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Abstract—In this paper, we propose MAMBA, a restless
multi-armed bandit framework for beam tracking in directional
millimeter-wave (mmW) cellular systems. Instead of relying
on explicit control messages, MAMBA utilizes the ACK/NACK
packets transmitted by user equipments (UEs) to the base
station (BS) as a part of the hybrid automatic repeat request
(HARQ) procedure. These packets are used to measure the
quality of the currently operating downlink beam, and select
a new downlink beam along with an appropriate modulation
and coding scheme (MCS) for future transmissions. At its core,
MAMBA implements an online reinforcement learning technique
called adaptive Thompson sampling (ATS), which determines a
good beam and associated MCS to be used for the upcoming
transmissions. To evaluate MAMBA’s performance, we conduct
extensive simulations and over-the-air (OTA) experiments over
the 28 GHz band using phased-array antennas. We study fixed-
as well as adaptive-rate variants of MAMBA, and contrast it with
four other beam tracking strategies: a beam selection scheme
similar to the one used in 5G NR (called ‘static oracle’), a
theoretically optimal but practically infeasible beam tracking
scheme (called ‘dynamic oracle’), an ε-greedy algorithm [1], and
the Unimodal Beam Alignment (UBA) algorithm [2]. Our results
show that MAMBA achieves 182% throughput gain over the
‘static oracle’ and is reasonably close to the throughput of the
‘dynamic oracle’. Compared to UBA, MAMBA achieves 25-35%
gain in throughput, depending on UE mobility. Finally, when
operated at a fixed MCS, MAMBA/ATS achieves 21% gain over
the ε-greedy algorithm at the lowest applied MCS index, and
255% gain at the highest MCS index.

Index Terms—Millimeter-wave, directional communications,
beam tracking, reinforcement learning, multi-armed bandit.

I. INTRODUCTION

Millimeter-wave (mmW) communications are a key aspect
of next-generation wireless systems, including 5G [3] and
WiGig [4]. The abundant mmW spectrum enables many users
to be served by a base station (BS), with significantly higher
data rates than what is possible at sub-6 GHz bands [5]. Tradi-
tionally, the mmW spectrum has not been utilized for terrestrial
communications due to the harsh channel behavior and the
immaturity of wireless technologies that could operate at such
high frequencies. This limitation is, however, partially com-
pensated for by the small wavelengths of mmW transmissions,
which allow large antenna arrays to be implemented in small
form-factor radios. By using high-dimensional phased-array
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antennas, transmissions/receptions can be narrowly beamed
along desired directions. The resulting beamforming gain
makes it possible to achieve high data rates, despite the
unfavorable characteristics of the channel [6].

While beamforming allows for high gains, establishing
and maintaining a directional link add new challenges [7]–
[10]. Due to the limited scattering at mmW frequencies, the
channel between the BS and the user equipment (UE) is
typically sparse [11], [12], so the transmitted signal reaches
the receiver along a few angular clusters. Identifying the
directions of these clusters takes a considerable amount of
time, prolonging the initial access (IA) process (e.g., [2], [13]–
[17]) that takes place prior to establishing a BS-UE link. Once
a link has been established, beam misalignment may occur
frequently due to mobility, environmental changes, or even
wind [18]. Such misalignment results in reduced data rate
and link outage. Consequently, tracking UEs and maintaining
the quality of their directional links are critical to ensuring
seamless mmW communications [19], [20]. Frequent channel
measurements used for this purpose add significant control
overhead, lowering spectral efficiency and increasing latency.

In this paper, we propose a restless multi-armed bandit
(MAB) framework called MAMBA for beam tracking and rate
adaptation in mmW systems. Although, in general, MAMBA
is applicable to any directional mmW network (with appropri-
ate modifications), we study it in the context of 5G New Radio
(NR), as specified by 3GPP. Note that beam management in 5G
NR involves coarse beam selection (a.k.a. Phase 1) and beam
refinement (a.k.a. Phase 3). Phase 3 uses a similar procedure
to Phase 1 when selecting the best beam, and is repeated
whenever an outage occurs without resorting back to Phase 1.
Because MAMBA is meant to provide a generic solution, i.e.,
selecting a beam from a set of beams (be it coarse or narrow),
we apply it to one phase of 5G NR beam management.

According to MAMBA, each beam is modeled as an arm
in a MAB problem. The BS acts as the agent that interacts
with these arms to learn the underlying system dynamics, i.e.,
changes in beam qualities over time. To quantify beam quality,
we rely on the best possible modulation and coding scheme
(MCS) that this beam can support in terms of achievable
rate. We integrate a reinforcement learning (RL) algorithm,
called adaptive Thompson sampling (ATS), into MAMBA
and use it to select a good beam/MCS pair for the next
downlink transmission(s). ATS aims at maximizing the link
throughput while taking into account the estimated reward
distributions associated with each beam. Due to the time-
varying nature of the environment, keeping track of these



reward distributions is nontrivial. To address this issue, ATS
uses a priori information of beam quality, collected through
IA, and updates this information at each iteration based on
the feedback obtained from the UE. The beam and MCS to be
used during the next downlink transmission are then selected
based on the updated posterior distributions of the rewards,
i.e., achievable rates of various beams. ATS can accurately
estimate the best beam/MCS pair without making modeling
assumptions about the channel and/or mobility pattern.

It is worth mentioning that other RL approaches besides
ATS may also be considered for the design of MAMBA,
including the Soft Actor-Critic (SAC) algorithm [21], Proximal
Policy Optimization (PPO) [22], Twin delayed DDPG (TD3)
[23], Asynchronous Advantage Actor Critic (A3C) [24], and
the Asynchronous Advantage Actor Critic (A3C) algorithm
[24]. SAC adds an entropy maximization term to the original
RL objective. Balancing the maximization of the reward and
the entropy encourages the resulting policy to converge to
an optimal solution, while acting as randomly as possible. In
MAMBA, we do not want the algorithm to act as randomly as
possible, since the prior distributions learned during IA could
still be valuable. Therefore, adding an entropy term to the
objective function is not necessarily beneficial in our case.
In PPO, an estimator of the policy gradient is computed and
plugged into a stochastic gradient-ascent algorithm. Specifi-
cally, in each iteration, N parallel actors collect T time steps
worth of data. Then, the PPO algorithm constructs a loss
function on these NT time steps worth of data and optimizes
this loss function using mini-batch stochastic gradient descent.
Although PPO is more efficient than the TRPO algorithm
proposed by the same authors [25], it is still computationally
complex and its performance relies heavily on hyper-parameter
optimization. TD3 is a Q-learning based deep RL algorithm
that aims at learning two Q-functions instead of one. It uses the
smaller of the two Q-values to form the targets in the Bellman
error loss functions. In the underlying beam tracking problem,
selecting a new action (beam) does not change the state space
of the system. That is, selecting a beam at time t does not
affect the set of beams that can be selected at time t+1, so the
problem can be adequately modeled as a single-state Markov
decision process (MDP) with one state. A Q-learning solution
adds complexity without bringing much value. As for A3C,
this algorithm uses critics to learn the value function. Multiple
actors are trained in parallel and are periodically synchronized.
For stability, the gradients are accumulated as part of training
similar to parallelized stochastic gradient descent. As in TD3,
this Q-learning method is designed to solve MDPs with more
than one state, and hence is inherently more complex than the
ATS algorithm.

The main contributions of this paper are as follows:
• We introduce MAMBA, a MAB framework for beam

tracking and adaptive rate selection in 5G mmW systems.
MAMBA does not incur extra messaging overhead. It
utilizes the ACK/NACK feedback obtained from the UE
to select the best beam/MCS pair.

• We develop an RL algorithm called ATS to be used in
MAMBA. ATS selects the optimal beam/MCS pair so as
to maximize the data rate of the underlying transmission.

To address the nonstationarity in the environment, we
introduce a forget factor that discounts the information
obtained in the past and a boost factor that increases the
impact of the recent observations on beam selection.

• We derive an upper bound on the Bayesian regret of the
ATS algorithm. To account for the time-varying rewards,
we utilize a discrete-time random walk process in our
analysis.

• Through hardware experiments and software simulations
at 28 GHz frequency using a 4×8 phased-array antenna,
we verify the efficiency of ATS in terms of total delivered
traffic, average data rate, instantaneous data rate, and
outage duration in both indoor and outdoor scenarios. We
also validate its high performance by comparing it with
four other beam tracking algorithms.

