
Securing MIMO Wiretap Channel With DDPG-Based Friendly
Jamming Under Non-Differentiable Channel

Bui Minh Tuan∗, Diep N. Nguyen∗, Nguyen Linh Trung§, Van-Dinh Nguyen†, Nguyen Van Huynh‡,
Dinh Thai Hoang∗, Marwan Krunz¶, Eryk Dutkiewicz∗

∗School of Electrical and Data Engineering, University of Technology Sydney, NSW 2007, Australia
†College of Engineering and Computer Science, VinUniversity, Vinhomes Ocean Park, Hanoi 100000, Vietnam

‡Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
§AVITECH, University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
¶Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, USA

Abstract—6G communication systems, particularly massive
Internet of Things (IoT), face critical security challenges in
safeguarding transmissions against eavesdropping attacks. These
challenges are exacerbated by the presence of intelligent eaves-
droppers capable of exploiting impairments in wiretap channels.
Traditional physical layer security (PLS) techniques, such as
friendly jamming (FJ), typically rely on the differentiability
and accurate availability of channel state information (CSI) to
optimize performance. However, in real-world scenarios, non-
differentiable channels (NDCs) resulting from hardware imper-
fections, mobility, and complex multi-path fading, pose significant
obstacles to conventional gradient-based optimization methods. In
this paper, we propose a novel deep learning-based FJ approach
tailored specifically for NDC environments, where gradient-based
techniques prove ineffective. Leveraging the Deep Deterministic
Policy Gradient (DDPG) algorithm, our framework dynamically
generates jamming signals to optimize secrecy rates while si-
multaneously minimizing the block error rate (BLER) at the
legitimate receiver. Through extensive evaluation of realistic chan-
nel models, including both line-of-sight (LoS) and non-line-of-
sight (NLoS) conditions, our proposed approach demonstrates
superior security enhancements and robust performance against
eavesdropping threats. The results highlight its effectiveness in
securing communications under the challenging and dynamic
conditions inherent to NDC environments.

I. INTRODUCTION

The rapid expansion of 5G and 6G technologies, particularly
in the massive Internet of Things (IoT) and multiple-input
and multiple-output (MIMO) systems, has transformed modern
communication systems, enhancing data rates and reliabil-
ity. However, with these advancements come new challenges,
particularly in maintaining reliable transmission and secure
communication in the presence of smart eavesdroppers who
can exploit wiretap channels’ impairments. While traditional
cryptographic solutions are effective, they are often impracti-
cal for dynamic, resource-constrained environments like 6G’s
aerial IoT networks [1]. These systems require lightweight
and flexible methods to safeguard communications, making
friendly jamming (FJ) in physical layer security (PLS) an
effective solution [2]. FJ works by injecting artificial noise
into the radio medium to degrades the eavesdropper’s ability
to intercept confidential signals while maintaining the integrity
of the legitimate receiver’s communication.

Despite its potential, FJ’s effectiveness relies heavily on
channel state information (CSI), often assumed to be per-
fectly known and differentiable. However, real-world wireless

channels frequently exhibit non-differentiable behaviour due
to factors like multipath fading, mobility, interference, and
hardware imperfections. For example, the non-differentiable
behavior of wireless channels can be a direct result of the
frequent transitions between line-of-sight (LoS) and non-line-
of-sight (NLoS) states. These transitions are common in real-
world environments where obstacles intermittently block the
direct signal path between the transmitter and receiver. For
instance, in urban scenarios, the movement of vehicles or
pedestrians can create temporary obstructions, while in indoor
settings, furniture, or people moving through the space can dis-
rupt the LoS. Environmental factors, such as signal reflections
and scattering from buildings or other surfaces, further con-
tribute to these transitions. This realistic modeling distinction
between Rician and Rayleigh fading is rooted in their probabil-
ity distributions [3]. These nondifferentiable channels prohibit
traditional gradient-based optimization techniques, which are
essential in many modern learning-based frameworks like end-
to-end (E2E) autoencoder (AE) systems. Only a few works
have addressed this issue, for example, [4], which proposed
a gradient-free method to train AE using a Kalman cubature
filter. Provisioning reliable and secure communications in NDC
is hence particularly challenging, yet underexplored.

