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Abstract—Supporting diverse Quality of Service (QoS) 
requirements in 5G and beyond wireless systems often 
involves solving a succession of convex optimization 
problems, with varied approaches to optimally resolve each 
problem. Even when the input set is specifically 
designed/architected to segue to a convex paradigm, the 
resultant output set may still turn out to be nonconvex, 
thereby necessitating a transformation to a convex 
optimization problem via certain relaxation techniques. 
This transformation in itself may spawn yet other 
nonconvex optimization problems, highlighting the 
need/opportunity to utilize a Robust Convex Relaxation 
(RCR) framework. In this paper, we explore a particular 
class of Convolutional Neural Networks (CNNs), namely 
Deep Convolutional Generative Adversarial Network 
(DCGANs), to solve not only the QoS-related convex 
optimization problems but also to leverage the same RCR 
mechanism for tuning its own hyperparameters. This 
approach gives rise to various technical challenges. For 
example, Particle Swarm Optimization (PSO) is often used 
for hyperparameter reduction/tuning. When implemented 
on a DCGAN, PSO requires converting 
continuous/discontinuous hyperparameters to discrete 
values, which may result in premature stagnation of 
particles at local optima. The involved implementation 
mechanics, such as increasing the inertial weighting, may 
spawn yet other convex optimization problems. We 
introduce a RCR framework that capitalizes upon the feed-
forward structure of the “You Only Look Once” (YOLO)-
based DCGAN. Specifically, we use a squeezed Deep 
Convolutional-YOLO-Generative Adversarial Network 
(DC-YOLO-GAN), hereinafter referred to as a Modified 
Squeezed YOLO v3 Implementation (MSY3I), combined 
with convex relaxation adversarial training to improve the 
bound tightening for each successive neural network layer 
and to better facilitate the global optimization via a specific 
numerical stability implementation within MSY3I. 
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I. INTRODUCTION  
The cellular industry, including wireless operators and 

device manufacturers, is racing to deliver the Fifth Generation 
(5G) wireless technology to end users through three main 
service categories: Enhanced Mobile Broadband (eMBB), 
Ultra-Reliable Low-Latency Communications (URLLC), and 
massive Machine-Type Communications (mMTC). These 
service categories will support a wide range of QoS needs by 
existing and emergent applications, such as connected and 
autonomous vehicles, AR/VR, Industrial IoT, and others. While 
the concepts of network slicing and Software-Defined Networks 
(SDNs) offer a framework for supporting diverse sets of QoS, 
ultimately it comes down to the resource management algorithm 
within an operator’s control plane to ensure that these QoS sets 
are met without excessive allocation of network resources. 
Various providers that launched their own 5G networks have 
made QoS a top priority and articulated the need for new 
approaches for the envisioned Beyond 5G (B5G) networks, or 
what is referred to as “6G.” 

Efficient support for 5G/B5G/6G QoS often necessitates 
formulating nonconvex optimization problems. Examples 
include: Radio Resource Allocation (RRA) (whose aim is to 
maximize the spectral efficiency, subject to certain 
performance guarantees), Multi-Radio Access Technology 
(RAT) handling for multi-connectivity (each with its own QoS 
requirements), and Radio Resource Management (RRM) for 
connections with varied QoS requirements. The involved 
optimization formulations are, in essence, mixed integer non-
linear programming (MINLP) problems that need to be 
optimally solved. When the objective and constraint functions 
are nonconvex, these MINLPs are construed to be nonconvex. 
For instance, an RRA problem may be formulated as a problem 
of optimally assigning frequency-time blocks (integer 
variables) to a number of served connections while 
simultaneously determining the appropriate transmit powers 
(continuous variables) for these blocks over various frequency 
subcarriers.   

Prototypical approaches to solving a nonconvex MINLP 
problem involve transforming it into a convex surrogate, e.g., 
via  reformulation, convex approximation, or a series of convex 
relaxations. Typically, convex relaxations are derived on a 
problem-by-problem basis, but there are indeed forays, such as 
Langevin Diffusions (with the possibility of premature 



 

 

stagnation of particles at local optima) for nonconvex problems, 
Alternating Direction Method of Multipliers (ADMM) for 
nonconvex and nonsmooth functions, and yet others, such as for 
transforming a nonconvex function to the sum of a smooth 
function, a concave continuous function, and a convex lower 
semi-continuous function [1]. Once the nonconvex function has 
been transformed into a decomposed form, other general-
purposes approaches, such as Convex Relaxation Regression 
(CoRR) and Lassere’s Semidefinite Programming (SDP) 
Relaxation (a.k.a., Linear Matrix Inequality or LMI) can be 
used. From a numerical implementation standpoint, the 
aforementioned techniques may not be optimal, in terms of 
transparency at each neural network layer; this is addressed by  
the proposed RCR framework. 

