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Abstract—We address the problem of detecting misbehavior in the
coexistence etiquette between LTE and Wi-Fi systems operating in the 5
GHz U-NII unlicensed bands. We define selfish misbehavior strategies
for the LTE that can yield an unfair share of the spectrum resources.
Such strategies are based on manipulating the operational parameters
of the LTE-LAA standard, namely the backoff mechanism, the traffic
class parameters, the clear channel access (CCA) threshold, and oth-
ers. Prior methods for detecting misbehavior in homogeneous settings
are not applicable in a spectrum sharing scenario because the devices
of one system cannot decode the transmissions of another. We develop
implicit sensing techniques that can accurately estimate the operational
parameters of LTE transmissions under various topological scenarios
and without decoding. These techniques apply correlation-based signal
detection to infer the required information. Our techniques are validated
through experiments on a USRP testbed. We further apply a statistical
inference framework for determining deviations of the LTE behavior from
the coexistence etiquette. By characterizing the detection and false
alarm probabilities, we show that our framework yields high detection
accuracy at a very low false alarm rate. Although our methods focus on
detecting misbehavior of the LTE system, they can be generalized to
detect Wi-Fi misbehavior and to other coexistence scenarios.

1 INTRODUCTION

The high demand for wireless services has fueled a severe
shortage in radio spectrum resources. The regulatory approach
for meeting this galloping demand is to allow the coexistence of
competing wireless technologies in common bands. An example
of such coexistence is that of LTE and Wi-Fi in the 5 GHz U-NII
band [2]–[4], which has already become a reality. Recent reports
have shown that there are 36 cellular operators currently investing
in LAA, nine of which have already deployed/launched networks
[5]. Furthermore, there are 21 commercially available modems
equipped with chipsets that are LAA-compatible, many of which
are integrated into smartphones from leading manufacturers [6].
Moreover, a recent measurement campaign performed between
January and March 2020 in various locations in the Chicago
metropolitan area revealed that all three major US cellular carriers
operate dense LTE-LAA deployments [7]. The study reported 557
unique LAA physical cell IDs (PCIs) running Release 13 of LAA
where all downlink traffic is over the unlicensed 5 GHz band,
whereas the uplink traffic is over licensed bands.

However, shared spectrum introduces novel challenges for the
secure, efficient, and fair channel access. Many of these challenges
arise from the heterogeneity of the coexisting systems, the system
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scale, and the lack of explicit coordination mechanisms between
them. Such heterogeneity is manifested in different PHY-layer ca-
pabilities, channel access dynamics (dynamic vs. fixed), schedule-
based vs. random access, interference-avoiding vs. interference-
mitigating, etc. Altogether, this creates a complex coexistence
scenario without a unified control plane.

Several recent efforts have addressed the problem of fair
coexistence of LTE/Wi-Fi and Wi-Fi/Zigbee under benign set-
tings (e.g., [8]–[20]). Recent analytical and experimental studies
have shown that an LTE system could cause serious perfor-
mance degradation to a co-present Wi-Fi system, even if the
LTE remains protocol-compliant [21], [22]. The main approach
to address unfair channel access is to introduce the Licensed-
Assisted Access (LAA) protocol that follows the Listen-Before-
Talk (LBT) mechanism [23]. Tao et al. showed that dynamically
adjusting the contention window (CW) size can be beneficial for
fair coexistence [24]. Follow-up works achieved further improve-
ments by controlling other protocol parameters and applying other
enhancements, e.g., [25]–[27].

Intentional violations of the coexistence etiquette to gain an
unfair spectrum share have not been studied at length. The dangers
of ignoring the coexistence etiquette systematically is a serious
and realistic threat. The measurement campaign in [7] reported
that the authors never observed LAA, irrespective of the operator,
dynamically adapting its unlicensed channel usage in response
to Wi-Fi usage of the same channels. Ying et al. were among
the first to consider the problem of misbehavior when cycle-
based LTE-U and Wi-Fi coexist [28]. The authors recognized
that because the LTE duty cycle is unilaterally controlled by the
LTE system, it can be abused to increase LTE’s spectrum share.
They proposed a monitoring mechanism that accurately estimates
the duty cycle and allows a spectrum manager to detect any
misbehavior. The proposed scheme is not applicable to LTE-LAA,
which is embraced by most operators and the standardization
bodies [23]. In this paper, we focus on misbehavior detection
mechanisms specific to the prevailing LTE-LAA standard.

Our methods build upon prior works on misbehavior detection
for homogeneous networks, e.g., [29]–[32], with notable differ-
ences. First, heterogeneous networks do not share common coor-
dination channels for communicating explicit control information
such as the network allocation vector (NAV) field, device IDs,
reservation messages (RTS/CTS), etc. Without explicit coordina-
tion, detecting the state and monitoring the behavior of stations
operating under a different technology is challenging, as the
messages exchanged by one system are undecodable at the other.
Relevant challenges include determining which system occupies
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the channel, for how long, at what locality, with what range,
and which stations collided, to name a few. Moreover, although
the LTE-LAA and Wi-Fi standards follow the same carrier-sense
multiple access (CSMA) approach, they adopt different channel
contention parameters that affect the overall system behavior.
Determining a system’s behavior requires accurate estimation of
these parameters but using only implicit monitoring. We propose
a framework that detects LTE misbehavior when coexisting with
Wi-Fi. Our framework relies on implicit sensing mechanisms that
provide accurate approximations of the operational parameters.
Our contributions are summarized as follows:
• We study the problem of channel access misbehavior of LTE-

LAA when coexisting with Wi-Fi. Although possible misbe-
having strategies bear resemblance to those in a homogeneous
setting, we highlight novel challenges that stem from the tech-
nology heterogeneity and lack of explicit coordination.