This paper introduces a novel DL approach to tackle the
above challenges of NDC in wireless systems. The proposed so-
lutions are designed to be robust and effective in practical con-
ditions, e.g., with imperfect CSI. Specifically, we focus on line-
of-sight (LoS) and non-line-of-sight (NLoS) channels, which
serve as representative examples of NDC. We then propose
a novel deep learning-based FJ approach explicitly designed
for non-differentiable channels. Using Deep Deterministic Pol-
icy Gradient (DDPG), the framework dynamically generates
jamming signals to optimize secrecy rates while minimizing
the block error rate (BLER) at the legitimate receiver. Eval-
uated over realistic channel models that include line-of-sight
(LoS) and non-line-of-sight (NLoS) conditions, our approach
demonstrates enhanced security and robust performance against
eavesdropping in NDC environments, offering a robust solution
to secure communications under these challenging wireless
conditions. Our contributions are summarized as follows:

• We propose a novel DDPG-based communication
framework to ensure reliable communication in non-
differentiable channels. By leveraging reinforcement learn-



ing (RL), our method overcomes the limitations of
gradient-based optimization, effectively addressing NDC
challenges to deliver robust communication performance.

• We extend the DDPG framework to maximize the se-
crecy rate by generating jamming signals to degrade the
eavesdropper’s ability to intercept communication while
minimizing the BLER at the legitimate receiver. The
proposed exhibits resilience and robustness in the most
challenging wireless conditions.

• We comprehensively evaluate the proposed approach us-
ing realistic channel models. The results show that our
approach significantly improves communication reliability
and security against eavesdroppers compared to traditional
methods under differentiable channels.

II. BACKGROUND ON MIMO-FJ AND CHANNEL MODELS

The typical MIMO-FJ configuration [5] comprises a trans-
mitter (Alice), a receiver (Bob), and an eavesdropper (Eve),
each with Nt, Nr, and Ne antennas, respectively. At time slot
k, the Tx-Rx and Tx-Eve channel matrices are Hk ∈ CNtxNr

and Gk ∈ CNtxNe . Assuming perfect CSI, the matrices Hk and
Gk remain constant over a transmission block. Let sk represent
the intended message, and wk denote the FJ signal designed to
satisfy H†

kwk = 0. With transmitted signal xk = sk +wk, the
received signals are:

yk = H†
ksk + nb, (1)

zk = G†
ksk +G†

kwk + ne, (2)

where nb ∼ CN (0, σ2
b ) and ne ∼ CN (0, σ2

e) are AWGN at
Rx and Eve, respectively. wk is set as Zkvk, with Zk as the
orthogonal basis of the null space of H†

k, and elements of vk

are i.i.d. Gaussian with variance σ2
v . Eve’s noise covariance

is then formulated as Kk = (G†
kZ

†
kZkGk)σ
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secrecy rate Rs
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where Qs = E[sks
†
k] and [x]+ = max(0, x). Since Eve’s CSI is

unavailable at Tx, we focus on maximizing the first term using
SVD, with H†

k = UkΓkV
†
k. After precoding rk = V†
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Our objective is to maximize the average secrecy rate subject
to the power constraint at the Tx, which is mathematically
formulated as in (4), where Fk = G†

kV
†
kQrVkGk, and

Qr = E[rkr†k] = diag(σ2
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2
r,2, ..., σ

2
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), σ2
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by applying water filling algorithm with power constraint
Pinfo ≤ P . The objective is to maximize the average se-
crecy rate R̄ over multiple channel realizations with power
constraint Tr(E[xkx

†
k]) ≤ P , reformulated as Tr(V†
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) ≤ P , where NFJ is the number of dimensions for
FJ.
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(4)

A. Existing Solutions

To address the problem in (4), two main strategies can be
considered: (i) exhaustive search and (ii) gradient-based tech-
niques. While exhaustive search methods can achieve optimal
outcomes, they are highly computationally demanding [5], [6].
Conversely, gradient-based techniques, such as steepest descent
(or gradient descent), are commonly applied for optimization
within the deep neural network (DNN) frameworks [7], [8].
Other conventional gradient-based strategies generally presume
a differentiable channel model, including alternating optimiza-
tion and semidefinite relaxation [9].