II. RELATED WORK

Efficient and reliable beam tracking in mmW systems is still
an open research topic. Numerous techniques were proposed in
the literature to address the issue (see [26] for a recent survey).
In [27], the authors used extended Kalman filters (EKF) for
angle-of-arrival (AoA) and angle-of-departure (AoD) tracking.
Their method tracks the currently utilized channel cluster, i.e.,
only one AoA/AoD pair is tracked at a time. Similarly, the
authors in [28] used Kalman filters to track the AoA and AoDs
at the receiver (Rx) and transmitter (Tx), respectively. Both
[27] and [28] assumed that the angles are randomly perturbed
according to a zero-mean Gaussian distribution, which may
not hold in reality.

In [29], the authors proposed BeamSpy, a scheme for pre-
dicting the quality of alternative beams by inspecting the chan-
nel response of the current beam. This is done by constructing
a path skeleton that exploits channel sparsity. The model
parameters were extracted from a one-time measurement and
are invariant under blockage. This means that if the channel
is highly dynamic, e.g., due to mobility, BeamSpy needs to
update the path skeleton quite frequently, hence incurring high
overhead. An extension of BeamSpy, called Beam-forecast,
was proposed in [30]. Beam-forecast reconstructs the spatial
channel profile from a few beam measurements and virtually
tries each candidate beam to predict its quality without actual
probing. The algorithm was implemented and tested on a
custom 60 GHz platform, and analysis was carried out in an
indoor environment. The results indicate that the throughput
drops by more than 50% when mobility increases from 1 Km/h
to 5 Km/h. Similar to BeamSpy, the effectiveness of Beam-
forecast depends heavily on channel sparsity and blockage-
invariant spatial correlation.

A generic mmW beam steering algorithm was proposed
in [31], which utilizes the previous valid link information to
initiate a search for a feasible BS/UE beam pair. The algorithm
adaptively increases the sector search space around the BS
to re-establish a link. It is a reactive algorithm, executed
only after the link between the BS and the UE breaks down.
The feasibility of the algorithm was analysed in an indoor
environment with limited mobility. Even though the search
space is limited to nearby beams, the algorithm still needs to
perform an iterative search over this space.



The authors in [14], [32] presented beam tracking tech-
niques that do not require dedicated control resources but
instead utilize multiple RF chains to simultaneously collect
channel information from several directions. Specifically, in
[14], a scheme called Agile-Link was proposed, which tries to
identify the best beam direction using a logarithmic number
of measurements. Agile-Link manipulates the phase shifters
in the antenna array to generate random multi-armed beams
(hashes the beam space into bins) and samples multiple beam
directions simultaneously. It then uses a voting mechanism
to recover the directions over which signals from the UE
are detected. Palacios et. al. proposed a pseudo-exhaustive
beam training (PE-Training) and probabilistic beam tracking
(P-Track) schemes [32]. Their approach leverages the ability
of hybrid analog-digital transceivers to simultaneously collect
CSI from multiple beam directions. It requires the UE to
correctly detect the preamble and save its samples to ob-
tain the complex power at the RF combiner. Both [32] and
[14] use multiple simultaneous beam directions, relying on
hybrid beamforming to observe the mmW channel. Creating
multiple beams increases the effective beam width, resulting
in overlapping beams and a lower beamforming gain. This
eventually leads to less accurate estimates of the underlying
channel compared to a single-beam approach. In contrast,
MAMBA relies only on a single directional beam and readily
available receiver signal strength (RSS) values, obtained from
ACK/NACK messages.

In [33] the authors proposed a neighbour discovery (ND)
technique called FastND, which accelerates the ND process
by gathering channel information along different beam direc-
tions and using a Compressive Sensing based Beam Predic-
tion (CSBP) and Maximum Distance based Beam Prediction
(MDBP) modules. FastND was evaluated in an indoor environ-
ment with limited mobility. It has not been tested in outdoor
scenarios at high mobility.

ML techniques have also been used to address the beam
tracking problem. For example, the authors in [34] proposed a
Long short-term memory (LSTM) based approach for tracking
the AoA. They used an omnidirectional antenna and a simplis-
tic mobility model, which can create a bias in AoA estimation.
The authors in [35] also used LSTM but their technique is not
intended for a single BS system. The RL-based beam tracking
methods in [36], [37] utilize location information, which may
not always be available. In [38], Koda et. al. studied the
usefulness of past node position and velocity information for
beam tracking in an unstable surrounding (under complex wire
dynamics). The proposed system model consists of a fixed
on-building node and a dynamic on-wire node, where beam
misalignment occurs due to changes in the orientation of the
on-wire node. The problem of tracking highly mobile nodes
was not addressed. The authors in [39] tried to minimize
the packet delivery latency by determining the optimal beam
using deep deterministic policy gradient (DDPG) based RL
approach. However, a simple mobility model was considered,
where the UE moves along a straight line. The time it takes
for the DDPG algorithm to converge is quite high.

MAB models have been extensively applied in the literature
to address different online optimization problems [40]. The

goal of a MAB is to capture the exploration versus exploitation
tradeoff and to minimize the cumulative regret of deviating
from the optimal strategy. In [1], the author studied three
MAB algorithms, ε-greedy, upper confidence bound (UCB),
and Thompson sampling (TS) [41], aiming to find the best
BS-UE beam pair that maximizes the long-term average
throughput. With probability 1 − ε, the ε-greedy algorithm
selects the action that has the highest empirical mean, or it
selects a random action with probability ε. UCB maintains
a confidence interval for each arm, along with the empirical
means. In each round, the algorithm greedily picks the action
that has the highest upper confidence bound. In TS, the rates
of exploration and exploitation are dynamically updated with
respect to the posterior distribution of each beam. Beams
with higher estimated rewards are exploited more frequently.
The author in [1] demonstrated the performance gain of his
algorithms over location-based and channel estimation-based
beam tracking. In [2], the authors relied on UCB to develop the
Unimodal Beam Alignment (UBA) scheme for beam tracking.
UBA uses the correlation between beam misalignment and
RSS as contextual information to reduce the beam search
space. It assigns each arm/beam a KL-UCB index. At any
given time, the algorithm selects the arm that has the maximal
index within the neighborhood of the arm that has the highest
empirical reward. Results indicate that UBA improves the
delay overhead over the exhaustive search method. Both [1]
and [2] were evaluated under limited mobility and did not
perform joint beam tracking and rate adaptation. In [42], the
authors proposed a variation of TS for optimal rate selection
over time-varying wireless channels with unknown channel
statistics without considering directional communications.

In this paper, we adopt a TS approach but adapts it to non-
stationary scenarios. This adaptation is necessary to account
for UE mobility and/or environmental changes. Our proposed
ATS algorithm is model-free and does not make assumptions
regarding the underlying channel or user mobility. In each
round, the online decision-making process involves solving a
system of linear equations, which is easy to parallelize. Due
to the ease of implementation, our algorithm does not require
complex hardware, e.g., graphical processing units (GPUs).
We evaluate the performance of MAMBA against the UCB
and ε-greedy algorithms.

III. SYSTEM MODEL

Without loss of generality, we consider tracking a single UE.
Extending the treatment to multiple UEs is straightforward.
We first briefly describe how beamforming is typically applied
over a mmW link. We then present the MAMBA framework
and formulate the reward-maximization problem.

A. Codebook-based Beamforming

Consider a directional link between a BS and a UE, im-
plemented using electronically steerable uniform planar arrays
(UPAs). Let the total number of antennas at the BS and the UE
be ABS and AUE, respectively. Let H be the AUE×ABS complex
channel matrix between them. To express the received signal,
Tx and Rx beamforming should be applied to channel H. In



practice, the beamforming vectors are computed offline for a
set of directions and stored in codebooks at the BS and the
UE [6]. Denote the set of codebooks for the BS beamformer
by F = {f1, f2, · · · , fDBS} and for the UE beamformer
by Q = {q1,q2, · · · ,qDUE}, where DBS and DUE are the
maximum number of narrow beams that can be generated at
the BS and the UE, respectively. Assume that after IA, the
BS and the UE agree on a directional link for which the BS
uses its Tx beamforming vector fi ∈ CABS×1, and the UE
uses its Rx beamforming vector qj ∈ CAUE×1 (i and j are the
indices of the Tx/Rx beamforming vectors in their respective
codebooks). The received signal at time t, yij(t), can then be
written as:

yij(t) = qHj Hfis+ qHj z(t) (1)

where s is the transmitted signal and z ∈ CAUE×1 is a
vector of complex circularly-symmetric white Gaussian noise.
Each (fi,qj) pair achieves a certain Rx power Pij(t) at time
t, where Pij(t) = |yij |2. Because H is time-varying, the
distribution of Pij(t) is nonstationary.

