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Abstract—Beamforming provides transmission/reception di-
rectivity gains that compensate for the high propagation loss
encountered at millimeter-wave (mmWave) and sub-THz bands.
However, narrow beams introduce significant beam misalignment
challenges. Providing fast and efficient beam tracking is vital for
maintaining communications and minimizing service disruptions.
This paper introduces GAMBIT, a restless multi-armed bandit
(MAB) scheme for beam tracking and rate adaptation in mo-
bile directional systems. GAMBIT aims to select the optimal
beam and modulation and coding scheme (MCS) for upcoming
transmissions through an online reinforcement learning tech-
nique called Top-K Adaptive Thompson Sampling (Top-K-ATS).
According to this technique, K beams (K ≥ 1) are chosen and
ranked based on previously estimated beam quality information.
This information is initially gathered during cell discovery and
is updated periodically based on explicit or implicit feedback
from user equipment (UE). The best of the K selected beams,
called the “leader,” is used for communications. The remaining
beams, referred to as “scouts,” provide contextual information
about the RF environment. To prevent beam quality information
from becoming stale due to channel/mobility dynamics, we use
beam coherence time analysis to derive an upper bound on the
time between consecutive beam selection instances. We evaluate
the performance of GAMBIT through simulations at 28 GHz
and over-the-air (OTA) measurements at 28 GHz and 130 GHz.
We compare our scheme with ϵ-greedy, upper confidence bound
(UCB), and Thompson sampling (TS) beam tracking algorithms.
Results indicate that GAMBIT outperforms its contenders in
both achievable data rate and outage probability.

Index Terms—Millimeter-wave, sub-THz, beam tracking, rate
adaptation, reinforcement learning, multi-armed bandit, beam
coherence time.

I. INTRODUCTION

AS the demand for higher data rates keeps rising, wireless
systems are increasingly shifting to new spectrum in

the millimeter-wave (mmWave) and sub-THz bands. The so-
called “high bands” are key aspects of 5G and NextG cellular
systems [1]. One of their main drawbacks is that the signal
suffers from very high attenuation [2]. At the same time,
the small wavelengths allows portable devices to integrate
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large antenna arrays while maintaining small form-factors.
By utilizing high-dimensional phased arrays for beamforming,
narrow beams can be steered along any desired direction for
transmission/reception. The high directivity (and gain) of these
antennas makes it possible to achieve high data rates even in
the harsh mmWave channel environment [3].

While beamforming provides high gains, establishing and
maintaining a directional link can be challenging for several
reasons [4]. During the initial access (IA) process, i.e., cell dis-
covery, the base station (BS) establishes a communication link
with new user equipment (UE) and updates the links of already
connected UEs. IA overhead can be significant because of the
large number of directions to be scanned [5], [6]. Furthermore,
due to UE mobility and environmental obstacles (e.g., trees),
significant beam misalignment can occur, resulting in delayed
and incorrect channel state information reference signal (CSI-
RS) measurements. This leads to improper selection of the
modulation and coding scheme (MCS), reduced link through-
put, and outages [7]. Therefore, it is critical to track mobile
UEs, assign them to appropriate beams, and accurately select
the best possible MCS index that maintains the quality of
service of the served UE.

Efficient beam tracking in mmWave systems has been an
active area of research. Several methods have been introduced
to tackle this issue, as highlighted in a recent survey [8].
These methods include Bayesian filters [9]–[12], which utilize
Kalman filters [9], [10] or particle filters [11], [12] to track
the Angle of Arrival (AoA), Angle of Departure (AoD), and
channel gain. These methods heavily depend on accurate
signal propagation models. In practice, propagation models
are inherently imperfect, which can cause the Bayesian filter-
based algorithms to be ineffective.

Machine learning (ML) based beam tracking algorithms
have also been proposed. These algorithms can be broadly
categorized into two types: supervised learning (SL) and
reinforcement learning (RL). SL is more commonly used due
to its simplicity. Representative examples of SL algorithms for
beam tracking are given in [13]–[15]. In particular, the authors
in [13] introduced DeepBeam, a scheme that leverages convo-
lutional neural network (CNN)’s feature extraction capabilities
to passively eavesdrop on ongoing data transmissions, infer the
AoA and the beam ID, and perform beam tracking. In [14]
the authors proposed DeepIA, a deep neural network (DNN)-
based beam tracking algorithm. Unlike multi-codebook-based
approaches that use wide and narrow beams, DeepIA employs
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a single-beam codebook. However, it optimizes the beam
training process by selectively sweeping only a small subset
of beams. The authors in [15] integrated an auto-encoder into
a long short-term memory (LSTM) model for multi-cell multi-
beam prediction using channel quality information (i.e., SNR).

SL techniques, in general, rely on labeled data, and hence
may not be well-suited for handling the dynamic radio en-
vironment of mmWave communications. RL techniques can
overcome such issues. Two RL techniques are commonly
discussed in the literature: Q-learning and multi-armed bandits
(MABs). Q-learning is a model-free algorithm that aims to
identify the best action in a given state by evaluating the Q-
value (beam quality) associated with each action. Its ultimate
goal is to discover the optimal policy that maximizes the
cumulative reward received over time. In [16] the authors
introduced a beam management method that employs Q-
learning. The objective was to determine the beam that yields
the highest received power. During the exploration phase, the
agent intentionally selects a specific set of serving beams to
evaluate the rewards associated with this set. The agent may
intentionally select suboptimal beams to explore alternative
possibilities. Conversely, during the exploitation phase, the
agent consistently opts for the best beam that maximizes
the received power. Another related approach combines Q-
learning with an auxiliary beam pair to further reduce the
beam search space [17]. A significant limitation of Q-learning
is its slow convergence due to the need to explore all possible
state-action pairs. To reduce the training time of Q-learning,
deep Q-networks (DQN) can be used, where the Q-values
are predicted using a neural network. In [18] the authors
proposed a DQN-based approach for beam tracking. The
approach dynamically adjusts the beam probing range to adapt
to environmental changes, making it suitable for highly mobile
UEs. Considering both slow and fast mobile UEs, performance
results in [18] demonstrate that the DQN-based approach
outperforms traditional Q-learning in terms of the learning
speed. However, a fundamental limitation of DQNs is that they
can only be used with discrete and low-dimensional action
spaces. Furthermore, for the beam tracking problem, selecting
a new action (beam) does not change the system’s state space.
In other words, choosing a beam at time t does not affect the
set of beams that can be chosen at time t+1, so the problem
can be adequately modeled as a single-state Markov decision
process (MDP). In such cases, introducing Q-learning or DQN
adds complexity without providing substantial benefits.

Due to the sequential nature of beam tracking, an inherent
exploration vs. exploitation tradeoff exists, and the problem
can be formulated as a MAB problem. In [19] a MAB-based
beam tracking solution was proposed, which incorporates con-
textual information. In [20] beam tracking algorithms based on
ϵ-greedy and upper confidence bound (UCB) algorithm were
proposed. The issue with such MAB technique is that it cannot
tackle the time-varying nature of the channel and high-mobility
scenarios. In [21] a MAB-based approach based on a modified
Thompson sampling (TS) algorithm was proposed to address
non-stationarity and utilize historical data. A similar technique
was used in [22] to verify the effectiveness of mmWave beam
tracking over the open-source COSMOS testbed.