In the DL-based FJ framework, the transmitter encodes a
message m into channel symbols xk using a mapping function
f
(T )
ωk :M → R2N , where N represents the count of complex

channel uses, and ωk denotes the associated parameters. The
receiver, defined by f

(R)
ωR : R2N → {p ∈ RM

+ |
∑M

i=1 pi = 1},
converts the received signal yk into a probability distribution
p across messages. The loss function L, minimized through
gradient descent, is specified as:

L(ωk, ωR) = Em

[∫
l(f (R)

ωR
(yk),m)p(yk | f (T )

ωk
(m))dyk

]
,

∇(ωR,ωk)L =
[
(∇ωR

L)T , (∇ωk
L)T

]T
, (5)

where ∇ωR
L and ∇ωk

L are the gradients for the receiver
and transmitter, respectively. The gradient for the receiver
parameters ωR, with S is the batch size and {m(i),y

(i)
k } are

the training samples, is given by:

∇ωR
L =

1

S

S∑
i=1

∇ωR
l(fωR

(y
(i)
k ),m(i)). (6)

The transmitter gradient is computed as follows:

∇ωk
L =Em

[∫
l(f (R)

ωR
(yk),m)∇ωk

f (T )
ωk

(m)

∇xk
p(yk | xk)

∣∣∣
xk=f

(T )
ωk

(m)
dyk

]
, (7)

where ∇ωk
f
(T )
ωk (m) is the Jacobian of the transmitter output,

and ∇xk
p(yk | xk) is the channel gradient with respect to its

input. As the actual channel model p(yk | xk) may be unknown
or non-differentiable, its gradient might be undefined [10].

B. Channel Data Set Generation

To simulate the switching between LoS and NLoS condi-
tions, we utilize a Markov process to model a non-differentiable
MIMO channel that reflects the likelihood of remaining in or
switching between these states over time. The LoS condition is



characterized by Rician fading, which combines a direct LoS
component with scattered multipath components influenced by
factor K. In contrast, the NLoS condition is modeled using
Rayleigh fading, accounting for scattered signals only. For the
LoS state, the channel matrix is modeled as

HLoS =

√
K

K + 1
Hdir

LoS +

√
1

K + 1
Hscat

LoS, (8)

where Hdir
LoS is the direct component, and Hscat

LoS is the scattered
component. For the NLoS state, the channel gain follows a
Rayleigh distribution, HNLoS ∼ CN (0, 1), representing scat-
tered multipath components. Transitions between LoS and
NLoS are governed by the Markov process with a transition
probability matrix:

Ptr =

[
p(LoS→ LoS) p(LoS→ NLoS)
p(NLoS→ LoS) p(NLoS→ NLoS)

]
. (9)

The Markov process induces non-differentiability, as the chan-
nel remains constant within each state but switches abruptly
between LoS and NLoS. At each time step t, a MIMO channel
realization H(t) ∈ CNr×Nt is generated, capturing the sharp
transitions and stability intervals characteristic of real-world
wireless channels.

III. THE PROPOSED DDPG-BASED FJ FRAMEWORK

A. DDPG Preliminary

In this model, an agent engages with its environment by
adjusting its actions based on accumulated experiences to
maximize cumulative rewards over time. At each time step t,
the agent perceives the current state sk and selects an action
ak according to its policy π. Upon taking the action, the agent
gains an immediate reward rk and transitions to a new state
St+1. The action-value function, often referred to as the Q-
function, represents the expected return for specific state-action
pairs under a given policy π and is defined as:

Qπ(s, a) = E [Gt | sk = s, ak = a, π] , (10)

where Gt =
∑∞

k=0 γ
krt+k denotes the total discounted reward,

with discount factor γ ∈ (0, 1]. The Q-learning algorithm
iteratively updates the Q-value as follows:

Q(s, a)←Q(s, a) + α
[
R(s, a)

+ γmaxQ(s′, a′)−Q(s, a)
]
, (11)

where R(s, a) is the immediate reward, s′ is the next state, and
a′ is the next action. DNN-based Deep Q-Network (DQN) im-
proves upon traditional Q-learning by approximating Q-values
for complex problems. However, DQN struggles with con-
tinuous action spaces, prompting the development of DDPG.
This actor-critic method handles continuous actions and trains
both transmitter and receiver without requiring prior knowledge
of the channel. In DDPG, the actor-network µ(s|ωµ) maps
the states to actions, while the critic network Q(s, a|ωQ)
assesses the quality of actions. Target networks µ′ and Q′

are periodically updated to follow the main networks, which
helps stabilise the training process. An experience replay buffer
stores transitions (s, a, r, s′) to enable decorrelated sampling.