Historically, various neural network architectures have been 
experimented with for tackling nonconvex MINLP problems. 
Each has had its drawbacks, and as one simple example, in 
several instances, performance tends to degrade with continued 
training [2]. One approach that has gained great interest due to 
its robustness and accuracy leverages convex relaxation 
adversarial training aboard a DCGAN [3]. However, the 
computational cost has often been quite high [4], as in the case 
of the YOLO implementation for DCGAN, which is often 
referred to as a DC-YOLO-GAN. Accordingly, to reduce the 
computational cost, the notion of fire modules/layers from 
SqueezeNet (a deep neural network) was utilized to replace 
convolution layers (a.k.a. Conv) with Fire Layers (FL) [5], and 
a SqueezeDet adaptation was incorporated for the replacement 
of certain Conv with Special Fire Layers (SFL) [6]. In essence, 
this process optimized the DCGAN. The FL and SFL reduced 
network is referred to as a Modified Squeezed YOLO v3 
Implementation (MSY3I). Prior research showed that although 
the number of parameters in MSY3I are reduced in comparison 
to a prototypical YOLO implementation, the average precision 
and accuracy remain relatively high [7].  

Given its advantages in terms of the reduced number of 
hyperparameters to tune, Particle Swarm Optimization (PSO) is 
often implemented within a DCGAN, [8, 9]. However, a 
challenge arises when instantiating PSO aboard the DCGAN, as 
the continuous or discontinuous hyperparameters must be 
converted to discrete values (e.g., integers) [10]; yet, rounding 
the calculated velocities to discrete integer values creates an 
artificial paradigm, wherein particles may stagnate prematurely. 
Certain techniques, such as increasing the inertia (allowing 
particles to advance past their current local optimum) can 
somewhat obviate this issue [11], but a final challenge remains 
in addressing the original intent of convex optimization for 
enhanced 5G QoS via the convex optimization problem of 
hyperparameter reduction/tuning — effectuating an RCR 
adversarial training mechanism aboard the utilized MSY3I. 
Perhaps, the irony can best described as follows. Producing the 
tightest possible relaxation for the neural network layers of the 
MSY3I turns out to be no easier than the original problem of 
providing the tightest possible relaxation for solving 5G QoS 
convex optimization problems. 

The remainder of this paper is organized as follows. Section 
II provides background and presents related work. Section III 
discusses three numerical challenges: effectuating an RCR 
adversarial training mechanism via MSY3I; reducing the 

computational cost via fire layers; and utilizing adaptive inertia 
weighting to operationalize PSO (to mitigate against the 
premature stagnation of particle velocities when implementing 
PSO onto the MSY3I). Common solution set mechanics are 
described. Section IV articulates the experimentation findings. 
Section V provides concluding thoughts and outlines future 
work. 

II. BACKGROUND AND RELATED WORKS 
 Obtaining the globally optimal solution to an MINLP 
problem requires exploring a vast  search space. This can be 
done through robust mixed-integer convex relaxations of the 
MINLP. Underscoring the robustness aspect, the Institute for 
Operations Research at ETH Zurich phrases it quite nicely: “… 
it is necessary to identify those key combinatorial substructures, 
induced by integral variables, which can be leveraged so as to 
improve the involved bound tightening and global optimization 
algorithms” [12].  

A. Traversing the Search Space 
1) Stochastic Search 
Stochastic search approaches are essentially general-

purpose problem-agnostic algorithms that can utilize 
qualitative or quantitative (computational) modules tailored to 
the considered problem and/or are combined with problem-
specific algorithms. Most referenced algorithms reside within 
the swarm intelligence subfield of AI. They include, among 
others, genetic, differential evolution, colony optimization, and 
PSO algorithms. These algorithms share the commonality that 
several search entities are created and individually utilized in 
hyper-locale optimization actions while contemporaneously 
liaising with each other to derive a globally optimal solution. 
On the one hand, the challenge in utilizing these algorithms 
resides in the fact that if the chosen swarm size is too small, the 
algorithm will more likely gravitate to a local minimum without 
ascertaining a globally optimal solution; on the other hand, if 
the chosen swarm size is too large, the likelihood of 
ascertaining a viable globally optimal solution increases, but 
the computational overhead increases as well.  