In this paper, we propose GAMBIT, a restless multi-armed
bandit framework for beam tracking and MCS index selection
in directional systems. In GAMBIT, the BS acts as the agent
and interacts with each beam to learn the changes in beam
quality over time. Beam quality is reflected in the best MCS
that the beam can support. We develop an RL algorithm,
called the Top-K adaptive Thompson sampling (Top-K-ATS),
to be used with GAMBIT. Top-K-ATS aims to maximize the
expected transmission rate by determining the best beam and
MCS index for the upcoming transmission/reception based on
past channel observations.

The main contributions of this paper are as follows:

• We propose a restless multi-armed bandit framework
called GAMBIT for joint beam and MCS index selection
in directional wireless systems. GAMBIT integrates an
RL-based algorithm called Top-K-ATS for selecting K
beams and ranking them based on the probability of
maximizing the average data rate of the underlying trans-
mission. Among these K beams, the best beam, called
the “leader,” is used for communication. The remaining
K − 1 beams, called “scouts,” are used for gathering
information related to the dynamics of the wireless chan-
nel. Top-K-ATS also selects the optimal MCS index to be
used by considering the fluctuations in the signal-to-noise
ratio (SNR) during previous transmissions.

• Top-K-ATS relies on two parameters to capture the
dynamics of the wireless channel: a “forgetting factor”
(γ1), which discounts the relevance of past information,
and a “boost factor” (γ2), which increases the weight of
recent observations. We show through simulations that the
performance of GAMBIT is particularly sensitive to the
value of γ1. Furthermore, we show how the throughput-
optimal value of γ1 (γ∗

1 ) depends on the change in
SNR over time. Accordingly, we develop a multi-layer
perceptron (MLP) neural network to predict the value of
γ∗
1 . The MLP is trained offline using a dataset collected

via extensive simulations, and predictions are performed
online based on SNR estimates.

• We obtain an upper bound on the optimal time between
two execution instances of GAMBIT so as to avoid using
obsolete past observations. This time is derived from
the beam coherence time, which reflects the impact of
beam misalignment due to UE mobility and dictates how
frequently the channel should be observed and when to
select a new beam.

• We conduct simulations for outdoor scenarios at 28 GHz
using phased planner arrays and also utilize experimental
datasets collected at 28 GHz and 130 GHz to verify
the efficiency of GAMBIT in terms of average data
rate, instantaneous data rate, and outage probability. Our
results show that GAMBIT improves the amount of
delivered traffic by up to 71.2% relative to the default
beam management scheme used in 5G NR.

The rest of the paper is organized as follows. In Section II
we describe the system model. Section III briefly overviews
the main components of GAMBIT. The derived timing re-
quirements for channel scanning, the description of the MLP



3

Fig. 1: System model.

framework, and the simulation setup are presented in Sections
IV, V, and VI, respectively. We evaluate the performance of
GAMBIT in Section VII. Finally, Section VIII concludes the
paper.

II. SYSTEM MODEL

A. BS and UE Models

Without loss of generality, we consider an outdoor scenario
in which a BS tracks a mobile UE. Beamforming is applied
at both the BS and the UE, with wider beams used at the
UE (reflecting its fewer antenna elements). The BS uses
multiple receive beams to receive different copies of the same
transmitted signal. We consider beam tracking from the BS
side only.

Without loss of generality, we focus on a single UE and
ignore any inter-user interference. In 5G systems, intra-cell
interference between users is mitigated via orthogonal fre-
quency division multiple access (OFDMA), which allocates
different subcarriers to different users in the cell. Inter-cell
interference can be addressed by assigning different chan-
nels to neighboring cells using graph coloring techniques.
Furthermore, receive diversity techniques, such as maximum
ratio combining (MRC) and interference rejection combining
(IRC), can be applied to significantly enhance system per-
formance. MRC maximizes the SNR by combining signals
across multiple antennas, strengthening the desired signal
while suppressing interference. In contrast, IRC specifically
filters out interference from adjacent subcarriers.

B. Multi-beam Antenna Model

We assume that the BS and UE are equipped with uniform
planar arrays (UPAs). In practice, 5G systems employ hybrid
beamforming, which combines analog and digital beamform-
ing. For simplicity, we consider analog beamforming due its
lower hardware complexity and reduced feedback overhead,
particularly in multi-user mmWave systems. Our proposed
GAMBIT scheme is in fact agnostic to the underlying beam-
forming strategy, and only requires the capability to generate
multiple beams, which can be achieved through either hybrid
beamforming or multi-beam analog beamforming.

At the BS, the multi-beam antenna model of [23] is
assumed. According to this model, there are ABS antenna
elements and K RF chains that can transmit K simultaneous

beams (see Fig. 1). Let AUE be the number of antenna elements
at the UE. The transmitter (Tx) and receiver (Rx) beamforming
vectors (a.k.a beamers) depend on the AUE × ABS complex
channel matrix H between the BS and UE. We assume that
following IA, both the BS and the UE have agreed on a
particular beam. Suppose that the BS uses a Tx beamforming
vector mq ∈ CABS×1 and the UE uses an Rx beamforming
vector nl ∈ CAUE×1 (q and l are the indices of the Tx/Rx
beamforming vectors in their respective codebooks C). Let
s(t) be the transmitted signal at time t. The received signal
yql(t) can be expressed as:

yql(t) = nH
l Hmqs+ nH

l z(t) (1)

where z ∈ CAUE×1 is a vector representing complex circularly
symmetric white Gaussian noise. Each (mq,nl) pair achieves
a certain Rx power Pql(t) at time t, where Pql(t) = |yql|2.
Therefore, the received signal-to-noise ratio (SNR) is given by

SNRql(t) =
|nH

l Hmqs|2

nH
l z(t)

. (2)

Note that the SNR is time-varying because H is also time-
varying.

III. GAMBIT DESIGN

In the current 5G standards [24], the BS executes IA to
admit a new UE to the network and then determines the
best beam pair (mk,nl). Simultaneously, the BS updates the
beams of currently served UEs. A simple tracking approach
maintains (exploits) the current best beam pair for a relatively
long time until a new IA cycle is initiated. However, IA
takes considerable time (approximately 5 ms), and performing
more frequent IA due to beam misalignment incurs significant
overhead. In addition, 5G mmWave systems rely on CSI-RS
control messages to maintain reliable data rates. However,
due to channel dynamics, the coherence time at mmWave
frequencies is too short, which makes it challenging to perform
frequent CSI-RS measurements. GAMBIT aims to extend the
period between two IA cycles as much as possible, and yet
maintain the required quality of service (QoS).

A. Formulation of the Beam Tracking Problem

In GAMBIT, beam tracking is modeled as a single-state
Markov decision process, where the BS acts as an agent that
interacts with the UE through directional beams (modeled as
arms of the MAB) to learn the changes in beam qualities over
time. Beam quality impacts the best possible MCS index that
can be supported at a given instance. GAMBIT utilizes an RL
algorithm called Top-K-ATS to select the best beam and MCS
index. According to Top-K-ATS, K out of MBS beams at the
BS are selected and ranked based on their average data rate.
The beam with the highest probability, called the “leader,” is
used to communicate with the UE. The UE sends a positive
acknowledgment (ACK) or a negative ACK (NACK) to the BS.
The remaining K−1 beams, “scouts,” are used to evaluate the
channel quality along their respective directions by monitoring
the ACK/NACK messages. These scouts provide additional
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information regarding the channel and increase the rate of
exploration without reducing the exploitation rate.