B. MAMBA Framework

A simple tracking strategy would exploit the current best
beam pair, say (fi,qj), for a relatively long time. In the 5G
NR standard [43], if a new UE wishes to join the network, it
waits for the BS to execute the IA procedure. During IA, the
BS transmits synchronization signals (SS), allowing a listening
UE to measure beam qualities and report them back to the
BS. BS periodically reruns the IA to discover new UEs and
update the best beams of already connected UEs. In between
IA cycles, other periodic control messages, called channel state
information-reference signals (CSI-RS), are transmitted by the
BS to maintain communication. CSI-RS messages are used to
obtain reference signal received power (RSRP) measurements
for beam management during mobility. However, this can
be quite wasteful, given that no data is transmitted/received
during the IA phase (which typically lasts for 5 ms) or CSI-RS
(which occupies up to 4 OFDM symbols). To support ultra-
reliable low-latency communications (URLLC), the control
overhead of beam tracking needs to be significantly decreased
[44]. Our goal is to reduce this overhead by skipping CSI-
RS transmissions and extending the period between two IA
cycles, while maintaining connectivity. To do that, MAMBA
exploits the ACK/NACK feedback obtained from the UE to
make new beam selections (see Fig. 1). The ACK/NACK
mechanism is already a part of the 5G NR hybrid automatic
repeat request (HARQ) procedure [45]. We assume that the
UE communicates using relatively wide beams so the tracking
problem is mainly a concern at the BS side. This is a
reasonable assumption, considering the smaller form-factor
and fewer antenna elements in a UE device. Given our focus
on the BS side only, in the subsequent sections, the subscript
‘BS’ will be dropped from related variables.

One approach to model the beam tracking problem is to use
MDPs. At each time step, the MDP is in some state s and the
agent (i.e., the decision maker) may choose any action that
is available in that state. The MDP responds at the next time
step by randomly transitioning to a new state and giving the
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Fig. 1. Timeline of the proposed downlink communication scheme between
a BS and a UE.

decision maker a corresponding reward. In our beam tracking
problem, after taking an action and observing a reward, the
available set of actions does not change in the next time slot.
Thus, the problem can be modeled as a single-state MDP, i.e.,
a MAB problem.

The MAMBA framework is specified by the tuple 〈A,R〉,
where A , {f1, · · · , fD} is the set of actions referring
to the possible BS beams at a given time and R is the
set of rewards (i.e., achievable rates) associated with these
actions. At time t, an action at ∈ A is taken and a reward
rt = [r

(0)
t , · · · , r(M−1)t ] ∈ R is observed. This rt is a random

vector, sample drawn from the selected beam’s underlying
reward distribution. Let Θi,t denote the reward distribution
associated with beam i at time t, and let E[Θi,t] = θi,t,
where θi,t is unknown. Note that there are D distributions in
total, associated with various BS beams. With some abuse of
notation we use at = fi to mean that beamformer fi is selected
at time t, and hence the BS receives a reward rt ∼ Θi,t.
In MAMBA, the BS obtains the reward by measuring the
RSS of ACK/NACK packets transmitted back by the UE, and
determining the optimal MCS index that can be supported
based on the measured RSS. Assuming channel reciprocity, the
BS then uses this information to perform beam/MCS selection
for the subsequent downlink data transmission.

After IA is completed, the BS designs a beam tracking
policy to be used until the next IA period. A policy is defined
as a T -element vector that specifies the actions to be taken at
subsequent times t = 1, · · · , T . The most common metric to
measure the performance of a given policy is the cumulative
regret, defined as the lost reward as a result of deviating from
the optimal strategy. The goal of MAMBA is to find a policy
that maximizes the cumulative reward, which is equivalent
to minimizing the cumulative regret up to time T . We will
analyze the regret performance of our policy in Section V.

Uplink Variation: In the uplink scenario, BS performs beam
selection based on the RSS information gathered from the data
packets transmitted by the UE. To apply MAMBA to uplink
communications, the BS needs to know whether the UE is
scheduled to transmit or not. This way, the BS can differ-
entiate between two events: the UE is not transmitting or the
transmitted packet is not being received due to improper beam
selection. Fortunately, this information is already available at
the BS thanks to the UE scheduling request (SR). SR is a
control message used by a UE to ask the network for an uplink
grant so that the UE can transmit data on the physical uplink
shared channel (PUSCH). The SR message is transmitted over
the physical uplink control channel (PUCCH) using a simple
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on-off keying, with the UE transmitting a symbol 1 to request
a PUSCH resource, and transmitting nothing when it does not
request to be scheduled [46]. Fig. 2 shows the proposed uplink
communication timeline.

C. Problem Formulation

In MAMBA, the BS has some prior “belief” about the
reward distribution of each beam, obtained through the IA.
An effective method to update these beliefs during data
transmission is Bayesian inference. Using Bayesian inference,
the posterior distribution Pr(θ|x), i.e., the distribution of θ
given the observation x, can be computed as:

Pr(θ|x) = Pr(x|θ) Pr(θ)/Pr(x) (2)

where Pr(x|θ) is the likelihood, i.e., the distribution of the
observed data, Pr(θ) is the prior distribution, i.e., the distri-
bution of θ before any data is observed, and Pr(x) is the
marginal distribution of the evidence, which normalizes the
posterior distribution. Using (2), the BS continuously updates
its belief of each arm’s mean rewards, i.e., θi,t, ∀i ∈ A and
∀t ∈ {1, · · · , T}, while transmitting/receiving data.

In our setup, the rewards are modeled as M -dimensional
variables. For each transmission, the BS chooses a beam
as well as a transmission rate for that beam from the set
{v0, v1, · · · , vM−1}. Specifically, for a given beam, the BS
can establish communication with the UE using one of the
M−1 available MCS indices, each of which has an associated
rate vm, m ∈ {1, · · · ,M − 1}, or it cannot establish any
communication, i.e., v0 = 0. Based on the feedback received
from the UE (i.e., ACK, NACK, or no reply), the BS decides
whether the selected rate is attainable on the selected beam
or not. If an ACK or NACK is received, the BS measures the
RSS of the received packet and determines the MCS index
that can be supported over that beam. If neither an ACK nor
a NACK is received, the reward is set to 0.

The expected reward for each beam is drawn from a
likelihood distribution associated with that beam. A suit-
able reward distribution to be used here is the categorical
distribution, a.k.a., generalized Bernoulli distribution. This
discrete distribution describes the possible results of a random
variable that can take one of M possible categories, with the
probability of each category separately specified. Note that
such a distribution is quite general and can fit any underlying
empirical distribution by properly setting the mean values
for each associated category/event. Given that the reward for
each beam should follow a discrete event (as the reward
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represents the throughput associated with one of several MCS
indices), the generalized Bernoulli distribution can be applied,
irrespective of the underlying channel model.

The pmf of the categorical random variable x ∼ Cat(θi,t)
with M categories can be written as Pr(x = m|θi,t) = θ

(m)
i,t ,

where θi,t , [θ
(0)
i,t , · · · , θ

(M−1)
i,t ]. Here, θ(m)

i,t refers to the
mth element of vector θi,t, such that θ(m)

i,t ≥ 0 ∀m and∑M−1
m=0 θ

(m)
i,t = 1. An illustrative example is shown in Fig.

3 using M = 4. Each beam i ∈ A has an associated mean
reward vector θi,t.

At any time t, the observed reward vector r̂t =
[r̂t

(0), · · · , r̂t(M−1)] contains a single 1 at the highest attain-
able MCS index (based on the RSS of ACK/NACK packets)
and 0’s elsewhere. For convenience, we assign r̂t

(0) = 1
for an unsuccessful communication and r̂t

(m) = 1 for a
communication whose highest attainable MCS index is m,
∀m ∈ {1, · · · ,M − 1}. Therefore, the observed data rate at
time t can be written as r̂tv

T , where v , [v0, v1, · · · vM−1]
is the value vector whose entries correspond to the rates
associated with different MCS indices (v0 , 0).