While the methods encompassing genetic and evolutionary 
algorithms cannot prove optimality of the solution, PSO applies 
the dual approach of global exploration and local search 
methods to ascertain an optimum solution. PSO is a meta-
heuristic algorithm, i.e., no guarantee that a globally optimal 
solution can be found for some classes of problems. However, 
even relatively small swarm sizes are fairly consistent in 
providing “good enough” near-optimum solutions in relatively 
few iterations [13]. Hence, PSO is often utilized to solve MILP 
and MINLP problems. 

 
2) Implementation of PSO Search  
Fundamentally, a PSO approach simulates a set of particles 

or candidate solutions that traverse the search space. The 
method for PSO initializes the swarm at a random point within 
the space. Each particle has an assigned position	and a velocity. 
The objective function is evaluated for each particle, and a 
global optimum 𝐺 is ascertained. Iteratively, the position and 
velocity	for each particle progress towards its individual best, 



 

 

represented by the vector I, as well as the global best, 
represented by the vector 𝐺,	as shown in Equations 1 and 2, 
respectively: 

 𝑥!
(#$%) =	𝑥!

(#) +	𝑣!
(#$%) (1) 

 𝑣!
(#$%) = 𝜄(#)𝑣!

(#) +	𝛼%[𝛽%,!	( 𝐼! −	𝑥!
(#))] +		𝛼)[𝛽),!	( 𝐺 −

	𝑥!
(#))]  (2) 

where 𝑥!
(#)	 and 𝑣!

(#)  denote, respectively, the position and 
velocity of particle 𝑖  at generation [time step] 𝑘  with particle 
inertia  𝜄(#), which induces a certain momentum with regards to 
the involved particles; the parameters  𝛽%,!	 and 𝛽),!	  are 
uniformly distributed random variables over [0,1], 𝛼%and 𝛼) are 
acceleration constants, and 𝐼! denotes particle i’s optimum; the 
solution to (1) and (2) gives the global optimum [14]. 

An initial challenge arises when integrating PSO search into 
the DC-YOLO-GAN implementation, as most of the 
parameters are continuous or discontinuous, and they need to 
be transformed to discrete values (e.g., integers). To maximally 
preserve the original semantics, each attribute of a PSO particle 
is a distribution over its possible values rather than a specific 
value [9]. In addition to inertia  𝜄(#), the (cognitive component) 
vector I represents the individual best position in the search 
space that the involved particle has seen, and the (social 
component) vector G represents the best position in the search 
space that any particle in the swarm has seen; these three 
parameters — inertia, cognitive component, and social 
component — dictate a particle’s behavior [9]. Furthermore, the 
updated velocity 𝑣!

(#) is added to the particle’s position 𝑥!
(#), 

thereby moving the particle through the search space. However, 
as the position 𝑥!

(#)	represents a set of parameters, the rounding 
of the calculated velocities 𝑣!

(#)to discrete integer values creates 
an artificial environment, wherein particles may stagnate 
prematurely (i.e., get trapped into local optima [15]) with a non-
graceful degradation of the particle inertia 𝜄(#).  

Certain techniques, such as increasing the inertia (e.g., 
weighting the distance from the particle’s local optimum) allow 
the involved particles to progress past their current local 
optimum instead of stagnating prematurely; these techniques 
beget calculating varying inertial weights. The chosen platform 
for the experimentation herein is the GNU Octave platform. As 
a numerical computation platform, it is mostly compatible with 
comparable platforms, such as MATLABTM; as GNU Octave is 
released under a GNU GPLv3 license, the source code was 
modified for the experiments conducted herein,  which resulted 
in a Modified GNU Octave (M-GNU-O) platform [16], that can 
better leverage certain accelerants to deal with the PSO 
adaptive inertial weighting issue (yet another convex 
optimization problem) [17] as well as the various convex 
relaxations discussed herein. 

The selection of the PSO was predicated upon its 
performance robustness (good performance even under a small 
swarm size) and ability to converge in relatively few iterations. 
As an architectural construct, the discussed DCGAN 

instantiation exhibits robust performance for the case herein, 
while other constructs may degrade in performance with 
prolonged training. For the 5G/B5G/6G functions needed for 
QoS, the PyTorch Machine Learning library was utilized, and 
the PyTorch implementation of the neural network framework, 
YOLO v3, was utilized; accordingly, the specific DCGAN 
implementation was that of DC-YOLO-GAN. 