Top-K-ATS is specified by the tuple ⟨A,R⟩, where A ≜
{Jt ⊆ M : |Jt| = K} is the set of actions, i.e., the selected
K beams, and R is the set of rewards, i.e., achievable rates
associated with the selected beams (actions). Here, M is the
set of all beams at the BS. For each beam i ∈ Jt ⊆ M, a
random reward ri,t ∈ R is observed at time t, which follows
a reward distribution Θi,t. Let E[Θi,t]

def
= θi,t (unknown).

After IA, GAMBIT designs a beam tracking policy, which is
defined as a T -element vector that specifies the actions to be
taken at subsequent times t = 1, 2, .., T , so as to maximize
the cumulative reward.

Through IA, the BS has prior belief about the reward distri-
bution associated with each beam. Using Bayesian inference,
the BS continuously updates the posterior of mean reward (θ),
given the observed data (u), as follows:

Pr(θ|u) = Pr(u|θ) Pr(θ)/Pr(u). (3)

The reward distribution is represented by the categorical
random variable ri,t = [r

(0)
i,t , · · · , r

(C−1)
i,t ], where C is the

number of MCS indices supported by the system plus one.
Here, ri,t is a vector of zeros except for one element whose
value is 1, representing the highest attainable MCS index c,
c ∈ {1, · · · , C − 1}. The observed data rate at time t is given
by ri,tw

T , where w
def
= [w0, w1, · · ·wC−1] is a vector whose

entries correspond to the transmission rates associated with
different MCS indices. The BS can communicate with the
UE using one of the C − 1 MCS indices. If the BS fails
to establish communication with the UE, w0

def
= 0 is selected,

i.e., ri,t(0) = 1. The BS performs its computation based on the
feedback (ACK/NACK) received from the UE. Specifically,
the BS calculates the SNR of the ACK/NACK packet and
determines the highest possible MCS index for downlink
communication. In fact, any metric of the wireless signal,
such as received signal strength (RSS), reference signal receive
power (RSRP), reference signal received quality (RSRQ), or
the SNR, can be used with little to no modifications to the
GAMBIT algorithm. In this paper, we choose SNR specifically
due to the availability of channel quality indicator (CQI)-to-
MCS-to-SNR mapping tables for 5G mmWave communica-
tions.

Given the above, the objective of the BS is to select an
optimal policy µ = [J1, . . . ,JT ], i.e., a sequence of K
transmit beams over time slots t = 1, . . . , T , that maximizes
the expected throughput. If the expected reward vectors θi,t =

[θ
(0)
i,t , . . . , θ

(C−1)
i,t ], where θ

(c)
i,t represents the probability of the

cth element of θi,t such that θ(c)i,t > 0 ∀c and
∑C−1

c=0 θ
(c)
i,t = 1,

are known for each beam i at every time t, the problem reduces
to solving the following optimization formulation:

maximize
µ

1

T

1

K

T∑
t=1

∑
i∈Jt

θi,tw
T (4)

s.t.
C−1∑
c=0

θ
(c)
i,t = 1, ∀i, t, (5)

Run 
IA

Obtain prior 
distribution

Select Top K 
beams

Update posterior
distribution

Observe rewards 
on all K beams

Is t< 
T?

Select 
MCS

Transmit on 
best beam

YES

NO

Fig. 2: Flowchart of the GAMBIT scheme at a BS.

θ
(c)
i,t ≥ 0, ∀i, t, c. (6)

In (4), the product θi,tw
T quantifies the contribution of

beam i to the throughput at time t. Note that the rewards
distribution is unknown and nonstationary. As a result, (4)
cannot be solved directly. Instead, an ATS-based RL algorithm
is used to learn the expected rewards and select the optimal
policy. A flowchart of the GAMBIT framework at a BS is
shown in Fig. 2.

B. Top-K Adaptive Thompson Sampling (Top-K-ATS)

We model the prior of the expected rewards as a Dirichlet
random variable with parameter αi,t, Dir(αi,t). The rationale
for this choice is that the Dirichlet distribution is the conjugate
prior of the categorical distribution, used to model the average
reward per beam. According to (3), the posterior computed at
each round will also follow a Dirichlet distribution. The update
rule is simpler when the prior is the conjugate distribution of
the likelihood.

Consider first a case where only a single beam is selected,
i.e., K = 1. At time t, suppose that action at results in
selecting beam i, and reward rt is observed. For categorical
rewards and Dirichlet priors, the posterior for each beam i is
updated as:

αi,t+1 =

{
αi,t + rt, if at = i

αi,t, if at ̸= i.

After such an update, the BS selects a beam for the
next round by randomly sampling from the current posterior
distributions. Specifically, at each time t, the BS samples
si,t from Dir(αi,t), ∀i ∈ A (where |si,t| = 1, ∀i ∈ A
and ∀t ∈ {1, · · · , T}), and selects the action according to
Thompson sampling as follows:

at = argmax
i∈A

si,tw
T . (7)

This sampling implies that even though beams with cur-
rently high estimated means are more likely to be selected,
other beams get a chance to be picked and updated, i.e.,
exploration versus exploitation.

The above scheme is suitable when the reward distribution
is stationary. To capture the dynamic nature of directional
mmWave channels under mobility, GAMBIT adopts ATS [21],
where a “forgetting factor” γ1 is used to reduce the effect
of past observations, and a “boost factor” γ2 is used to
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Fig. 3: Illustration of qualities of different beams in
terms of achievable MCS indices (C = 4). Probabilities
refer to θ

(c)
i,t ,∀i ∈ A and ∀m ∈ 1, ..., C at a given t.

emphasize the most recent observation. For beam i ∈ A, the
updated posterior under these factors is as follows:

αi,t+1=


γ1αi,t + γ2rt, if at = i

γ1αi,t, if at ̸= i and γ1∥αi,t∥1 > 1

1, otherwise.

Here, γ1 ∈ (0, 1], γ2 ≥ 1, and ∥.∥1 is the 1-norm of a
vector. Multiplying αi,t by γ1 increases the variance of the
posterior distribution for each beam, which increases the rate
of exploration and, as a result, the BS tends to switch to
new beams rather than exploiting the same one for a long
time. Thus, γ1 dictates the rate of exploration. As for γ2,
this parameter emphasizes the currently selected beam by
boosting its observed reward, thus dictating the exploitation
rate. The final condition in the update rule ensures that if a
beam is not selected for a long time, αi,t is updated in such
a way that the belief on the beam’s distribution converges to
the multi-dimensional uniform distribution, Dir(1). From the
above discussion, it is evident that γ1 and γ2 significantly
impact the performance of GAMBIT and how well it adapts
to the dynamics of the wireless channel under mobility.

In the mmWave bands, as beams become narrower, more
beams need to be explored. As a result, it becomes difficult
for ATS to adapt to user mobility. To obtain more context
about channel dynamics, we propose to use multiple beams to
receive feedback from the UE and characterize the qualities
of the specific beams. To do so, at each time t, the BS
samples from each beam’s updated distribution to obtain si,t ∼
Dir(αi,t), (where |si,t| = 1, ∀i ∈ M, ∀t ∈ {1, · · · , T}), and
calculates the probability of maximizing the average data rate
as si,tw

T . Next, the beams corresponding to the K highest
values of si,tw

T are selected and denoted by Jt. For each
beam i, the updated posterior under these factors is as follows:

αi,t+1=


γ1αi,t + γ2rt, if i ∈ Jt
γ1αi,t, if i ̸= Jt and γ1∥αi,t∥1 > 1

1, otherwise.