Given the above, the goal of the BS is to select a policy
ξ = [a1, · · · , aT ], i.e., sequence of Tx beams at times
t = 1, · · · , T , that maximizes the expected throughput. If the
expected reward vectors θi,t = [θ

(0)
i,t , · · · , θ

(M−1)
i,t ] of each

beam i at each time t are known, this translates into solving
the following optimization problem:

maximize
ξ

T∑
t=1

θi,tv
T

s.t.
M−1∑
m=0

θ
(m)
i,t = 1, θ

(m)
i,t ≥ 0, ∀i, t,m. (3)

The challenge here is that the expected reward vectors are
unknown and nonstationary. As a result, we cannot solve (3)
directly. Our goal is to design an RL algorithm that learns the
expected rewards of different beams and outputs a policy that
converges to the optimal one.

IV. PROPOSED BEAM TRACKING AND MCS SELECTION
ALGORITHM

In this section, we explain our TS-based MAMBA algorithm
used by a BS. The process of adapting the BS beam should
be seamless from the UE’s perspective, i.e., the UE should
not be required to know about BS beam switching and should
not expect control packets regarding that. The flowchart of
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Fig. 5. Visualization of 3D Dirichlet distributions as a heatmap, where darker
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the proposed method is shown in Fig. 4. We first consider a
stationary system where the expected rewards of various arms
do not change in time. We then extend our treatment to time-
varying systems.

TS is a posterior sampling technique. Therefore, before
taking an observation, we need a suitable prior that represents
our belief on an arm’s reward. Because the reward distribution
of arm i is modeled as a categorical distribution and the
Dirichlet distribution is the conjugate prior of this distribution,
we model the prior of the expected rewards as a Dirichlet
distribution with parameter αi,t, Dir(αi,t). As a result, the
posterior obtained at each round is also a Dirichlet distribution,
following (2).

The Dirichlet distribution is a multivariate generalization of
the beta distribution. The set of points in the support of an
M -dimensional Dirichlet distribution is the standard (M −1)-
simplex. For M = 3, the support is an equilateral triangle
with vertices at (1, 0, 0), (0, 1, 0), and (0, 0, 1). The pdfs of
two example 3D Dirichlet distributions are shown in Fig. 5.

At each round, after an action is taken, a reward is observed
and the posterior distribution is updated according to (2).
When the prior is the conjugate distribution of the likelihood,
the update rule is much simpler. Specifically, for the case with
Cat(θi,t) rewards and Dir(αi,t) priors ∀i ∈ A, the update rule
for the posterior is as follows:

αi,t+1 =

{
αi,t + r̂t, if at = i

αi,t, if at 6= i.

The first case (at = i) is when beam i is selected for trans-
mission at time t and a reward r̂t is observed. The posterior
distribution of beam i is then updated accordingly. The second
case is when beam i is not selected for transmission at time
t, and thus, its posterior is not changed.

Algorithm 1 Thompson Sampling
1: for t = 1, 2, · · · , T do
2: Take Samples:
3: for i ∈ A do
4: Sample si,t ∼ Dir(αi,t)
5: Choose and Apply Action:
6: at = argmaxi∈A si,tv

T

7: Select at and observe r̂t
8: Update Distributions:
9: for i ∈ A do

10: if at = i then
11: αi,t+1 ← αi,t + r̂t
12: else
13: αi,t+1 ← αi,t

After the distributions are updated, the arm to be selected
for the next round is determined based on random samples
taken from the current posterior distributions of the arms.
Specifically, at each time t, the BS samples from each arm’s
updated distribution to obtain si,t ∼ Dir(αi,t), ∀i ∈ A, and
selects the action as:

at = argmax
i∈A

si,tv
T . (4)

Therefore, even though the arms with currently high estimated
means are more likely to be selected, other arms also get
a chance to be picked and updated, i.e., exploration versus
exploitation. This is called the Thompson sampling and its
pseudocode is provided in Algorithm 1. Note that |si,t| = 1,
∀i ∈ A, ∀t ∈ {1, · · · , T}.

Algorithm 1 works well in stationary scenarios, where beam
qualities do not change over time. However, for nonstationary
scenarios, we need to adapt this algorithm.

A. Adaptive Thompson Sampling (ATS) Algorithm

In nonstationary scenarios, the algorithm should never stop
exploring, since it needs to keep track of changes. With some
modification, TS remains an effective approach, as long as the
channel characteristics change relatively slowly.

To address nonstationary scenarios, we model the evolution
of the belief distributions in a way that discounts the relevance
of past observations and increases the impact of recent ob-
servations. This can be done by implementing a “forgetting”
factor γ1 that slowly alters the posterior distributions and a
“boost” factor γ2. For i ∈ A, the update rule is now written
as:

αi,t+1=


γ1αi,t + γ2r̂t, if at = i

γ1αi,t, if at 6= i and max{γ1αi,t} > 1

1, otherwise.

Here, the operation max{γ1αi,t} returns the largest element
of the vector γ1αi,t. Note that multiplying αi,t by a constant
γ1 effectively increases the variance (given that 0 < γ1 < 1),



Algorithm 2 Adaptive Thompson Sampling
1: for t = 1, 2, · · · , T do
2: Take Samples:
3: for i ∈ A do
4: Sample si,t ∼ Dir(αi,t)
5: Choose and Apply Action:
6: at = argmaxi∈A si,tv

T

7: Select at and observe r̂t
8: Update Distributions:
9: for i ∈ A do

10: if at = i then
11: αi,t+1 ← γ1αi,t + γ2r̂t
12: else if at 6= i and max{γ1αi,t} > 1 then
13: αi,t+1 ← γ1αi,t
14: else
15: αi,t+1 ← 1

but does not alter the mean of the Dirichlet distribution. To
show that, we first calculate µi,t+1 , E[Dir(αi,t+1)]:

µi,t+1 =

 γ1α
(0)
i,t∑M−1

j=0 γ1α
(j)
i,t

, · · · ,
γ1α

(M−1)
i,t∑M−1

j=0 γ1α
(j)
i,t


=

 α
(0)
i,t∑M−1

j=0 α
(j)
i,t

, · · · ,
α
(M−1)
i,t∑M−1
j=0 α

(j)
i,t

 = µi,t.

Next, we calculate σ2
i,t+1 , Var[Dir(αi,t+1)]:

σ2
i,t+1 =

µ(0)
i,t+1(1− µ

(0)
i,t+1)

1 +
∑M−1
j=0 γ1α

(j)
i,t

, · · · ,
µ
(M−1)
i,t+1 (1− µ(M−1)

i,t+1 )

1 +
∑M−1
j=0 γ1α

(j)
i,t


=

 µ
(0)
i,t (1− µ

(0)
i,t )

1 + γ1
∑M−1
j=0 α

(j)
i,t

, · · · ,
µ
(M−1)
i,t (1− µ(M−1)

i,t )

1 + γ1
∑M−1
j=0 α

(j)
i,t

 > σ2
i,t

for 0 < γ1 < 1. Thus, the variances of the unexplored arms
increase at each iteration. Note that the effects of γ1 and γ2 are
different. Specifically, γ1 determines the rate at which the prior
information is forgotten, whereas γ2 determines how much the
new information is valued. Finally, the last condition ensures
that if arm i has not been selected for a long time, αi,t+1

is updated in a way that our belief on arm i’s distribution
converges to a multi-dimensional uniform distribution, i.e.,
Dir(1). We incorporate this new update rule into an algorithm
called ATS (see Algorithm 2).

Prior Selection: An important design issue is the initializa-
tion of prior distributions right after IA. In general, a uniform
prior works well with most TS algorithms. For our problem
formulation, this would correspond to Dir(1). However, this
prior ignores any useful knowledge obtained through IA. Tak-
ing past knowledge into account and choosing an informative
prior reduce what must be newly learned. Specifically, if the
best MCS index that beam i can satisfy during IA is m, we
assign α(m)

i,0 = P and α(j)
i,0 = 1, ∀j ∈ {0, · · · ,M−1}, j 6= m.

Here, P ≥ 1 is an adjustable design parameter called the
prior strength. By selecting informative prior parameters αi,0
according to IA, the convergence time can be reduced and the

average data rate can be significantly improved, as we show
in Section VI.