The critic network seeks to reduce the loss L between the
estimated Q-values and the target Q-values.

L =
1

N

∑
i

(
yi −Q(si, ai|ωQ)

)2
, (12)

where yi = ri + γQ′(si+1, µ
′(si+1|ωµ′

)|ωQ′
), and N is the

mini-batch size. The actor-network updates through the policy
gradient:

∇ωµJ ≈ 1

N

∑
i

∇aQ(s, a|ωQ)|s=si,a=µ(si)∇ωµµ(s|ωµ)|si . (13)

DDPG refines the policy and action-value functions by itera-
tively updating the networks until convergence or termination.

B. DDPG-Based MIMO Communication
Regarding DDPG-based MIMO configuration, the state space

can incorporate additional parameters such as antenna con-
figurations and spatial beamforming vectors, while the action
space can represent multi-dimensional signals corresponding to
multiple antennas. The antenna selection and power allocation
is conducted automatically via the training process. The reward
function would also need to account for optimising multiple
spatial streams, balancing the secrecy rate for all streams,
and maintaining reliable communication for legitimate users.
Particularly, the transmitted message mk ∈ M is embedded
in the symbol s and transmitted through a noisy channel. The
transmitter encodes the symbol s into the signal xk ∈ Cn,
representing n discrete channel uses. At the same time, the
receiver aims to decode the received signal yk ∈ Cn back into
the estimated symbol ŝ and then maps it to the decoded message
m̂k ∈ M. The E2E system is described as a concatenation of
functions:

m̂k = fD(fh(fE(mk;ωE));ωD), (14)

where fE is the encoder function that maps the message to
the encoded signal, i.e. xk = fE(mk;ωE), with ωE being
the trainable weights of the transmitter. The channel effect is
denoted as fh, and the decoder fD maps the received signal
yk to the estimated symbol m̂ = fD(yk;ωD), where ωD are
the receiver’s trainable weights. The system is trained using
supervised learning to minimize L(s, ŝ), which evaluates the
difference between the original and estimated symbols.

Figure 1 illustrates the DDPG-based end-to-end (E2E) com-
munication system. In this framework, the message mk serves
as the observation state sk = mk, the encoded signal xk is
the action ak = xk, the received signal is yk, and the decoded
message is denoted by m̂. The DDPG framework comprises
actor and critic networks: the actor (transmitter) encodes m into
xk, while the critic (receiver) decodes yk into m̂. At each time
slot k, the communication loss rcom

k is defined as the negative
log-likelihood of the categorical cross-entropy loss between the
original and decoded messages, expressed as:

rcom
k = − 1

N

N∑
i=1

(sk)i log [fωR
(µ((sk)i|ωk))] , (15)
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Fig. 1: The proposed DDPG-based communication framework.

where N is the number of samples, ωR and ωk are the pa-
rameters of the receiver and transmitter, respectively. µ(sk|ωk)
represents the action generated by the transmitter for the given
state sk, and fωR

denotes the output of the receiver model. In
each episode, the actor-network generates an encoded signal xk,
which is transmitted over the channel, resulting in the altered
received signal yk. The receiver network then decodes yk to
produce m̂k. The state, action, communication loss, and next
state are stored in an experience replay buffer, allowing mini-
batch sampling for network updates. During training, batches
of state-action pairs, denoted sb and ab, are randomly sampled
from this experience buffer to update the receiver model. Here,
sb and ab refer to the batches of past states and actions used
for training. The target Q-value is given by [11]:

yk = rcom
k + γQ(st+1, at+1), (16)

where γ is the discount factor. The actor and critic networks
are optimized to maximize the expected Q-value:

J(ω) = E[Q(s, a)|s = sk, a = µ(sk)], (17)

with the gradient of the Q-value with respect to the actor’s
parameters ωµ as:

∇ωµ
J ≈ ∇aQ(s, a)∇ωµ

µ(s|ωµ). (18)

The target network parameters ω′ are updated using a soft
update mechanism:

ω′ = τω + (1− τ)ω′, (19)

where ω represents the main network parameters, and τ (with
τ ≪ 1) controls the update rate. This process enables the DDPG
framework to optimize transmitter and receiver performance
without prior knowledge of the channel model.