C. MCS Selection

After selecting a beam using Top-K-ATS, the BS determines
the optimal MCS index that will be used during the next trans-
mission over that beam. This selection is important because

if the UE cannot support the MCS selected by the BS, the
effective data rate will be zero. In this paper, we consider a
conservative selection scheme where the MCS index that is
most likely to be attained and can achieve a non-zero rate
on the selected beam is used for transmission. After the BS
collects si,t,∀i ∈ M, and selects the “leader,” it will first
select a transmission rate based on the probabilities of attaining
different MCS indices on the selected beam. Specifically, given
that action at has been selected, the initial rate selection
problem by the leader can be written as:

m∗ = argmax
m∈{0,...,M−1}

s
(m)
i,t . (8)

For example, Fig. 3 depicts the probabilities of achieving
different MCS’s for four beams (C = 4). If we select the
Top-2 beams (K = 2), beams 4 and 1 will be selected by
the framework where beam 4 will be selected as the “leader”
and beam 1 as a “scout”. This is because s4,tw

T > s1,tw
T >

s3,tw
T > s2,tw

T .
After the initial rate has been selected, the BS then calcu-

lates the SNR corresponding to m∗ and adjusts the SNR based
on the average of recently observed changes of the SNR within
a given time window. Let ∆SNR be such an average. Then, the
conservative rate selected is given by

mc = MCS(fmcs→snr(m∗)−∆SNR) (9)

where fmcs→snr is a mapping between MCS and SNR values.
If the UE is static for some time, ∆SNR → 0. On the other hand,
if the UE is mobile, ∆SNR will vary.

IV. OPTIMIZING BEAM SELECTION TIMES

If mobility and beam misalignment are too rapid relative
to the time between two beam selection instances, GAMBIT
will be too slow to learn the dynamics of the environment. To
address this issue, we establish an upper bound on the interval
between two beam selection instances. The channel must be
measured within this interval and a decision must be made
whether or not to rerun GAMBIT.

Consider a scenario in which the UE moves within the
coverage area of the BS, as shown in Fig. 4. Suppose that
at time t, the BS runs IA to discover and connect with the
UE at location A. Let dt be the distance between the BS and
UE at time t. We assume the BS and UE beams are perfectly
aligned right after IA. Suppose that the UE starts moving at a
fixed speed v towards location B at an angle βt, and it reaches
B after a short duration t′. At time t + t′, the new distance
between the BS and the UE is dt+t′ . Due to UE mobility from
A to B, beam misalignment may occur, and the SNR of the
received signal could drop. The angular change in the AoA of
the line-of-sight (LOS) signal at the UE between times t and
t+ t′ is defined as the beam pointing error and is represented
in Fig. 4 as ∆ϕt+t′ . Note that ∆ϕt = 0◦.

To determine an appropriate beam selection time, we rely
on the concept of beam coherence time, TB , defined as the first
time when the received SNR drops below a certain threshold,
ξ, from its peak at time t [25]:

TB = inf
t′>0
{t′|SNR(t+ t′)

SNR(t)
< ξ}. (10)
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Δ𝜙𝜙𝑡𝑡 = 0°

x

Fig. 4: Misalignment caused by UE mobility.

Suppose that the transmit power and antenna gain of the UE
are fixed, and the noise power does not vary drastically over
the duration TB . Assume for the time being that no sudden
blockages due to large obstacles occur in the interval [t, t+ t′]
Then, the received SNR at any given time will depend only
on the receiver antenna gain and the path loss. Accordingly,
we can express ξ as

ξ =
SNR(t+ t′)

SNR(t)

=
G(∆ϕt+t′ )× L(dt+t′ )

G(∆ϕt)× L(dt)
. (11)

Here, G(ϕ) is the Rx antenna gain at an angle ϕ from the
boresight. For UPAs, we can express G(ϕ) as [26]:

G(ϕ) = Gmax10
− 3

10 (
2ϕ
ϕω

)2 , for |ϕ| ⩽ ϕm

2
(12)

where Gmax = G(0◦) is the maximum antenna gain:

Gmax =
2π10

3
10 (

ϕm
ϕω

)2

V (ϕm, ϕω) + 2π − ϕm
(13)

V (ϕm, ϕω) =

∫ ϕm

0

10
3
10 (

ϕm
2−ϕ2

ϕ2
ω

)
dϕ. (14)

ϕω is the half-power beamwidth (HPBW) and ϕm is the
beamwidth of the main lobe. When ∆ϕ > ϕm

2 , we consider
this situation as beam-alignment failure rather than beam
misalignment. L(d) is the path-loss at a distance d from the
BS, and is given by

L(d) =

(
λ

4π

)2

× d−α (15)

where λ is the wavelength and α is the path-loss exponent.
From (11), (12) and (15), we can calculate the value of ξ:

ξ =
Gmax10

− 3
10

(
2ϕ

t+t′
ϕω

)2

×
(

λ
4π

)2 × d−α
t+t′

Gmax10
− 3

10 (
2ϕt
ϕω

)
2

×
(

λ
4π

)2 × d−α
t

= 10
− 3

10

(
2∆ϕ

t+t′
ϕω

)2

×
(
dt+t′

dt

)−α

. (16)

The first term of the RHS of (16) represents the impact of
antenna gain on the SNR, whereas the second term represents

the effect of path loss. From Fig. 4 and utilizing the cosine
laws of the triangle, we can express dt+t′ as

dt+t′ =
√

d2t + v2(t′)2 − 2dtvt′ cosβt. (17)

Now, using (16) and (17), and replacing t′ with TB , we obtain:

dt+TB
= dt

(
10

− 3
10

(
2∆ϕt+TB

ϕω

)2

× ξ−1

) 1
α

. (18)

Accordingly,

TB =

d2t

(
10

− 3
10

(
2∆ϕt+TB

ϕω

)2

× ξ−1

) 2
α

− 1

v2TB − 2dtv cosβt
(19)

where

∆ϕt+TB
= arctan

(
vTB sinβt

dt − vTB cosβt

)
.

Equation (19) does not have a closed-form solution, so the
value of TB must be determined numerically. Note that TB is
defined for a given BS-UE distance, UE speed, and direction
of travel. In practice, the motion of the UE can vary over
time, so TB will also change. If TB is used as the basis for
determining the beam selection instances and is initially set to
a large value due to low UE speed, but shortly after that the UE
increases its speed, beam misalignment will likely occur before
the next beam selection time. To overcome this situation, we
set Ts to the minimum value of TB , i.e., TBmin . This minimum
value occurs when the UE is moving at the maximum speed
vmax and at a minimum distance dmin from the BS. Moreover,
TBmin also depends on βt, which in turn depends on the HPBW
of the BS antenna. While Fig. 4 illustrates a 2D scenario for
clarity, it is important to note that the underlying assumptions
and derivation of TB remain applicable in a 3D environment,
where the BS is situated at an elevated position relative to the
UE.