Selection of γ1 and γ2: The BS needs to select appropriate
values for γ1 and γ2 before running Algorithm 2. For this
purpose, we let the BS estimate the distances of the UEs
through the RSS of the received packets, and calculate the
optimum γ1 and γ2 offline for each UE. RSS-based distance
estimation has been widely applied in sub-6 GHz wireless
systems (e.g., [47]–[49]). For distance estimation at mmW
spectrum, we use a commonly employed path-loss model:

PL(d)[dB] = c1 + c210 log10(d) + ψ, ψ ∼ N (0, σ2
n) (5)

where d is the BS-UE distance in meters, c1 and c2 are
the floating intercept and slope of the model (obtained via
regression of measured data), respectively, and σ2

n is the log-
normal shadowing variance. This model has been adopted by
many researchers (see [11], [32], for example). It does not
consider the (directional) beamforming pattern at the Tx/Rx
or the small-scale (multi-path) effects. Yet, as shown later,
it can still provide good estimates of γ1 and γ2 that result
in improved throughput. Note that for the simulation-based
evaluation of MAMBA, we rely on a much detailed channel
model that accounts for antenna directionality, clustering, and
multi-path effects, as discussed in Section VI-B.

Knowing the UE transmit power and the RSS it observes,
the BS can easily compute the path loss and solve (5) for d.
Our intuition here is that UEs that are closer to the BS are more
likely to switch between beams, as even small displacements
can result in large angular changes. Conversely, when the UE
is further away from the BS, it is more likely to be served by
the same beam for a long period of time. With this intuition,
we conduct simulations to study the effect of distance on the
optimal γ1 and γ2, for two different beamwidths (the values
of other simulation parameters are provided in Section VI-
B). In Fig. 6, we can observe that as the distance increases,
the optimum γ1 also increases, since the angular mismatch
between the UE and the BS beam does not change quickly.
Note that the average data rate decreases with d, due to lower
received power at the UE. In addition, the trend is the same
for different beamwidths, which makes us conclude that the
optimum γ1 does not depend on the beamwidth. On the other
hand, ATS is not as sensitive to changes in γ2 as it is to
changes in γ1, once it exceeds a certain value. Specifically, as
seen in Fig. 7(a), for γ2 > 30, the average data rate remains
approximately the same.

B. Rate Selection

After a beam has been selected via ATS, the BS needs
to determine an appropriate MCS to be used during data
transmission. MCS selection is particularly important, as the
effective data rate of a given transmission would be 0 if the
MCS that the BS selects cannot be supported at the UE.
Conversely, if the BS selects a lower MCS than the maximum
one that the UE can support, the link would be underutilized.
Taking this tradeoff into account, we propose two techniques
for MCS selection: greedy and conservative.
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Fig. 6. Effect of γ1 on ATS performance for different distances and beamwidths. (a) d = 50 m, (b) d = 100 m, (c) d = 150 m, (d) d = 200 m.
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Fig. 7. Effect of γ2 on ATS performance for different distances and
beamwidths. (a) d = 50 m, (b) d = 200 m.

Greedy MCS Selection: Here, the MCS index that attains
the maximum expected rate over the selected beam is used.
Specifically, after sampling si,t,∀i ∈ A, and taking action at,
the MCS index m∗ is selected as:

m∗ = argmax
m∈{0,··· ,M−1}

s
(m)
at,tv

(m). (6)

Therefore, even when an MCS index is less likely to be
attained than others, depending on v, the BS may decide to
choose it due to its higher associated rate.

Conservative MCS Selection: In this scheme, the MCS
index that is most likely to be attained and that can achieve a
non-zero rate over the selected beam is used for transmission.
In other words, after the BS collects si,t,∀i ∈ A, and selects
the beam, it will select a transmission rate based on the
probabilities of attaining different MCS indices on the selected
beam. Specifically, given action at, the selected MCS index is
given by:

m∗ = argmax
m∈{0,··· ,M−1}

s
(m)
at,t. (7)

V. REGRET ANALYSIS

In this section, we compute an upper bound on the Bayesian
regret of ATS. Let I denote an instance of the MAB problem
drawn initially from some known distribution P (a.k.a. the
prior) over a set of possible problem instances. A problem
instance is specified by θi,t ∀i ∈ A and ∀t ∈ {1, 2, · · · }. (For
a stationary bandit problem, in which θi,1 = θi,2 = · · · = θi,t
∀i ∈ A and ∀t ∈ {1, 2, · · · }, a problem instance is specified

only by θi, ∀i ∈ A.) Then, Bayesian regret within a time
horizon of T is defined as:

BR(T ) =

T∑
t=1

EI∼P
[
E
[
θa∗t ,tv

T − θat,tvT | I
]]

(8)

where θat,t denotes the expected reward vector of the
action selected by our algorithm at time t and a∗t =
argmaxi∈A θi,tv

T . The inner expectation in (8) is the ex-
pected regret for a given problem instance I, and the outer
expectation is over the set of all problem instances. Let
BRt denote the instantaneous regret at time t, i.e., BRt =
E[θa∗t ,tv

T − θat,tvT ], where inner and outer expectations in
(8) are merged into a single expectation. Then, BRt can be
also written as:

BRt =

M−1∑
m=0

E
[
θ
(m)
a∗t ,t
− θ(m)

at,t

]
vm. (9)

Now, we focus on providing a theoretical bound on E[θ(m)
a∗t ,t
−

θ
(m)
at,t ], ∀m ∈M. We use a random walk process to model the

nonstationarity of the rewards obtained from various beams
[50] (note that the MAMBA scheme itself does not rely on
this model). Specifically, the expected reward vector of each
beam follows a discrete-time random walk in an (M − 1)-
dimensional space with reflecting boundaries. We assume that
the step sizes εi,t of this walk at each time interval t are
uniformly distributed: εi,t ∼ U [0, σ] ∀i ∈ A and ∀t ≥ 0.
Here, σ denotes the maximum step size, which is also called
the volatility of an arm in MAB context [50]. The direction of
the walk is also determined by a uniform distribution within
all the possible directions in (M − 1) dimensions. See Fig.
5 for a visualization of this model when M = 3. Let ωi,t ∈
R1×3 denote the unit vector towards the selected step direction.
Given the triangle in Fig. 5, whose corners are located on the
x-, y- and z-axes, if θi,t + εi,tωi,t does not hit the edge, then
θi,t+1 − θi,t = εi,tωi,t. Otherwise, |θi,t+1 − θi,t| ≤ εi,t due
to the reflecting boundaries (where |.| denotes the length of a
vector).

Let S(m)
i,t denote the empirical summation of the rewards

observed when using beam i and MCS index m from time 0
up to time t. Also, let ni,t denote the number of times beam i
is selected up to time t, based on our ATS algorithm. Note that
when beam i is selected at time t, we observe a reward vector
rt, which includes rewards of all MCS indices belonging to
that beam (1 or 0). That is, for each MCS index, there are



ni,t observations. Accordingly, S(m)
i,t = γ2

∑ni,t

k=1 γ
t−τi,k
1 r

(m)
τi,k

where τi,j denotes the time of the jth selection of beam i.
Then, the expected value of S(m)

i,t is given by E[S(m)
i,t ] =

γ2
∑ni,t

k=1 E[γ
t−τi,k
1 r

(m)
τi,k ] = γ2

∑ni,t

k=1 γ
t−τi,k
1 θi,τi,k .

Lemma 1: For a given beam i and t ≤ T ,

Pr

(∣∣∣θ(m)
i,t − γ

t
1θ

(m)
i,0

∣∣∣ ≥ min{1, σ}
√
8T log T

)
= O(T−4).

Proof: To simplify the proof, we drop from the notation
the MCS index m. Let Xn = γT−n1 θi,n, n = 0, 1, · · · , T ,
denote a sequence of random variables. This sequence is a
supermartingale, as E[Xn+1|X0, X1, · · · , Xn] ≤ Xn, n =
0, 1, · · · , T − 1 (recall that γ1 < 1). Therefore, we can
apply Azuma-Hoeffding inequality as in Claim 3.6 of [50].
First, it is clear that |Xn+1 − Xn| < min{1, σ} almost
surely. Following Azuma-Hoeffding inequality, Pr(|θi,t −
γt1θi,0| ≥ min{1, σ}

√
8T log T ) ≤ Pr(|θi,T − γT1 θi,0| ≥

min{1, σ}
√
8T log T ) ≤ 2T−4 = O(T−4).