 

B. Resolving Gradations of Mixed-integer Convex 
Relaxations to Facilitate Convex Optimizations 

 Hybridizing local and global optimization algorithms has 
become an accepted strategy for deriving valid bounds for near-
optimal convex optimization solutions [18]. This can also be 
operationalized by denoting and resolving gradations of mixed-
integer convex relaxations. Accordingly, the nonlinearities are 
typically replaced by convex under-estimators and concave 
over-estimators. The tightest convex under-estimator and the 
tightest concave over-estimator are referred to as the convex 
envelope and the concave envelope of a function, respectively. 
Prior findings indicate that RCR, which facilitates convex 
optimization-based methods, can be well addressed by a MSY3I 
combined with convex relaxation adversarial training. 

1) Squeezed YOLO v3 Implementation 
 Darknet, an open-source neural network written in C and 
CUDA, is a CNN implementation framework for the widely 
YOLO [19]. YOLO v2 utilizes a variant of Darknet-19, which 
starts with a 19-layer neural network, supplemented with 11 
additional layers, thereby yielding a 30-layer convolutional 
architecture for YOLO v2. As documented in the literature, the 
performance of YOLO v2 is sub-optimal for the need described 
herein [20]; hence, a variant of YOLO v3 was selected. YOLO 
v3 utilizes a variant of Darknet-53, which starts with a 53-layer 
network that is supplemented with 53 additional layers, thereby 
yielding a 106-layer convolutional architecture for YOLO v3. 
Compared with YOLO v2, the classification performance of 
YOLO v3 is greatly enhanced, but prior experimental findings 
show that the computational performance is slower. This should 
be axiomatic, as a search space approach for a 106-layer YOLO 
network, even with the constraining decision of only optimizing 
the number of neurons in the layers at ten test values each, would 
still necessitate the training of 10106 models. Hence, to decrease 
the number of parameters for the YOLO instantiation, the use of 
fire layers (of SqueezeDet) to optimize the network structure 
segues to a MSY3I. In essence, certain SFLs replace certain 
Conv layers, and the number of hyperparameters as well as the 
number of filters of the compression portion of the fire layers 
are reduced; prior research has indicated that the number of 
model parameters in MSY3I will be lower than that of just 
YOLO v3 with only the slightest degradation in performance [5, 
6]  

2) Convex Relaxation Adversarial Training 
In addition to analyzing its performance, MSY3I must be 

examined for robustness, and this often relates to the 
performance of the layer-wise optimal convex relaxations 
implemented within the involved DCGAN (or MSY3I in this 
case) [21]. In essence, a certain convex relaxation is posited for 
the purpose of ascertaining an upper bound for a worst-case 
instability scenario. This is of critical importance, as 



 

 

prototypical DCGANs exhibit non-graceful degradation in 
performance even at imperceptible perturbation levels, which 
results in numerical instability. Given the abundance of 
perturbations/variability in contemporary environs, a 
prototypical approach for mitigating numerical instability, such 
as batch normalization (batchnorm), can have counterproductive 
consequences if not implemented in a proven fashion. 
Batchnorm is a method for imbuing stability into a neural 
network via normalization of the input layer, such that each layer 
can learn a bit more independently of other layers. Simply 
applying batchnorm to all the layers of the neural network can 
result in oscillation and instability. Prior research has shown that 
this instability can be avoided by selectively applying 
batchnorm, e.g., only at the generator output layer and/or the 
discriminator input layer (the adversarial components of a 
DCGAN). 

To verify the performance of the layer-wise convex 
relaxations implemented in MSY3I, a hybridized approach 
vector is utilized in our work: (1) exact (complete), and (2) 
relaxed (incomplete). Prototypical exact verifiers are predicated 
upon Mixed Integer Programming (MIP) (specifically, MINLP 
for the experimentation discussed herein), Branch-and-Bound 
(BnB), or Satisfiability Modulo Theories (SMT). By definition, 
these exact verifiers are not beset by false positives or false 
negatives, but they must contend with resolving NP-hard 
optimization problems, which in turn obviates their scalability. 
Prototypical relaxed verifiers are predicated upon MILP or 
Mixed-Integer Convex Programming (MICP), which is more 
compact than MILP. MILP/MICP can be more quickly resolved 
and are more scalable, but their effectiveness (i.e., false 
negative rate) degrades quickly [22], thereby potentially 
obviating the ability to verify robustness. Hence, it can be seen 
that there are two aspects of relaxation: (1) convex relaxations 
implemented at each layer of the MSY3I, and (2) the relaxation 
schema verifier implemented to ascertain robustness of the 
MSY3I both layer-wise and overall [23]. These are the key 
elements of the RCR framework, which has a counterpoised 
objective of the tightest possible relaxation. 