To determine the value of βt that results in TBmin , we first
analyze the relationship between βt and the HPBW. Fig. 5(a)
depicts the rate of SNR reduction for a fixed distance (d = dmin)
and speed (v = vmax) but for different βt and HPBWs using
(10). We set ξ = 0.5 and α = 3. We consider 2 × 2, 4 × 4,
6× 6, 8× 8, 12× 12, and 16× 16 UPAs, with corresponding
HPBWs of 59.86◦, 26.28◦, 17.16◦, 12.78◦, 8.48◦, and 6.36◦,
respectively. A βt of 90◦ means that the UE moves parallel
to the planner array, so the SNR is mostly impacted by the
antenna gain. On the other hand, a βt of 180◦ means that the
UE is moving perpendicular to the BS antenna. In this case,
SNR changes are solely due to path loss. From Fig. 5(a), we
observe that for a BS with large beamwidth, path-loss has more
impact on the changes in SNR fluctuations than the impact of
antenna gain. On the other hand, the impact of antenna gain
is more pronounced for a narrower beam. Moreover, the value
of βt for which TBmin is obtained depends on the HPBW. For
narrower beams (HPBW < 12.78◦), βt = 90◦ results in the
fastest rate of SNR reduction and thus TBmin . Fig. 5(b) shows
how the SNR drops for different directions of travel when the
BS is equipped with ABS = 16×16 antenna (HPBW = 6.36◦).
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Fig. 5: (a) Rate of change in the SNR vs. direction of travel
for different beamwidths; (b) time until SNR drops by 3 dB
(ξ = 0.5) for different values of βt when HPBW is 6.36◦ and
α = 3.
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Fig. 6: Impact of γ1 and γ2 on GAMBIT’s performance: (a)
average data rate vs. γ1 for various distances, and (b) average
data rate vs. γ1 for various speeds. The circles in (a) and (b)
represents γ∗

1 .

When βt = 90◦, the SNR drops the fastest, by 3 dB within
15 ms.

So far, we assumed no sudden changes in the SNR (e.g.,
due to blockage). If a sudden blockage occurs, then according
to (10) the beam coherence time will be defined by the time
until the occurrence of the blockage, triggering an immediate
rerun of GAMBIT. However, such recovery is not always de-
sirable in real-world deployments due to hardware processing
constraints and signaling overhead. To enhance its robustness
under blockage conditions, GAMBIT uses the Top-K beam
selection strategy, which ensures that if the primary LOS beam
fails due to blockage, the BS can seamlessly switch to an
alternative NLOS beam from the K-best options. In cases
of prolonged blockage (indicated by continuous NACKs), we
allow GAMBIT to trigger an IA phase and rerun the algorithm,
maintaining system reliability. In Section VII(B), we show the
efficacy of such a strategy.

V. PREDICTING THE OPTIMAL γ1

In this sections, we first show how the performance of
GAMBIT depends significantly on γ1. We then study the
impact of distance and speed on γ1, and its relationship with
SNR. Finally, we develop an MLP-based model to dynamically
update the optimal value of γ1.

A. Dependence of GAMBIT on γ1 and γ2

As discussed in Section III, γ1 determines the rate at which
previous information is forgotten, whereas γ2 specifies how

much the new information should be emphasized. Therefore,
when executing GAMBIT, the BS must carefully select the
values of both parameters.

Fig. 6(a) illustrates the impact of γ1 on the average data
rate for three values of γ2 and two BS-UE distances. The UE
speed is fixed at v = 10 m/s. Fig. 6(b) demonstrates how the
average data rate changes with γ1 at two UE speeds, 10 m/s
and 30 m/s, when the BS-UE distance is fixed at 50 m. The
two figures show that the average data rate varies significantly
with γ1 and less with γ2. After a certain value of γ2, the effect
of γ2 is more or less the same. From the figures, we see that
for γ2 > 200, the average data rate remains approximately
the same for a given γ1. Moreover, at the point where the UE
achieves the highest data rate (the circles in the figures), the
effect of a large γ2 on the data rate is insignificant.

B. Correlation Between Optimal γ1 and Rate of Change in
the SNR

Because γ1 determines the significance of prior-beam qual-
ity information, the throughput-optimal value of γ1, denoted
as γ∗

1 , depends on BS-UE distance and UE speed. If the UE
is close to the BS, a small displacement will cause a large
angular deviation. As a result, the BS is more likely to switch
between beams. On the other hand, if the UE is far from the
BS, it can be served by the same beam for a longer duration.
The same intuition applies when the UE is at a fixed distance
from the BS but is moving at a varying speed. Based on this
intuition, we perform simulations to observe the effect of UE
mobility on γ∗

1 .
Fig. 7(a) and Fig. 7(b) depict γ∗

1 and the corresponding
data rate achieved for different UE distances and speeds,
considering a 16×16 UPA. From Fig. 7(a), we observe that at
a fixed UE speed, γ∗

1 increases with distance. A higher value of
γ∗
1 indicates that the variance of the posterior distribution is not

changing much, and as a result, the rate of exploration is low.
This justifies our previous assumption. The same argument can
be used to justify the behavior of γ∗

1 in Fig. 7(b), where the
BS-UE distance is fixed but the speed is varied.

From the plots, it is evident that fixing the value of γ∗
1 will

negatively impact the performance of GAMBIT. Therefore,
we need a way to update γ∗

1 based on UE mobility. One way
to do that is to design a predictor for γ∗

1 based on the BS-
UE distance and UE speed. However, obtaining distance and
velocity directly from the received signal involves complicated
signal processing. Indeed, we rely on the change in SNR of the
received signal over time to adapt γ∗

1 , given that SNR changes
are also influenced by UE mobility. The change in the SNR
at time t is defined as ∆SNRt = SNRt − SNRt−1, where
SNRt and SNRt−1 are the SNRs of packets received by the
BS at times t and t− 1, respectively. Fig. 7(c) and (d) depict
how SNRt varies with both distance and speed. Comparing
Fig. 7(a) with Fig. 7(c), we observe that a higher value of
SNRt results in a lower value of γ∗

1 , and vice versa. The same
can be observed from Fig. 7(b) and Fig. 7(d).



8

5 50 100 150 200

Distance (m)

0

0.2

0.4

0.6

0.8

1
1*

v=1 m/s

v=15 m/s

v=30 m/s

(a)

1 5 10 15 20 25 30

Speed (m/s)

0

0.2

0.4

0.6

0.8

1

1*

d=5 m

d=50 m

d=100 m

(b)

5 50 100 150 200

Distance (m)

-0.2

-0.1

0

0.1

0.2

S
N

R
 (

d
b
m

)

v=1 m/s

v=15 m/s

v=30 m/s

(c)

1 5 10 15 20 25 30

Speed (m/s)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

S
N

R
(d

b
m

)

d=5 m

d=50 m

d=100 m

(d)

Fig. 7: (a) γ∗
1 vs. BS-UE distance; (b) γ∗

1 vs. UE speed; (c) change of SNR vs. BS-UE distance; and (d) change of SNR vs.
UE speed.

C. MLP-based Prediction of γ∗
1

Determining the relationship between ∆SNRt and γ∗
1 is

not trivial. For this reason, we employ an MLP model1 to
determine γ∗

1 based on the changes in SNR values.
Let t1, t2, . . . , be the time instances at which GAMBIT is

executed. At any of these instances, say tn, let the input vector
be denoted by X(tn) = X(∆SNRt−2,∆SNRt−1,∆SNRt),
corresponding to the changes in the SNR of the past three
execution instances. Let γ∗

1 (tn) denote the value of γ∗
1 at any

arbitrary time tn. The prediction of γ∗
1 (tn) can be formulated

as:

γ∗
1 (tn) = F(X(tn)) (20)

where F(.) defines the mapping from the input X(tn) to the
output γ∗

1 (tn). This mapping needs to be learned.
Our MLP predictor consists of three layers: an input layer,

a hidden layer, and an output layer. The input and the hidden
layers each consist of 32 hidden units, and the activation
function is set to tanh. The output layer is constructed with ten
hidden units corresponding to 10 different values of γ∗

1 (from
0.05 to 0.95, with a step size of 0.1) and a softmax activation
function. We use an Adam optimizer with a learning rate of
0.01 and select categorical cross entropy as the loss function.