C. DDPG-Based FJ System Model
The primary objective of the DDPG-based FJ system is to

maximize the secrecy rate by generating jamming signals that
selectively interfere with the eavesdropper while preserving the
signal integrity for the legitimate receiver. We leverage the
DDPG-based communication model to design a DDPG-based
FJ system. The goal of the training is twofold: maximizing
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the mutual information (MI) difference between the transmitter
and the receiver and designing the FJ signal to degrade Eve’s
channel quality, see (4). The system model is illustrated in
Fig. 2, where the FJ signal wk is generated via the FJ generator
and injected into the transmitted signals xk.

1) Handling NDC for FJ: NDC, with its abrupt state
changes caused by factors like multipath fading and LoS/NLoS
transitions, presents major challenges for conventional gradient-
based FJ optimization, which relies on continuous gradients
for parameter tuning. In contrast, DDPG, a model-free re-
inforcement learning approach, overcomes this limitation by
learning from state-action-reward sequences without requiring
gradients. Utilizing an experienced replay buffer and continuous
action space, DDPG effectively adapts to sudden channel vari-
ations, dynamically generating FJ signals to optimize secrecy
rates while maintaining legitimate communication quality. This
adaptability ensures robust security performance in real-world
wireless environments with unpredictable channel dynamics.

2) Friendly Jamming (FJ) Generation: Our approach em-
ploys an FJ-based beamforming strategy to optimize the secrecy
rate reward rsec

k . In the FJ generator block, the beamforming
vector tk is derived through a process involving the channel
matrix Hk and the signal-to-noise ratio (SNR), see Fig. 3.
Specifically, Hk and SNR are input into dense embedding
layers. Next, the phase function and normalization produce a
temporary variable θk representing the beamforming vector’s
phase. This phase variable θk is then used to construct tk
as tk = cos(θk) + j sin(θk), where θk is the output of the
dense layer processing, specifically designed to ensure that tk
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maximizes rsec
k .

The reward secrecy function in the DDPG-based FJ frame-
work, represented by the reward rsec

k , is defined as:

rsec
k = E

[
rcom
k − log

det(Kk + Fk)

det(Kk)

]
. (20)

The FJ signals are designed to be orthogonal to the main
beamforming vector tk. This ensures the jamming signal does
not interfere with the legitimate receiver’s signal, as proposed
in [7]. By degrading the eavesdropper’s channel quality while
preserving the legitimate receiver’s, tk and wk adapt to current
channel conditions, maximizing the loss function and enhancing
the secrecy rate by focusing interference on the eavesdropper.

3) Implementation: MIMO channels are modeled with
block-fading behavior, alternating between LoS and NLoS
states. The system state sk captures real and imaginary com-
ponents of signals, enabling real-valued actor and critic pro-
cessing. The actor-network generates the action ak, including
information-bearing and FJ signals, to boost main channel
capacity while disrupting Eve’s. Using the DDPG algorithm,
transmit signals are optimized to maximize secure communi-
cation, with the expected secrecy rate evaluated in the non-
differentiable environment.

Both networks process real-valued inputs, separating real
and imaginary components, with the actor’s output recombined
for complex-valued transmission. The reward function, based
on the secrecy rate, guides the actor to improve security de-
spite channel non-differentiability. Training starts with network
initialization, experience replay setup, action generation, and
applying actions to obtain the next state and reward. The
critic updates the value function, while the actor optimizes the
secrecy rate. Target networks are updated gradually to ensure
stable learning in the challenging NDC environment.

IV. SIMULATION RESULTS AND DISCUSSION

This section compares our method with NDC to the baseline
approaches in [8] and our previous works, in [7], [12], with
differentiable channels. The reliable transmission and security
are evaluated by BLER and secrecy rate, respectively. The
channels are influenced by several key parameters, such as
LoS/Rician fading and NLoS/Rayleigh fading. The number of
transmit and receive antennas are set to Nt = 10 and Nr = 4,
respectively. The Rician K-factor is K = 10. The Markov

process governs the dynamic switching between LoS and NLoS

states through the matrix P =

[
0.8 0.2
0.3 0.7

]
. This implies an 80%

chance of staying in LoS and a 30% chance of transitioning
from NLoS to LoS.

Fig. 4: Episodic reward of DDPG-based FJ.