Lemma 2: Let θ̂(m)
i,t ,

∑ni,t

k=1 γ
t−τi,k
1 r

(m)
τi,k /ni,t denote our

empirical estimate of θ(m)
i,t . Then,

Pr

(∣∣∣θ̂(m)
i,t − θ

(m)
i,t

∣∣∣ ≥ δi,t) = O(T−4) (10)

where δi,t =
√

2 log T/ni,t+min{1, σ}
√
8T log T and t ≤

T .
Proof: We utilize Azuma-Hoeffding inequality to prove

this lemma. Let Yk = γ2γ
t−τi,k
1 r

(m)
τi,k , k = 1, · · · , ni,t, denote

each term in Si,t, which consists of independent random
variables that are strictly bounded by the interval [0, γ2].
Following Azuma-Hoeffding inequality, we obtain (11). In the
next step, each term of the inequality inside the probability
expression is divided by γ2. (13) follows from Lemma 1.
Finally, by dividing the terms of the inequality inside the
probability expression by ni,t, we obtain (10).

In the rest of the analysis, we exploit similar techniques to
bound the Bayesian regret as in [51]. Given a problem instance
I, let a history Ht denote all selected beams of our algorithm
and the corresponding observed rewards up to time t, i.e., a
particular run of the algorithm. Given this history, let U (m)

t (i)

and L
(m)
t (i) denote the upper and lower confidence bounds

on action i’s expected reward at time t for MCS index m,
respectively, such that:

U
(m)
t (i) = θ̂

(m)
i,t + δi,t and L

(m)
t (i) = θ̂

(m)
i,t − δi,t. (14)

Lemma 3: For any t ≤ T ,

BRt ≤ 2MvM−1E
[
δat,t

]
+O(T−4). (15)

Proof: Conditioned on a certain history Ht, the optimal
action a∗t and the action at (selected by ATS) are identically

distributed, and U (m)
t (a∗t ) = U

(m)
t (at) (please refer to Propo-

sition 1 in [51] for further details). Hence,

E
[
θ
(m)
a∗t ,t
− θ(m)

at,t

]
= EHt

[
E
[
θ
(m)
a∗t ,t
− θ(m)

at,t |Ht

]]
= EHt

[
E
[
U

(m)
t (at)− U (m)

t (a∗t ) + θ
(m)
a∗t ,t
− θ(m)

at,t |Ht

]]
=EHt

[
E
[
U

(m)
t (at)− θ(m)

at,t |Ht

]
+E

[
θ
(m)
a∗t ,t
− U (m)

t (a∗t )|Ht

]]
= E

[
U

(m)
t (at)− θ(m)

at,t

]
+ E

[
θ
(m)
a∗t ,t
− U (m)

t (a∗t )
]
. (16)

We separately investigate the two terms in (16). Let (a)+ ,
max{0, a} for any real number a. First, consider the second
term in (16):

E
[
θ
(m)
a∗t ,t
− U (m)

t (a∗t )
]
≤ E

[(
θ
(m)
a∗t ,t
− U (m)

t (a∗t )
)+]

(17)

≤ Pr
(
θ
(m)
a∗t ,t
≥ U (m)

t (a∗t )
)
= O(T−4). (18)

The first inequality in (18) follows from the fact that the
largest possible value for (θ(m)

a∗t ,t
−U (m)

t (a∗t ))
+ is 1. The second

inequality in (18) is due to Lemma 2. Now, consider the first
term in (16):

E
[
U

(m)
t (at)− θ(m)

at,t

]
= E

[
2δat,t + L

(m)
t (at)− θ(m)

at,t

]
= 2E

[
δat,t

]
+ E

[
L
(m)
t (at)− θ(m)

at,t

]
. (19)

Similar to (17) and (18):

E
[
L
(m)
t (at)− θ(m)

at,t

]
≤ E

[(
L
(m)
t (at)− θ(m)

at,t

)+]
≤ Pr

(
θ
(m)
at,t ≤ L

(m)
t (at)

)
= O(T−4).

Combining (9) and (16):

BRt =

M−1∑
m=0

E
[
θ
(m)
a∗t ,t
− θ(m)

at,t

]
vm ≤ME

[
θ
(m)
a∗t ,t
− θ(m)

at,t

]
vM−1

≤ 2MvM−1E
[
δat,t

]
+O(T−4).

Theorem 4: Given D beams, each of which has a volatility
σ, the Bayesian regret of the ATS algorithm over a time
horizon T is bounded by:

BR(T )=O
(
M
√
DT log T +M min

{
T, σT

√
8T log T

})
.

Proof: We know that BR(T ) =
∑T
t=1 BRt. Hence,

following Lemma 3:

BR(T ) ≤
(
2MvM−1E

[
δat,t

]
+O

(
T−4

))
(20)

= O
(
M
√
log T

) T∑
t=1

E
[√

1/nat,t

]
+

O
(
M min{1, σ}T

√
8T log T

)
. (21)



Pr

(∣∣∣S(m)
i,t − E[S(m)

i,t ]
∣∣∣ ≥ γ2√2ni,t log T

)
= O(T−4) (11)

Pr

(∣∣∣∑ni,t

k=1 γ
t−τi,k
1 r

(m)
τi,k −

∑ni,t

k=1 γ
t−τi,k
1 θ

(m)
i,τi,k

∣∣∣ ≥√2ni,t log T

)
= O(T−4) (12)

Pr

(∣∣∣∑ni,t

k=1 γ
t−τi,k
1 r

(m)
τi,k − ni,tθ

(m)
i,t

∣∣∣ ≥√2ni,t log T + ni,tmin{1, σ}
√
8T log T

)
= O(T−4) (13)

Lemma 1 in [51] states that E
[√

1/nat,t

]
= O(

√
DT ).

Furthermore, when the rewards are bounded by the interval
[0, 1], the maximum possible regret within a time horizon T
is T . Thus, the second term in (21) is bounded by MT .

Theorem 4 states that if σ is relatively low, the regret
scales with

√
T log T . Note that the authors in [51] prove that

the regret of a stationary system also scales with
√
T log T .

Therefore, when σ is low, ATS can alleviate the affect of
nonstationarity. On the other hand, if σ is large, the worst-
case regret scales linearly with T .

VI. PERFORMANCE EVALUATION

We evaluate the performance of MAMBA through OTA
experiments and simulations, considering a single phase of
beam selection. We study both fixed- and adaptive-rate vari-
ants of MAMBA, and contrast them with four other beam
tracking strategies: static oracle, dynamic oracle, the ε-greedy
algorithm [1], and the UBA algorithm [2]. The static oracle is
essentially the same as Phase 1 of the 5G NR beam selection
scheme. It runs an exhaustive beam search every time an
outage occurs. The dynamic oracle is a theoretically optimal
but practically infeasible beam tracking scheme. It always
selects the best beam/MCS combination at each slot, obtained
through exhaustive search. The performance of this scheme
is meant to provide an upper bound on practical tracking
algorithms.

A. Experimental Results

For the experimental setup, we consider a mmW link (see
Fig. 8) in which the Tx is comprised of a Keysight E8267D
PSG signal generator that connects to a 15 dBi 4-by-8 UPA.
The Tx transmits a continuous wave (CW) 28 GHz signal at 0
dBm transmit power. The Rx consists of a Keysight 9038A
MXE EMI receiver, connected to a 20 dBi horn antenna.
Both the PSG and the EMI receiver are connected to the host
PC through USB ports, allowing them to send/receive SCPI
commands through a serial connection.

To simulate the effect of ACK/NACK, the Rx measures the
RSS and stores it in a variable in the host PC. The Tx can
then read this RSS value and obtain a reward by determining
the most appropriate MCS through table lookup. The mapping
from an RSS (or SNR) value to an MCS index (or sometimes,
to a Channel Quality Indicator (CQI)) depends on the specific
implementation of the receiver, e.g., the iterative decoder. Such
mapping, typically provided by vendors, can be used to obtain
the spectral efficiency (in bits/sec/Hz) for each MCS index,
and consequently determine the data rate that can be supported

Rx Tx

(a)

Tx

Rx

Arc

(b)

(c) (d)

Fig. 8. Experimental setup used for performance evaluation. (a) Outdoor
scenario with 7m Tx-Rx separation, (b) indoor office scenario with 3.5m Tx-
Rx seperation, (c) 4 × 8 UPA at the Tx side, (d) 20 dBi gain horn antenna
at the Rx side.

by that MCS index; see, for example, the mappings in [4] for
WiGig and in [52] (page 20) for 5G NR PDSCH messages.
For our experiments, we use the mapping in [4].