To train the model, we use a dataset that consists of 48,000
data points, generated for 30 values of v, 40 values of d, 10
values of γ1, and four values of γ2 (the simulation setup is
detailed in Section VI). Because it takes a considerable time
to simulate a MIMO mmWave channel and generate one data
point, we obtain the dataset containing γ∗

1 by considering only
the value of γ1 that generated the highest data rate for γ2
= 500. This resulted in a dataset of 1200 data points. We
divide the dataset into 70% for training, 15% for validation,
and 15% for testing. We train the MLP network offline by data
collected under the random circular mobility model (RCM),
while the predictions are performed online using random way-
point model (RWM). The two mobility models are explained
in Section VI(A). The training batch size is set to 10. Training
is completed when validation accuracy no longer increases
with training epochs. The trained MLP network achieves an
accuracy of 89.4%, precision of 0.855, recall of 0.894, and F1
score of 0.871.

1In [27], we used BS-UE distance and UE speed as inputs to an LSTM
network to update γ∗

1 .

Algorithm 1 GAMBIT

1: for time instances t = t1, t2, · · · , T do
2: Take samples:
3: for i ∈M do
4: Sample si,t ∼ Dir(αi,t)
5: end for
6: Choose and apply action:
7: Set of ranked arms, Jt = {}
8: for i ∈M and i ̸∈ Jt do
9: Jt ∪ argmaxi∈M si,tw

T

10: end for
11: Select action Jt and observe reward ri,t
12: Predict value of γ∗

1 :
13: γ∗

1 = F(X(∆SNRt−2,∆SNRt−1,∆SNRt))
14: Update distributions:
15: for i ∈M do
16: if i ∈ Jt then
17: αi,t+1 ← γ∗

1αi,t + γ2ri,t
18: else if i ̸∈ Jt and γ∗

1∥αi,t∥1 > 1 then
19: αi,t+1 ← γ∗

1αi,t

20: else
21: αi,t+1 ← 1
22: end if
23: end for
24: end for

Algorithm 1 provides a procedure for implementing GAM-
BIT.

VI. SIMULATION SETUP AND DATASET GENERATION

A. UE Mobility Models

We consider two UE mobility models: the random waypoint
model (RWM) and the random circular motion model (RCM).

Depicted in Fig. 8(a), RWM is a commonly used model
that simulates the movement of UEs in an environment with
random and unpredictable behavior. In this model, the UE
is initially placed at a point p1 within the simulated region.
The UE then selects at random a destination point p2 and a
random speed v1. It travels toward p2 at the specified speed
in a straight line. Upon reaching p2, the UE pauses for a
fixed duration, referred to as the “pause time,” before selecting
a new destination p3 and speed v2. This process continues
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Fig. 8: Mobility models used in the simulations.

throughout the simulation, resulting in realistic yet variable
movement patterns. RWM is used in our simulation to verify
the performance of GAMBIT.

RCM (see Fig. 8 (b)) is a constrained version of the RWM,
where the UE’s movement is limitred to a circular trajectory
around the BS. The UE selects random points pi along the
circular path and moves towards them at a constant speed v.
Upon reaching a point, the UE selects another random point
along the circle and continues its movement randomly in either
a clockwise or counterclockwise direction. RCM is used to
study the relationship between the values of γ1 and γ2, and
UE mobility (i.e., distance and speed). Moreover, it is used to
generate data for training the MLP predictor of γ∗

1 .

B. Channel Model

The channel model used in our simulation incorporates both
LOS and NLOS components. The model captures path loss,
shadowing, and small-scale effects. To generate a channel
instance, we first determine the existence of an LOS path based
on the probabilities defined in Equations (8a), (8b), and (8c)
of [5], which were derived based on extensive measurements.
Next, we account for large-scale effects, including path loss,
by applying the channel parameters in Table I of [5].

To simulate multi-path components (MPCs), we position
three point scatterers at random locations on the ellipsoid
between the Tx and Rx, introducing both small-scale effects
and three NLOS clusters in addition to the LOS cluster (see
Fig. 9). At the Rx, each of the four clusters contains 32 rays
(16 transmitted rays per cluster, with two Rx antenna ele-
ments). When arriving at a scatterer, each ray is characterized
by unique Angle of Arrival (AoA) and Angle of Departure
(AoD), which depend on the positions of the Tx element,
scatterer, and Rx element.

The MIMO channel coefficients are computed based on the
positions of the Tx, Rx, and scatterers. The small-scale channel
gain for each path (ray) between a Tx antenna element and
an Rx antenna element is sampled from a complex normal
distribution with zero mean and unit variance. Beamform-
ing vectors for both the Tx and Rx are derived from their
respective azimuth angles, where only azimuthal tracking is
performed. The Tx azimuth angle is determined by the given

Fig. 9: Channel model with Tx and Rx arrays, and 3 point
scatterers, illustrating the multi-path propagation and beam-
forming setup.

beam tracking algorithm. Using the beamforming vectors and
the MIMO channel matrix, the beamforming gain is calculated.
Together with the large-scale path loss, this gain is used to
determine the RSS and subsequently the SNR.

The strength of the GAMBIT framework lies in its ability
to adapt to varying channel conditions by updating posterior
beliefs and modifying its policy based on observed data.
While our study utilizes the above channel model, GAMBIT’s
flexibility makes it capable of accommodating more complex
channel models, such as doubly-selective channels [28], which
are characterized by time and frequency selectivity due to rapid
mobility and wide bandwidth. Although the overall throughput
may depend on the complexity and accuracy of the underlying
channel model, GAMBIT’s tracking capabilities are expected
to remain consistent.

C. Simulation Setup

A MATLAB program was developed to generate a dataset
for analyzing the impact of γ1 and γ2 on GAMBIT’s per-
formance, training the MLP-based model, and evaluate the
overall performance of GAMBIT. In the simulation setup,
the UE moves according to mobility models described in
Section VI(A). We set ABS to 16× 16, AUE to 2× 2, and PTx =
30 dBm. We run our simulations in the 28 GHz band. The Rx
beam at the UE is kept the same. The BS performs beam
tracking in the azimuthal plane with a scanning resolution
of 5◦ and a beam scanning range ±30◦ from the antenna’s
broadside. The BS-UE distance varies between 10 m to 200
m, and the UE speed varies between 1 m/s and 30 m/s. We rely
on the CQI-to-MCS-to-SNR mapping table provided in [29].
We simulate different values of γ1 and γ2, and collect UE
mobility data (i.e., distance, speed, and SNR) at Ts instances.
Other parameters used in the simulations are provided in Table
I.

VII. PERFORMANCE EVALUATION

To evaluate the performance of GAMBIT, we perform ex-
tensive simulations and we also run the algorithm on a publicly
available experimental dataset. We compare GAMBIT with a
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TABLE I: List of simulation parameters

Parameters Value
Scenario UMi

Center frequency 28 GHz
BS antennas (ABS) 16× 16
UE antennas (AUE) 2× 2
Sampling time (Ts) 1 ms, 15 ms, variable

UE speed (v) 1-30 m/s, in step of 1m/s
BS-to-UE distance (d) 10-200 m, in step of 5 m

Tx power (PTx) 30 dBm
No. of random scatters 3

γ1 0.05-0.95, in step of 0.1
γ2 10, 200, 500, 1000
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Fig. 10: Performance of various beam tracking algorithms
(simulation dataset): (a) Average data rate, and (b) link outage
probability for Ts = 15 ms.

