

30

35

40

Frame Length

N
u

m
b

er
 o

f 
R

en
d

ez
v

o
u

s 
S

lo
ts

(A, f
1
) = (A, f

2
) = (B, f

1
) = (B, f

2
)

(A, f
1
 & f

2
) = (B, f

1
 & f

2
)

4 9 16 25 36 49 64 81 100
0

20

40

60

80

Frame Length

A
v

er
ag

e 
T

T
R

(A, f
1
) = (B, f

2
)

(A, f
2
) = (B, f

1
)

(A, f
1
 & f

2
) = (B, f

1
 & f

2
)

(a) (b) (c)

Fig. 7. (a) The utilities, (b) number of rendezvous slots, and (c) average TTR of SU pairs A and B vs. the frame length when q(f1) = q(f2)
(misalignment between SU pairs is uniform).

The rendezvous schemes proposed in [12] can be used as a
bases for this game formulation. Another direction for future
research is to study a cooperative form of unicast as well as
multicast coexistence rendezvous. In cooperative coexistence
rendezvous, each SU pair/group aims to maximize the overall
rendezvous performance of all coexisting secondary networks.
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