We conduct the experiments in two scenarios: an outdoor
scenario (Fig. 8(a)) with Tx-Rx separation of 7 meters, and an
indoor office environment (Fig. 8(b)) with Tx-Rx separation
of 3.5 meters. For reproducibility of the experiments, RSS
measurements are taken at discrete, equally spaced points on
an arc that is centered at the Tx. For the outdoor (indoor)
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Fig. 9. RSS for different beam directions in the indoor office scenario when:
(a) Rx is located at the rightmost corner of the office with direct LOS path,
and (b) Rx is located at the left side of the office, blocked by the whiteboard.

scenario, the distance between two consecutive points on the
arc is 15 cm (30 cm), resulting in 72 (41) measurement points.
A LOS path is always available at each measurement point in
the outdoor scenario. Beam selection is performed only at the
Tx side, while the Rx is always pointed optimally towards the
Tx. In practice, a UE is equipped with a small array, limiting
its ability to achieve precise beam pointing, i.e., the antenna’s
boresight will not be perfectly aligned with the line-of-sight
(LOS) between the Rx and Tx. Nonetheless, considering that
UE beams are generally much wider than the beams at the
BS, beam selection is less of an issue at the UE side. As the
Tx and Rx antennas are at the same elevation, beam sweeping
at the Tx is done only in the azimuthal plane by steering
the UPA ±45◦ around the broadside of the UPA in 5◦ steps.
This results in 19 possible Tx beams at each Rx location.
We assume saturated downlink traffic, i.e., the Tx always has
packets to send. A detailed description of our experimental
setups along with the datasets are available at [53].

The indoor office environment is more complex than the
ourdoor scenario, as it includes one large blocker (a white-
board) and several metal objects (a TV, cabinet door handles,
a fence with several bars, and metallic parts of other pieces
of furniture). It is hard to accurately determine the number of
metal objects in this setup and, more importantly, how many of
them act as reflectors. To give an idea of the resulting LOS and
Non-LOS (NLOS) paths in the indoor office scenario, we plot
in Figs. 9(a) and Fig. 9(b) the RSS values corresponding to
various Tx beam directions at two different Rx locations (the
Rx locations for the indoor scenario are shown as white dots
in Fig. 8(b)). In Fig. 9(a), the Rx is located at the rightmost
corner of the room. We can easily distinguish the LOS path
from the NLOS paths based on the RSS values. Moreover, we
observe multiple “peaks” in the figure, indicating reflections
from nearby objects. In Fig. 9(b), the Rx is located at the left
side of the office, blocked by the whiteboard. The RSS values,
in this case, are much weaker than those in Fig. 9(a), and there
is no distinguishable maximum. This is expected for a NLOS
scenario.

In Fig. 10(a)–10(c), we depict the total delivered traffic vs.
time under ATS, dynamic oracle, and static oracle. Throughout
the experiments, the slot duration is set to 1 ms. Fig. 10(a)
and 10(b) depict the performance for the outdoor scenario
under high mobility (UE moves at a fixed speed of β = 14
cm/slot = 504 km/hr) and moderate mobility (β = 3.5 cm/slot

= 126 km/hr), respectively. Similarly, Fig. 10(c) depicts
the performance for the indoor scenario under low mobility
(β = 0.5 cm/slot = 18 km/hr).

All three algorithms perform similarly in the beginning. This
is because when the change in the Rx location is small, the Tx
can keep using the best beam that was identified during IA.
Also note that the ATS/greedy and ATS/conservative exhibit
the same performance for the selected design parameters
(P = 100, γ1 = 0.2, and γ2 = 20). As seen from Fig.
10(a), the total delivered traffic using ATS is 182% higher
than that of the static oracle in the outdoor scenario, and is
only 21% lower than that of the dynamic oracle. For the indoor
scenario, Fig. 10(c) shows that the total delivered traffic using
ATS is 102.14% higher than that of the static oracle and 3.28%
lower than that of the dynamic oracle. In both scenarios, ATS
provides significant gains in terms of total delivered traffic
compared to a static oracle, and performs reasonably close
to the dynamic oracle (i.e., low regret). Similar trends are
observed under moderate mobility (see Fig. 10(b)).

Fig. 10(d) depicts the CDF for the outage duration, consid-
ering both indoor and outdoor scenarios. The outage duration
refers to the time from the onset of an outage until communica-
tions are restored. This metric is especially important for real-
time traffic (e.g., voice/video), which can tolerate occasional,
non-persistent packet losses. It can be observed that with
probability greater than 0.9, outage durations will not exceed
5 slots. Outage can be reduced further by limiting MAMBA’s
operation to low-order modulation schemes, as shown later.

Fig. 10(e) depicts the total delivered traffic versus time
under ATS for different γ1 values. The worst performance is
seen when γ1 = 0.01, i.e., when the information obtained
during IA is almost instantly forgotten. In this case, ATS
cannot exploit the useful prior information, and hence, the
dashed curves do not follow others even during the first 20
slots. On the other hand, when γ1 = 0.9, ATS cannot adapt to
the changing environment fast enough. Specifically, it keeps
using the previous beam even after its quality has degraded.
When γ1 = 0.2, ATS can balance exploration and exploitation,
and can achieve the highest total delivered traffic.

The effect of Rx speed on the average data rate is studied in
Fig. 10(f). When the Rx is slow, ATS performs quite close to
the dynamic oracle and achieves only 4% lower average rate.
In addition, the regret, i.e., the gap between the dynamic oracle
and ATS, scales logarithmically with the Rx speed. As the Rx
moves faster, the performance of ATS drops because it cannot
learn the environment fast enough and adapt its behavior. Note
that in practice, the Rx speed is unlikely to exceed 10 cm/slot,
which translates into 360 km/hour. Therefore, the operating
point of a BS will always be on the left side of the figure.
Higher speeds are illustrated here to show the trend in the
average data rate.

In Fig. 10(g), we depict the average data rate using the
static oracle for different numbers of IA cycles. Running
IA more frequently makes the static oracle more reactive,
but also adds a significant search overhead. When the total
measurement duration (IA+data) is short, the overhead of
rerunning IA becomes more pronounced. For this reason, when
the total duration is 20 slots, the static oracle can only run
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Fig. 10. Experimental evaluation results. Total delivered traffic vs. time for outdoor scenario at speeds up to (a) 14 cm/slot and (b) 3.5 cm/slot, and in indoor
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depicts the total delivered traffic vs. time for ATS with different γ1 values, (f) average data rate vs. Rx speed, and (g) depicts the average data rate vs. number
of IA cycles for the static oracle.
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Fig. 11. Average data rate versus: (a) γ1 (γ2 = 20), and (b) γ2 (γ1 = 0.2).
Outdoor scenario.

one IA cycle; otherwise, its average rate drops to 0. For
longer measurement durations, the optimum number of IA
cycles increases progressively, as the overhead of rerunning
IA becomes less noticeable.

Finally, we study the impact of γ1 and γ2 on the perfor-
mance of ATS. Fig. 11(a) shows that the selection of a very
small γ1 can significantly degrade the performance of ATS.
Specifically, when γ1 is too small, it cannot learn the environ-
ment, as the past information is almost instantly forgotten. On
the other hand, when γ1 is too large, the algorithm loses its
reactiveness. Fig. 11(a) also shows that when the Rx moves
more slowly, a larger γ1 does not reduce the average data
rate as much. That is, when the environment changes more
slowly, ATS does not need to forget old information very
quickly. The effect of γ2 is different, as seen in Fig. 11(b).
Except when γ2 < 10, the selection of γ2 does not change
the performance of ATS significantly. Recall that the effect
of γ1 is multiplicative, whereas the effect of γ2 is additive.
Therefore, γ1 affects the average data rate more substantially.

B. Simulation Results

Due to the limitations of our experimental setup, we also
consider computer simulations to study the effects of different
Tx-Rx distances, UE speeds, and mobility patterns. We set
the Tx power to PTx = 30 dBm, ABS = 16 with half-
wavelength element spacing, and AUE = 2 with a spacing of
0.1 wavelengths between the elements. The Tx and Rx use
uniform linear arrays (ULA) and are placed on parallel lines
facing each other. The BS performs azimuthal beam tracking
in the range ±30◦ around the broadside, with a scanning
resolution of 5◦. This results in 13 possible Tx beams. The
Rx beam is fixed, with beam width of ∼ 60◦. No tracking
is performed by the UE. In the simulations, the location of
the BS is always fixed, whereas the UE moves according
to a random waypoint model, i.e., it first selects a random
destination in the simulation area and a random speed between
0.1 km/h and a maximum speed of β = 4 km/h for pedestrian
speeds and β = 80 km/h for vehicular speeds. The UE then
moves to this destination and pauses for a random time before
selecting another random location and speed. Tx-Rx distance
varies between 10m and 250m. Results are averaged over 1000
runs. The simulations are obtained for a center frequency of
28 GHz.
Channel Model: We simulate a channel with path loss, shad-
owing, and small-scale effects. We also consider both LOS
and NLOS paths. To synthesize the channel, we first determine
whether or not a LOS path exists based on the probabilities
in Equations (8a), (8b), and (8c) of [11] (these probabilities
were obtained following extensive measurements). Next, we
determine the large-scale effects, including path loss, using
the channel parameters in Table I of [11]. To create multi-path
components (MPCs), we randomly place three point scatterers
on an ellipsoid between the Tx and Rx, thereby introducing



small-scale effects as well as three NLOS clusters (along with
the LOS cluster). At the Rx, each of the four clusters contains
32 rays (16 transmitted rays times two Rx antenna elements).
Each ray that arrives at a scattering point has its own AoA and
AoD, as dictated by the location of the Tx element, scattering
point, and Rx element.