‘dynamic oracle’ (DO), a ‘static oracle’ (SO), and three state-
of-the-art beam tracking approaches: ϵ-greedy, UCB [20], and
the TS algorithm in [22]. DO optimizes the expected reward
at each step t by always selecting the best beam/MCS index.
It has perfect knowledge that is updated instantaneously. On
the other hand, SO represents the de facto beam management
for 5G NR. In this case, the BS keeps exploiting the same
beam until communication outage takes place. At that point,
the algorithm reruns IA again [24].

A. Simulation Results

For testing and validation, we use the simulation parameters
described in Section V except for the mobility model, where
we test the various beam tracking approaches using RWM
rather than RCM. Each simulation run is set to 90 seconds.
For TS, we fix γ1 and γ2 at 0.3 and 12, respectively [22].
For GAMBIT, we let γ1 vary based on ∆SNRt, and set γ2 to
500. To study the effect of beam selection times, we consider
three ways for selecting Ts: (i) Ts is varied based on the beam
coherence time, as calculated using (19), (ii) Ts = TBmin (=
15 ms according to simulation parameters), and (iii) Ts =
1 ms < TBmin .

Finally, to show the impact of the number of simultaneously
selected beams in GAMBIT, we run GAMBIT for three
different values of K, i.e., K = 1, 2, and 3. When K = 1, we
only select the best beam, i.e., the “leader,” and there are no
“scout” beams. For K = 2 and 3, there are 1 and 2 “scout”
beams, respectively.

1) Comparison With State-of-the-art Algorithms: We com-
pare GAMBIT with DO, SO, ϵ-greedy, UCB, and TS algo-

rithms. Here, we set Ts to 15 ms. Moreover, we run the ϵ-
greedy algorithm for different values of ϵ and report the results
for ϵ = 0.1 (for which we obtained the best results). We use
the notation GT for GAMBIT for ease of representation in the
figures.

Fig. 10(a) and (b) depict, respectively, the average data rate
and link outage probability obtained under various algorithms.
Outage occurs when the selected beam and/or MCS index is
insufficient to meet the link budget. This could happen due
to gradual or sudden changes (blockage) in the SNR. We
define the outage probability as the ratio of the total outage
instances to the total number of beam selection instances.
As shown in the results, GAMBIT performs better than ϵ-
greedy, UCB, and TS in both metrics, even when (K = 1).
For the average data rate, GAMBIT achieves 3.58 Gbps, 4.08
Gbps, and 4.23 Gbps for K = 1, K = 2, and K = 3,
respectively, significantly higher than ϵ-greedy (0.98 Gbps),
UCB (1.55 Gbps), and TS (3.49 Gbps). Similarly, for link
outage probability, GAMBIT demonstrates superior reliability
with 24.3%, 15.4%, and 12.3% for K = 1, K = 2, and K = 3,
respectively, which are notably lower than ϵ-greedy (38.9%),
UCB (73.5%), and TS (51.1%).

2) Impact of Beam Selection Times: In Section III, we
derived an upper bound on Ts and set it to TBmin (= 15ms
in our case). We argued that GAMBIT must be run within
this time, i.e., Ts ≤ TBmin , to ensure that previously observed
data do not become obsolete. Fig. 11(a) and 11(b) depict the
average data rate and outage probability for GAMBIT under
different values of Ts. The figures also compare GAMBIT
with TS, DO, and SO, respectively. We intentionally omit ϵ-
greedy and UCB algorithms in the following comparison as
they performed poorly compared to other algorithms.

For a given value of K, we observe that the performance of
GAMBIT depends on the beam selection time Ts. When Ts is
set to vary with the beam coherence time, the performance
of GAMBIT in terms of both link throughput and outage
probability degrades severely compared to when Ts ≤ TBmin .
When Ts < TBmin , the performance improves compared to
when Ts = TBmin . This is because running the beam tracking
schemes frequently will result in better contextual information
regarding the wireless environment. Moreover, we observe that
the performance gain is more obvious in terms of reducing the
number of outages than increasing the average data rate. How-
ever, setting Ts < TBmin comes with additional computational
and communication overhead.

3) Robustness to Outages: We also obtain how long it
takes a beam tracking algorithm to realign the BS-UE beams
following an outage. Fig. 11(c) and 11(d) depict the CDF of
the outage duration (up to 20 slots) for various algorithms
when TS = 15 ms and TS = 1 ms, respectively. From
Fig. 11(c), we observe that with a probability > 0.9, the outage
will approximately last for 8, 9, and 10 slots for GT(K = 1),
GT(K = 2), and GT(K = 3), respectively, whereas for TS,
it lasts for seven slots, on average. Similarly, from Fig. 11(d),
we observe that with a probability > 0.9, the outage will
be approximately three slots for GT(K = 1), GT(K = 2),
and GT(K = 3), respectively, and that for TS is 10 slots.
This indicates that GAMBIT can quickly realign the Tx-Rx



11

1
.2

5
2

2

1
.6

7
5

2
.0

9
9

1

2
.3

5
4
8

5
.0

1
0
6

3
.4

9
9

4

3
.5

8
7

4
.0

8
7
7

4
.2

3
2

8

0
.8

6
4
6

3
.8

0
1
2

4
.2

7
4

4
.5

5
9

6

4
.6

5
3

8

DO TS

GT(K
=1)

GT(K
=2)

GT(K
=3)

SO

0

1

2

3

4

5

6
A

v
e
ra

g
e
 D

a
ta

 R
a
te

 (
G

b
p
s
)

(a) (b)

0 5 10 15 20

Consecutive Outage Instances

0

0.2

0.4

0.6

0.8

1

C
D

F

TS

GT(K=1)

GT(K=2)

GT(K=3)

(c)

0 5 10 15 20

Consecutive Outage Instances

0

0.2

0.4

0.6

0.8

1

C
D

F

TS

GT(K=1)

GT(K=2)

GT(K=3)

(d)

Fig. 11: Performance of various beam tracking algorithms (simulation dataset): (a) Average data rate, (b) link outage probability,
(c) CDF of outage duration for Ts = 15 ms, and (d) CDF of outage duration for Ts = 1 ms.
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Fig. 12: Performance of various beam tracking algorithms
(Lumos5G dataset): (a) average data rate, (b) link outage
probability, (c) instantaneous data rate, and (d) instantaneous
performance loss.

beams in case of a link outage, demonstrating its robustness.
Moreover, there will be fewer IA cycles in GAMBIT compared
to TS, thus extending the time between consecutive IA cycles
and reducing overall system overhead.

B. Experimental Results

We also study the effectiveness of GAMBIT using two
experimental datasets, obtained at 28 GHz and 130 GHz.

C. 28 GHz Experimental Dataset

The first dataset, called Lumos5G [30], is a publicly avail-
able dataset from the University of Minnesota (UMN), USA.
It consists of almost 68,000 traces of 5G data collected at
28 GHz around the U.S. Bank Stadium in Minneapolis’s
downtown. The measurements were obtained along a 1300-
meter loop that covers roads, railroad crossings, restaurants,
coffee shops, and recreational outdoor parks. The collected
data includes the UE’s geolocation, its speed, 5G BS tower
ID, 5G synchronization signal (SS) measurements, e.g., SS-
RSRP, SS-RSRQ, and SS-SINR, throughput, etc., all sampled
and logged every second. The UE speed varied from 0 m/s
to 14 m/s. The dataset includes diverse conditions with LOS,
NLOS, and blockages, allowing us to evaluate GAMBIT under
realistic scenarios.