3) Facilitated RCR 
 Ultimately, the final rendition of the MSY3I is dictated by 
the PSO deployment; the PSO determines the reduction in the 
number of hyperparameters and the tuning thereof for the 
MSY3I. In turn, the M-GNU-O facilitates the adaptive inertial 
weighting to facilitate more robust PSO performance by 
addressing the premature particle velocity stagnation issue. 

III. NUMERICAL CHALLENGES AND SOLUTIONS   
To the extent that RCR is a key enabler of computationally 

tractable 5G/B5G/6G solutions, its underlying architecture is 
central to the equation. While certain mathematical approaches 
hold great promise, their implementation may present a barrier 
due to various numerical issues. Our RCR “architectural stack,” 
shown in Figure 1, tackles three successive challenges: (1) 
effectuating an RCR paradigm via MSY3I, (2) reducing the 
computational costs via PSO-tuned MSY3I, and (3) utilizing 
adaptive inertial weighting via M-GNU-O to operationalize the 
PSO. M-GNU-O serves as a key enabler for facilitating (3), 

which in turn facilitates (2), and in turn enables the bespoke 
MSY3I to effectuate an RCR paradigm.  
 

Fig. 1. RCR architectural stack and components 

 As noted in Section II-A-1, initialization of the  swarm size 
in PSO is critical, as it impacts how robustly and quickly the 
involved optimization algorithm converges to a globally optimal 
solution. Furthermore, a nonoptimal initialization schema can 
segue to unstable gradients, which may have a profound impact 
on the stability of the involved optimization algorithms. For 
example, parameter updates that are excessively large (i.e., 
exploding gradient) or excessively small (i.e., vanishing 
gradient) may obviate the intended MSY3I deep learning. 

Along this vein, the choice of the YOLO version to be 
utilized  in deep learning is nontrivial. The reviews of recent 
versions of YOLO (e.g., v5) or even other variants (e.g., PP-
YOLO) are still forthcoming, and peer-reviewed publications 
are not yet available. Our selection criteria narrowed to the 
YOLO version that could interoperate with the more robust set 
of 5G/BFG/6G-related tools. Given the performance 
disadvantages of YOLO v1 and v2, they were ruled out. YOLO 
v4 is a Darknet implementation, and YOLO v3 and v5 are 
PyTorch implementations; as  the PyTorch library has a 
repertoire of 5G/BFG/6G-related tools, the choice was 
narrowed to YOLO v3 and v5. Because YOLO v5 has not been 
peer-reviewed yet, the decision was made to proceed with 
YOLO v3.  

In addition to the CNN framework, the selection and 
utilization of various functions from the available ML 
libraries/toolkits are also important. By way of background 
information, Facebook operates two well-known open-source 



 

 

ML libraries/toolkits: PyTorch and the Convolutional 
Architecture for Fast Feature Embedding (Caffe2). In March 
2018, the Caffe2 repository was merged into the PyTorch 
repository on Github. Maintainers, core developers, and users 
noted several incompatibility issues (although Open Neural 
network Exchange or ONNX is intended to help resolve that) 
Typically, the onus is on 5G/BFG/6G researchers/programmers 
to understand and address the intricacies of the underlying 
numerical implementation. In this case, the numerical stability 
implementation challenge was nearly on par with the devising 
of the numerical stability strategy itself.  

IV. EXPERIMENTATION FINDINGS 
For the experiments described herein, we utilized two 

different RCR paradigms with different versions of components 
at the MSY3I level (MSY3I #1 and MSY3I #2), augmented 
with a TensorFlow-based DCGAN implementation, which is 
considered stable. MSY3I #1 was targeted for solving QoS 
convex optimization problems. As such, it required a high 
degree of numerical stability; accordingly, PyTorch v0.4.1 was 
utilized. MSY3I #2 was intended for solving 5G/BFG/6G-
related functions (e.g., STFT), with lower utilization rate. 
Accordingly, the recently released PyTorch v1.7.0 was utilized, 
allowing  MSY3I #2 to focus on its intrinsic stability training, 
so as to mitigate against  the numerical instability issues from 
PyTorch v1.7.0 (as contrasted to v0.4.1). A “forward stable” 
TensorFlow-based DCGAN implementation (hereinafter, 
DCGAN #3) was utilized via an additional generator (hence, a 
mixture of generators) to assist in mitigating mode failure 
(a.k.a. mode collapse), which occurs when two competing 
neural networks that are being trained concurrently fail to 
converge or have an unusual convergence. Note that a forward 
stable DCGAN does not amplify perturbations of the input set, 
e.g., due to noise. The experimental testbed with the described 
components is delineated in Figure 2. 
 