Next, we compute the coefficients of the MIMO channel,
given the position of the Tx, Rx, and the three scatterers. The
small-scale channel gain for each path (ray) between a Tx
antenna element and an Rx antenna element is sampled from
a complex normal distribution of zero mean and unit variance.
We then calculate the Tx and Rx beamforming vectors based
on their respective azimuth angles (only azimuthal tracking
is performed). The Tx azimuth angle is determined by a
given beam tracking algorithm. The beamforming vectors and
MIMO channel matrix are used to calculate the beamforming
gain. Along with the large-scale path loss, this gain can be
used to determine the received signal strength.

First, we evaluate the performance gain of MAMBA due
to beam tracking, separately from the combined gain of beam
tracking and rate adaptation. To do that, we run MAMBA
at a fixed MCS, selected from the following set: MCS1
(BPSK with 1/2 code rate), MCS3 (BPSK with 5/8 code rate),
MCS8 (QPSK with 3/4 code rate), MCS10 (16-QAM with 1/2
code rate), and MCS12 (16-QAM with 3/4 code rate). The
results are shown in Fig. 12 (where MAMBA refers to the
adaptive-rate version). Fig. 12(a) shows that under a fixed-rate
setup, MCS1 and MCS12 achieve the lowest and the highest
throughput, respectively. This is expected, as selecting a lower
MCS index will result in lower data rate. We also observe
the opposite trend for the outage probability in Fig. 12(b),
where MCS1 results in the lowest outage probability and
MCS12 results in the highest outage probability. Under MCS1,
outages occur because the MAMBA algorithm occasionally
explores inadequate beam directions. As we increase the MCS
index, the outage probability increases because there is a
higher likelihood that the link between the BS and UE cannot
support the selected MCS. This motivates the use of a rate
adaptation scheme. As can be seen in Fig. 12, adaptive-
rate MAMBA achieves a higher data rate than any fixed-rate
scheme. For example, compared with MCS12, adaptive-rate
MAMBA achieves a slightly higher throughput but reduces
the outage probability by 35%. Comparing it with MCS10
(which has almost the same outage probability), adaptive-rate
MAMBA provides 37% throughput gain.
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Fig. 12. Data rate and outage performance for fixed-rate and adaptive-rate
variants of MAMBA.

Next, we compare ATS used within a fixed-rate variant of
MAMBA against the ε-greedy algorithm [1] (which targets
beam tracking but does not perform adaptive rate selection).
Without loss of generality, we consider pedestrian speeds.
Fig. 13 depicts the throughput and outage probability for
both algorithms with ε ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. A smaller ε
pushes the ε-greedy algorithm to exploit the current beam more
often, and vice versa. At the lowest MCS (MCS1), the data
rate achieved by ATS is 21% higher than the data rate achieved
by the best-possible realization of the ε-greedy algorithm (at
ε = 0.9). Such a throughput advantage is combined with 78%
reduction in the outage probability. At the highest available
MCS (MCS12), ATS achieves about 255% improvement in
throughput over the best possible ε-greedy algorithm, along
with 61% reduction in the outage probability.
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Fig. 13. Comparison between ATS and the ε-greedy algorithm under a fixed
MCS: (a) average data rate; (b) outage probability.

In the next set of simulations, we compare ATS against
dynamic oracle, static oracle, and the UBA algorithm. Fig.
14(a) depicts the total delivered traffic for the four tech-
niques as a function of time, considering pedestrian speeds.
The figure shows that ATS outperforms both UBA and the
static oracle, and is only 10% below the dynamic oracle.
At vehicular speeds, tracking UEs becomes much harder,
and so the performance gap between the dynamic oracle
and the other algorithms increases significantly. Nevertheless,
ATS still performs better than UBA and the static oracle,
as seen in Fig. 14(b). The instantaneous data rate is shown
in Fig. 14(c) as a function of time. Here, we let the UE
roam freely for 80 slots and then bring it to a stop (the
slot after which the UE stops is marked with the red star).
We observe that the performance of ATS converges to that
of the dynamic oracle within only 10 slots, whereas UBA
converges to a suboptimal data rate. Therefore, we conclude
that for stationary scenarios, ATS quickly converges to the
optimal beam and MCS index. Finally, in Fig. 14(d), we study
the outage probabilities of different algorithms. The static
oracle is significantly outperformed by UBA and ATS, with
UBA performing slightly better than ATS at both vehicular
and pedestrian speeds. However, as observed from Fig. 14(b),
even though ATS is slightly more prone to outages, its total
delivered traffic is still higher than UBA, implying that UBA
often settles on suboptimal data rates, while ATS is more likely
to perform optimally.
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Fig. 14. Performance comparison based on simulation results. (a) Total delivered traffic for pedestrian speeds up to 4 km/h, (b) total delivered traffic for
vehicular speeds up to 80 km/h, (c) instantaneous data rates (slot after which the UE stops is marked with the red star), (d) outage probabilities for the
pedestrian and vehicular speeds.

VII. CONCLUSIONS

In this paper, we proposed MAMBA, an ATS-based multi-
armed bandit scheme for joint beam tracking and MCS selec-
tion in mmW systems. MAMBA relies on prior information
collected during IA and updates such information based on
the RSS of ACK/NACK messages received from the UE. We
derived an upper bound on the regret of the ATS algorithm
used in MAMBA, and used OTA experiments and computer
simulations to study its performance and contrast it with
several other beam tracking techniques. Our results indicate
that MAMBA improves the link throughput by up to 182%
compared to a static oracle scheme (the default approach
for 5G NR systems) and performs reasonably close to an
optimal but practically infeasible dynamic oracle scheme.
MAMBA was also compared with two other state-of-the-
art beam tracking schemes (ε-greedy and UBA algorithms).
Compared with UBA, MAMBA has a 25-35% throughput
advantage. Considering only its beam tracking part (i.e., fixing
the MCS), MAMBA achieves a 21% throughput gain over the
ε-greedy algorithm at the lowest MCS index, and 255% gain at
the highest MCS index. Finally, we verified the effectiveness
of MAMBA’s rate adaptation by comparing it with a fixed-
rate counterpart. For roughly the same outage probability, rate
adaptation results in about 37% throughput gain over a fixed-
rate variant.
Future Directions: ATS relies on frequent HARQ feedback
at the BS for timely update of the reward distributions.
However, when the downlink traffic is light, the feedback
will be sparse and MAMBA will not learn fast enough
changes in beam quality. The same is true when block ACKs
are used, which result in fewer HARQ transmissions and
longer times between reward updates. The slow learning rate
translates into slower convergence and degradation in the beam
tracking performance. Likewise, as was shown in Fig. 14, the
performance of ATS degrades at high speeds due to rapid
fluctuations in the mmW channel. More specifically, in ATS
the time duration between two successive instances of beam
selection is much larger than the “beam coherence time” (as
defined in [54]). This makes past observations less relevant
and yields poor performance. As a future work, we plan to
extend MAMBA to account for varying traffic load, block
ACKs, and very high mobility. The latter aspect will involve
determining (online) a suitable beam selection instance based

on the beam coherence time. We will also exploit the inherent
correlations between adjacent beams to enable simultaneous
updates of the reward distributions of multiple beams (follow-
ing the arrival of an ACK/NACK message). This facilitates fast
recovery in scenarios where the best beam changes frequently
due to UE mobility (as opposed to blockage). We will also
investigate the effectiveness of ATS in a multi-UE setting,
where the BS tracks multiple users that operate over exclusive
frequency/time resource blocks (hence, they do not interfere
with each other) or share common blocks.
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