We select the BS with ‘tower id’ 16 from the dataset and
calculate the BS-UE distance from the provided UE and BS
locations. Since no information regarding the characteristics
of the antenna array or beamwidth is available, we divided
the provided UE locations so that at any given time, the UE
is within the coverage of at least two beams. This represents
an extreme scenario where the beam is either very narrow or
the UE is moving close to the highest speed supported by the
system. We run various beam tracking algorithms using this
dataset. Here, Ts equals the sampling time, i.e., 1 second, and
K = 1.

Fig. 12(a) depicts the average throughput under different
beam tracking algorithms. GAMBIT achieves 29.104% and
71.2% higher throughput than TS and static oracle, respec-
tively.

In Fig. 12(b), we compare GAMBIT and TS in terms of
the outage probability. GAMBIT has an outage probability of
65.5%, which is 12.38% less than that of TS (77.88%).

The instantaneous data rates achieved by GAMBIT and TS
are depicted in Fig. 12(c). GAMBIT demonstrates the ability
to recover from sudden outages caused by blockages. For
instance, extended blockages occur between 120–140 seconds
and 160–180 seconds, during which communications tem-
porarily halt. GAMBIT successfully restores communication
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(a)

Fig. 13: TeraNova experimental setup used for performance
evaluation at 130 GHz.

after these interruptions, as evidenced by the gradual recovery
in the average data rate. This highlights the framework’s
adaptability in handling challenging real-world scenarios. In
Fig. 12(d) we depict the instantaneous performance loss,
defined as the percentage decrease in the data rate when the
optimal beam or MCS index is not selected. From Fig. 12(c)
and Fig. 12(d), we observe that the TS algorithm undergoes
a lot of continuous outages and performance loss compared
to GAMBIT, which explains the results in Fig. 12(a) and
Fig. 12(b), respectively.

D. 130 GHz Experimental Dataset

We conducted measurements at 130 GHz using the Ter-
aNova [31] platform at Northeastern University. In our ex-
perimental setup, illustrated in Fig. 13, we employ a 21 dBi
horn antenna with a 13◦ 3-dB beamwidth for both the Tx and
Rx. The transmit power was set to 13 dBm, and the channel
bandwidth was set to 20 GHz.

This experiment took place indoor in an atrium with various
objects, e.g, pillars, chairs, tables, metallic objects, and more.
It was challenging to precisely quantify the number of metallic
objects within the setup and, more importantly, how many of
them acted as reflectors. Notably, there were no blockages
between the Tx and Rx, ensuring a consistent LOS path
throughout the experiment. The Rx was positioned within an
arc 3 meters away from the Tx. This position was changed
in discrete steps, ranging from −16◦ to +16◦ with a 2◦

resolution. Meanwhile, the Tx beam was scanned from −90◦
to +88◦ with a 2◦ resolution. We gathered data on the SNR
for different Tx beam directions and Rx locations.

Fig. 14(a) depicts the average link throughput for DO, SO,
GT(K = 1), GT(K = 2), GT(K = 3), and TS algorithms. The
figure clearly shows that GAMBIT outperforms TS. Fig. 14(b)
depicts the outage probabilities for both GAMBIT and TS.
GAMBIT consistently exhibits a lower outage probability than
TS.

E. Impact of Beam Squint

Comment 5: In the sub-THz frequency range, beam squint
poses a potential challenge due to the wide bandwidths
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Fig. 14: Performance of various beam tracking algorithms
(TeraNova dataset at 130 GHz): (a) average link throughput,
and (b) outage probability.
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Fig. 15: Performance of various beam tracking algorithms
under the effect of beam squint (TeraNova dataset at 130
GHz): (a) average link throughput, and (b) outage probability.

involved. Because horn antennas do not exhibit frequency-
dependent beam steering, beam squint does not show in our
experimentation. However, to evaluate its potential impact
on GAMBIT, we conducted simulations incorporating beam
squint. The effective beam direction due to beam squint ϕsquint
was computed as [32]:

ϕsquint(f) = sin−1

(
fc
f

sinϕ

)
(21)

where, fc = 130 GHz is the center frequency, f is the
operating frequency, and ϕ is the intended beam angle at fc.
Given the 20 GHz bandwidth, we selected f = 120 GHz to
simulate the worst-case squint effect.

Figure 15(a) illustrates the average link throughput for the
TS, GT(K = 1), GT(K = 2), and GT(K = 3) algorithms
when beam squint is introduced. Figure 15(b) presents the
corresponding outage probabilities for TS and GAMBIT.

As observed, with beam squint, the average data rate de-
creases from 0.6 to 0.31 Gbps for TS, from 2.5 to 2.4 Gbps
for GT(K = 2), and from 2.6 to 2.2 Gbps for GT(K = 3).
On the other hand, the average data rate increases from 2.15
to 2.3 Gbps for GT(K = 1). Similarly, the outage probability
increases from 41% to 91% for TS, from 11% to 18% for
GT(K = 2), and from 16% to 26% for GT(K = 3), but
slightly decreases from 20% to 19% for GT(K = 1). These
results indicates that beam squint generally degrades system
performance by lowering throughput and increasing outages,
but GAMBIT still consistently outperforms TS under such
impairments.
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To mitigate beam squint in practical deployments, true-time-
delay (TTD) controllers have been proposed as an alternative
to conventional phase-based beamforming [33]. Unlike phase
shifters, which introduce frequency-dependent phase shifts,
TTD-based approaches compensate for these variations across
wide bandwidths, effectively mitigating beam squint. Although
such arrays are not available in our current setup, they repre-
sent a promising direction for future high-bandwidth sub-THz
beamforming systems.

VIII. CONCLUSIONS

This paper introduced GAMBIT, a novel framework for
intelligent beam tracking and rate adaptation in mmWave and
sub-THz systems. GAMBIT leverages a restless multi-armed
bandit approach with Top-K Adaptive Thompson Sampling
to jointly optimize beam and MCS selection. This approach
increases the exploration rate to adapt to dynamic channel
conditions while maintaining a fixed exploitation rate. We also
introduced a novel approach to determine the upper bound for
beam selection time based on beam coherence time, ensuring
that beam information remains up-to-date. Furthermore, an
MLP was developed to dynamically predict the controlling
parameters of GAMBIT (e.g., γ1) based on changes in SNR,
enhancing its adaptability to varying channel conditions.

The performance of GAMBIT was validated through exten-
sive simulations and experimental evaluations at 28 GHz and
130 GHz. Results demonstrated that GAMBIT significantly
outperforms state-of-the-art beam tracking algorithms, includ-
ing ϵ-greedy, UCB, and TS. Specifically, GAMBIT achieved
up to 71.2% higher throughput compared to default 5G beam
management schemes, reduced outage probabilities by over
12%, and delivered an average throughput of 4.23 Gbps with
K = 3, surpassing TS (3.49 Gbps) and other baseline methods.
These findings highlight GAMBIT’s potential as a robust and
efficient solution for beam tracking and rate adaptation in next-
generation wireless systems. Future work could extend GAM-
BIT to support enhanced mobile broadband by incorporating
multi-beam transmission, where multiple beams constructively
combine at the UE to further increase overall throughput.
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