 
 
Fig. 2. Experimentation with a stable RCR, composed of two MSY3I 
implementation that are augmented with a third DCGAN. 

The selection and utilization of various functions from the 
available ML libraries/toolkit is crucial. It is equally important 
for the 5G/BFG/6G researcher/programmer to understand and 

contend with the implementation intricacies (e.g., signature, 
dependency, etc.) of the numerical algorithms being utilized. 
For example, signature consistency intricacies have been 
shown to result in errors or incorrect results. Likewise, 
dependency intricacies are also an issue, as they introduce 
variances that result in errors or incorrect outcomes [26]. 

A. STFT Signature Consistency Challenges 
Short-time Fourier transform (STFT) is a key functionality 

in many OFDM-based wireless systems and is often used as the 
basis for signal detection and classification in 5G and beyond. 
Previous PyTorch implementations of STFT (including the 
spectrogram transform) had slower performance than Librosa, 
a well-known Python package for signal processing and 
analysis [24]. Accordingly, the developers changed the function 
signature to be consistent with Librosa at v0.4.1 (various 
PyTorch versions are available at 
https://pypi.org/project/torch/0.4.1/#history). The significance 
is that the STFT signature for PyTorch versions prior to v0.4.1 
can cause errors or return incorrect results [25]. 

B. STFT Dependency Challenges 
 In SciPy et al., it was noted that the various implementations 
of STFT in TensorFlow often introduce a phase skew 
dependency on the stored window which, if not addressed 
during the conversion, would have severe effects on any ensuing 
processing or phase analysis [26]. Hence, when phase 
information is processed, it is crucial to be aware of the phase 
conventions by which the STFT is being computed and adjust 
the processing schema accordingly. For example, conversion 
between conventions typically equates to point-wise 
multiplication of the STFT with an a priori determined matrix of 
phase factors.  

 The previously discussed PyTorch STFT issue (#9308 fixes 
#7883 by changing STFT to have a consistent signature with 
Librosa [27]) is emblematic of the numerical algorithm 
implementation challenges involved. First, the substantive 
portion of numerical algorithm/numerical analysis problems 
cannot be solved precisely; they need to be solved in an 
approximate fashion, and this is achieved by supplanting the 
infinite object with a finite approximation, as simplistically 
exemplified in the following Taylor-series polynomial 
approximation of the exponential function and a composite 
trapezoidal approximation of a definite integral, respectively: 

 𝑒* 	≈ 1 + 𝑥 +	*
!

)!
+⋯+	*

"

,!
	 (3) 

 ∫ 𝑓(𝑥)𝑑𝑥	 ≈ 	 -
)
	[𝑓(𝑎) + 2	 ∑ 𝑓(𝑥!) + 𝑓(𝑏)],.%

!/%
0
1  (4) 

The approximation errors are, in essence, truncation errors. 
Second, errors also stem from the limitations (i.e., round-off 
errors) in the representation of real numbers within the involved 
computing platform; these include not only the case of irrational 
numbers (which require an infinite number of digits for their 
exact representation), but also for various cases involving 
rational numbers (which are often represented as floating-point 
numbers). The accuracy of the floating-point representation is 
underpinned by the number of significant digits utilized; 



 

 

axiomatically, a higher number of  significant digits equates to 
a higher computational load. Third, extremely large or small 
numbers cannot readily be represented in floating-point 
arithmetic due to the phenomenon of overflow (an arithmetic 
operation yields a resultant, which is outside the range of the 
computational platform’s floating-point numbers) and 
underflow (an arithmetic operation yields a resultant nonzero 
fraction, which is not readily able to be represented as a nonzero 
floating-point number).  

 Along this vein, the implementation of STFT in some of the 
software libraries/toolkits (e.g., TensorFlow, among others) 
does not follow either the frequency-invariant STFT convention 
or the time-invariant STFT, wherein the time resolution and 
frequency resolution of the STFT is the same across the time-
frequency plane, such as shown below for the latter case, 

 𝑆𝑇𝐹𝑇23!(𝑠)[𝑚, 𝑛] = 	∑ 𝑠[𝑙 + 𝑛𝑎]𝑔[𝑙]𝑒.
!#$%&
'

⌈	
()
! 	⌉.%

6/.⌊
()
! 	⌋

 + b  = g

  (5) 

where L denotes the time separation between the short-time 
segments, and signal s is being filtered with STFT window g. 
Unconventionally, the window g is stored as vector of length Lg 
(typically, Lg ≪ L), and the peak is not at g[0], as expected, but 
at g[ ⌊ Lg/2 ⌋ ] with the Simplified Time-Invariant STFT 
calculated, as shown in the following equation: 