Regarding the DDPG model, the soft update rate τ is set
to 0.007, allowing slow updates of the target networks, while
the actor and critic learning rates are 0.001 and 0.0005, respec-
tively. The input message size M is 64. As shown in Fig. 4, the
reward convergence over 500 episodes varies with SNR levels
(0-30 dB). Lower SNRs (0-10 dB) converge faster, stabilizing
after 100 episodes with higher rewards, while higher SNRs
(15-30 dB) take longer, stabilizing after 200 episodes. Despite
slower learning at higher SNRs, all levels eventually converge,
with lower SNRs yielding slightly better performance.
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Fig. 5: BLERs at Bob and Eve in AE and DDPG-based FJ.

Fig. 5 compares BLER between DDPG-based FJ and AE-
based FJ for Bob and Eve. For Bob, DDPG-based FJ (blue
squares) achieves near-zero BLER at 25 dB, outperforming
AE-based FJ (red triangles). For Eve, DDPG-based FJ (blue
circles) maintains high BLER, effectively limiting decoding,
while AE-based FJ (red stars) allows rapid BLER reduction at
higher SNRs. Overall, DDPG-based FJ offers better reliability
for Bob and stronger security for Eve across the SNR range.
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Fig. 6 illustrates the average secrecy rate as a function
of the normalized transmit power P/σ2

n for three different
methods: the proposed DDPG-based FJ, the AE-based FJ, and
Deep Artificial Noise (DAN) in [8]. The DDPG-based FJ, blue
circles, consistently achieve a higher secrecy rate across all
SNR values than the AE-based FJ, red stars and DAN, black
triangles. At low SNR, all methods show similar performance.
However, as the SNR increases, the DDPG-based FJ rapidly
improves and peaks at around 15 dB with a secrecy rate
exceeding 5.5 nats/s/Hz. In contrast, the AE-based FJ gradually
increases but reaches a lower peak of around 4.5 nats/s/Hz,
while DAN exhibits the slowest improvement, peaking below
4 nats/s/Hz. This demonstrates that the DDPG-based approach
is more effective in optimizing secrecy under various channel
conditions, outperforming the baseline methods, especially at
higher SNR values.

The DDPG-based FJ offers promising improvements in
secure communication but faces challenges in computational
complexity, energy efficiency, and hardware implementation.
Computational complexity arises from the actor-critic frame-
work and Markov process modeling abrupt LoS/NLoS tran-
sitions. As shown in Fig. 4, training requires significant re-
sources, with convergence taking longer at higher SNRs (e.g.,
200 episodes for 30 dB), reflecting increased optimization
efforts in complex channel conditions. The system ensures the
FJ signal is orthogonal to the beamforming vector, minimiz-
ing interference with legitimate receivers. Fig. 5 shows Bob
achieves near-zero BLER, while Eve maintains high BLER,
demonstrating effective energy use for jamming. Additionally,
secrecy rate results in Fig. 6 show the DDPG-based FJ con-
sistently outperforms AE-based FJ and DAN, achieving over
5.5 nats/s/Hz at 15 dB, though real-time adaptation remains
energy-intensive.

Advanced GPUs or TPUs are required for high-dimensional
MIMO setups and real-time optimization. Scaling to larger
configurations introduces challenges, but pre-training on pow-
erful hardware with lightweight edge deployment could address
these. Performance also depends on antenna configuration and
hyperparameters. Larger antenna setups (Nt = 10, Nr = 4)

improve secrecy rates and reduce BLER but increase hardware
demands. Hyperparameters like learning rates and the soft up-
date rate (τ = 0.007) significantly affect convergence stability.

V. CONCLUSION

This paper introduced a DDPG-based Friendly Jamming
(FJ) approach designed for non-differentiable channels (NDC),
which significantly improves both communication reliability
and security compared to AE-based FJ methods. Our approach
achieves lower BLER for the legitimate receiver (Bob) and
consistently maintains a high BLER for the eavesdropper (Eve)
across various SNR conditions, demonstrating enhanced protec-
tion against eavesdropping. Our results highlight the strength of
DDPG in managing NDC environments, addressing a critical
gap in secure wireless communication by offering a robust
solution for mid-to-high SNR regimes. In future work, we aim
to extend this approach to more realistic and complex channel
models, addressing challenges like missing data, quantization,
and multi-user scenarios, as well as exploring its scalability in
massive MIMO settings.
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