 𝑆𝑇𝐹𝑇293!(𝑠)[𝑚, 𝑛] = 	∑ 𝑠[𝑙 + 𝑛𝑎]𝑔[𝑙]𝑒.):!;6/=>).%
6/?  + b  = g

  (6) 

Comparing (5) and (6), it can be discerned that (4) imbues a 
delay as well as a phase skew that is dependent on the (stored) 
window length 𝐿2  [26]. Researchers have also noted that the 
implementation of STFT in some of the software 
libraries/toolkits does not consider s circularly, but only for n ∈
[0,… , M(𝐿 −	𝐿2)/𝑎O] [26]. The documentation for the utilized 
functions (e.g., phased=gabphasederiv[dflag,method,…]) for 
use on the modified [experimentation] GNU Octave platform 
described herein (i.e., M-GNU-O) notes that “phased is scaled 
such that (possibly non-integer) distances are measured in 
samples … the computation of phased is inaccurate when the 
absolute value of the Gabor coefficients [of the Gabor transform, 
which is a special case of STFT] is low. This is due to the fact 
[that] the phase of complex numbers close to the machine 
precision is almost random” [27]. 

 For the aforementioned reasons, our experimental 
architecture utilizes specific versions of PyTorch and 
TensorFlow for specific purposes. As was depicted in Figure 2, 
because numerical stability is needed for RCR Paradigm #1,  
PyTorch v0.4.1 was utilized for MSY3I #1. Whereas 
consistency and accuracy was needed for certain key functions  
(e.g., STFT) of  RCR Paradigm #2, PyTorch v1.7.0 was utilized 
although the overall numerical stability decreased. To 
compensate/mitigate against this deficiency, we added DCGAN 
#3 to prevent mode failure/mode collapse. Collectively, this 
framework provides the basis for the 5G/B5G/6G testing amidst 
function/method issues that have arisen within ML 
libraries/toolkits. A core set was examined, which include FFT, 

IFFT, Real-Valued FFT (RFFT), Inverse RFFT (IRFFT), STFT, 
and Inverse STFT (ISTFT). A sampling of the issues/bugs 
encountered in various libraries/toolkits/frameworks (e.g., 
Caffe, Caffe2, Julia, PyTorch, SciPy, and TensorFlow) is shown 
in Figure 3. 

 
Fig. 3. Sample of numerical issues found in various ML libraries/toolkits. 

Our experimentation period spans 4/24/18 through 12/10/20, 
which aligns with the release of PyTorch v0.4.0 and the release 
of PyTorch v1.7.1, respectively. During this period of time, the 
5G/B5G/6G-related research that necessitated the 
functions/methods of FFT, IFFT, RFFT, IRFFT, STFT, and 
ISTFT triggered the modification ability of M-GNU-O as well 
as an architectural testbed that would address the 
aforementioned numerical issues. 

C. Conversion to Semi-Definite Programming Problem  
Ironically, although our original intent is to resolve QoS-

related convex optimization problems, the process involves 
formulating successive gradations of convex optimizations, 
with varied approaches to resolve each class of convex 
optimizations. For example, the requisite adaptive inertial 
weighting (used to facilitate PSO, which in turn would facilitate 



 

 

MSY3I to process yet other convex optimizations) is itself 
comprised of a succession of convex optimizations problems. 

Indeed, many of the intermediate enabling steps involve 
Quadratic Programming (QP) step-down algorithms, including 
Quadratically Constrained Quadratic Programming (QCQP), 
which would compute the QCQP special class convex 
optimization problem in polynomial time. A QCQP takes the 
following general form: 
  
       minimize	

*
U(	%

)
)𝑥@	𝑃?𝑥 +	𝑞?@𝑥	 +	𝑟?Y 

  
      subject to (	%

)
)𝑥@	𝑃!𝑥 +	𝑞!@𝑥	+ 𝑟! 	≤ 0, 𝑖 = 1,… ,𝑚  

 
  Ax = b 
 

      where P0, …, Pm are n-by-n matrices;  Pi  ∈ 𝐒$,  (7) 
and x ∈ Sn is the optimization variable 

           
Accordingly, there are two envelopes for this aspect of 
discerning a gradation among convex optimization problems: 
(1) if P1 , …, Pm  ∈ 𝐒$$,  , where 𝐒$$, 	denotes the set of positive 
semidefinite matrices, the involved problem is convex, and (2) 
a QP with a semi-definite Hessian is still convex. 

Traditionally, computing the Hessian matrix for large-scale 
problems is computationally impractical [28]. However, given 
a particular Hessian matrix in a resolvable form, proxies (i.e., 
approximations) of the Hessian matrix can be obtained in 
alternative ways, e.g., Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) algorithm. However, to avoid false curvature 
information, additional initialization conditions are required. 
To accommodate this, resolving of the QCQP can assist in the 
determination of the involved trust regions (the subset of the 
objective function region that is approximated). Furthermore, 
there are a variety of trust-region methods given a sufficiently 
low-rank positive semidefinite matrix; in essence, this equates 
to computing 𝑅]I = 𝑅]c + 𝑅]n, where 𝑅]c and 𝑅]n are examined, via 
resolving the following Rank Minimization Problem (RMP) : 

 (𝑅]A   , 𝑅],) = arg  min
B*	,B"

	 rank (𝑅]A  ), (8) 

subject to ^
𝑅A +	𝑅, =	𝑅9

𝑅A 	≥ 0
𝑅,	is	diagonal

 

In many instances, even when the input set is 
designed/architected to be convex, the resultant output set may 
turn out to be nonconvex. Accordingly, when the rank function 
is nonconvex and discontinuous, the RMP cannot be solved 
directly. To accommodate this, and to transform the problem to 
a convex form, the rank function is replaced with the trace 
function, giving rise to a Trace Minimization Problem (TMP): 

 (𝑅]A, 𝑅], ) = arg  min
B*	,B"

	 tr (𝑅]A  ), (9) 

subject to ^
𝑅A +	𝑅, =	𝑅9

𝑅A 	≥ 0
𝑅,	diagonal

 

Because the rank function tallies the number of nonzero 
eigenvalues and the trace function computes the sum of the 
involved eigenvalues, the above equation can be reconstrued as 
an equivalent Semi-Definite Programming (SDP) problem: 

 (𝑅]A, 𝑅], ) = arg  min
B*	,B"

	 tr (𝑅]A), (10) 

subject to 

⎩
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⎪
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𝑅CD 𝑊)

l

𝑅A +	𝑅, = 	𝑅s
𝑅𝑐	 ≥ 0

𝑅,	is	diagonal

 

    
Once in this form (i.e.,  the nonconvex QCQP has been relaxed 
to a convex SDP), there are numerous SDP solvers (e.g., 
SDPT3, which is a MATLAB/GNU Octave Semi-Definite 
Programming or SDP software package) available for these 
types of problems; the aforementioned (regarding Equations 7, 
8, 9, and 10) is implemented atop the M-GNU-O platform, 
which readily supports various high-performance SDP solvers 
[16]. Prior testing was effectuated in Ilog Cplex Optimizer (a 
commercial software package for optimization) and, 
subsequently, on AD Model Builder (ADMB) (an open-source 
software package for non-linear statistical modeling) as well as 
Interior Point OPTimizer (IPOPT) (a software package for 
large-scale nonlinear optimization). 

V. CONCLUDING REMARKS AND FUTURE WORK 
This paper articulated some of the issues/intricacies of 

5G/BFG/6G-related function implementations, of various ML 
frameworks, which affected their accurate resolution of QoS 
convex optimization problems for 5G/BFG/6G. For example, 
mathematical equivalence does not necessarily segue to correct 
results when using certain functions of particular versions of 
numerical computation libraries. By way of example, in some 
cases, sub-operations needed to be combined, as performing the 
sub-operations separately would be computationally slower and 
more numerically unstable (e.g., as the softmax output 
approaches 0, the log output approaches infinity, which causes 
instability).   

To compound this issue, it was found that the optimization 
challenge of transforming nonconvex to convex optimization 
problems may spawn yet other nonconvex optimization 
problems, thereby highlighting the need/opportunity to utilize 
an RCR framework. This paper presented an RCR architecture 
(presented in Figures 1 and 2), which could not only resolve the 
tasked 5G QoS-related convex optimization problems but could 
also leverage the same RCR mechanisms for tuning its own 
hyperparameters; the RCR architectural stack achieved this via 
three distinct phases: (1) effectuating a RCR paradigm, via a 
bespoke MSY3I, (2) using a PSO to tune the MSY3I so as to 
reduce the associated computational costs, and (3) 



 

 

operationalizing the PSO via an adaptive inertial weighting 
mechanism facilitated by an M-GNU-O. For future work, an 
additional DCGAN will be added to the RCR architectural 
stack to derive further key combinatorials for optimizing 
computations.  
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