• We introduce a new suite of monitoring mechanisms that do not
rely on signal decoding for estimating relevant LTE-LAA pro-
tocol parameters. We develop implicit sensing techniques that
go beyond simple LTE transmission detection to determine the
presence of hidden stations, identify retransmitted frames, and
specify the LTE priority class. These are essential parameters
for accurately estimating the overall LTE behavior.

• We validate the effectiveness of the implicit parameter-
estimation techniques in a USRP testbed. We show that these
techniques are reliable and accurate.

• We introduce additional types of misbehavior such as the CCA
threshold manipulation and defer manipulation. For these new
misbehavior strategies, we show that they can all be reflected on
the estimated backoff counter.

• We investigate the detection performance under different traffic
loads and adapt our framework accordingly to guarantee high
detection and low false alarm probabilities. We perform exten-
sive simulations to validate the proposed misbehavior detection
mechanism and show that our approach yields near-perfect
detection probability and a negligible false alarm rate.

Our framework also involves a statistical inference method for
identifying misbehavior from a time series of backoff counters.
This is a fairly standard technique and similar methods have
been applied for homogeneous networks. We further highlight
that although we focus on the misbehavior of LTE devices,
our framework is general and can be applied for detecting Wi-
Fi misbehavior. Furthermore, the implicit parameter estimation
techniques can be applied to a homogeneous network, although
some observations can be collected via decoding.

The remainder of this paper is organized as follows. We
discuss related works in Section 2. The system and misbehav-
ior models are introduced in Section 3. The adopted implicit
techniques for monitoring LTE activities are detailed in Section
4. In Section 5, we demonstrate how the LTE channel access
behavior can be accurately evaluated. We validate the performance
of the proposed implicit techniques in Section 6. We analyze the
detection scheme performance in Section 7 and summarize the
main contributions of this work in Section 8.

2 BACKGROUND AND RELATED WORK

Related Work. LTE/Wi-Fi coexistence in a benign setting has
been studied extensively [14]–[20]. Ratasuk et al. [22] showed
that LTE outperforms Wi-Fi by replacing one of the Wi-Fi
deployments with an LTE cell and comparing the respective

throughput. In [7], the authors conducted a measurement campaign
for the Chicago metropolitan area. The measurements showed
that the LTE/Wi-Fi coexistence in dense, urban environments
continues to be a challenging problem and that the coexistence
ettiquete is not followed. Hirzallah et al. [33] showed that different
access protocols for Wi-Fi and LTE can cause an increased
collision rate and latency for both systems. They suggested a CCA
threshold adaptation mechanism to promote fairness. In [17], the
authors proposed a framework for adapting the CW sizes based
on observed transmissions, to promote fair airtime distribution.
Adapting the backoff parameters to achieve fair coexistence was
also studied in [24]–[27]. However, these works assumed that all
stations are trustful and protocol-compliant.

Misbehavior detection for channel access in homogeneous
networks has been extensively studied, especially for IEEE 802.11
protocols (e.g., [29]–[31], [34], [35]). In [29], the authors in-
troduced modifications to the IEEE 802.11 protocol to simplify
misbehavior detection and presented a penalty scheme for pun-
ishing selfish users. Li et al. [31] used multiple backoff counter
observations to calculate the probability Y of choosing a small
backoff counter. This probability was compared with the ex-
pectation E(Y ), considering no misbehaving, multiplied by a
detection factor µ. If Y ≤ µE(Y ), the terminal was identified
as misbehaving. In [36], the authors proposed a framework that
detects misbehavior by comparing the average estimated backoff
counter across all observations with some threshold.

Tang et al. proposed a real-time misbehavior detection mech-
anism, which relies on the difference between the number of
successful transmissions of a given terminal n and other terminals
[30]. Toledo et al. applied the Kolmogorov-Smirnov test to detect
misbehavior from the number of idle slots between two transmis-
sions [34]. As all stations follow the same protocol, misbehavior
is detected if the idle slot distribution of a station differs from
that of the compliant protocol. Whereas there is a wealth of
interest in channel access misbehavior for homogeneous networks,
misbehavior between coexisting technologies is relatively new.
The work closest to ours is reported in [28]. However, the authors
considered the misbehavior in the CSAT-based LTE-U protocol,
not LAA. They developed a method for estimating the LTE duty
cycle by tracking LTE transmissions. The latter are identified
based on the frame length, as LTE frames are typically longer than
Wi-Fi frames. Possible LTE misbehavior is detected by a central
node called the spectrum manager, which has prior knowledge of
the permitted duty cycle for LTE.

The pivotal difference between our work and misbehavior
detection in homogeneous networks lies in the monitoring mech-
anisms for obtaining samples of behavior. All prior works rely on
frame decoding to attribute transmissions to their originators. This
is not generally possible between different technologies. More-
over, LTE and Wi-Fi systems execute channel access protocols
with different parameters. For instance, the LTE-LAA backoff
parameters depend on the priority class. Accurate estimation of
the LTE behavior requires mechanisms for classifying frames
according to their respective classes. Additional challenges stem
from the heterogeneity in transmission and interference ranges. A
Wi-Fi station may backoff in the presence of an LTE transmission,
but the converse may not occur.

Our work is similar to the state-of-the-art for homogeneous
networks in the analysis of the time series representing the LTE
behavior. Like some prior works, we use statistical inference to
identify misbehavior with some differences. Contrary to the work
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Fig. 1: Backoff between two consecutive transmissions.

in [31], [36], we use the Jensen-Shannon divergence to detect
deviation from the nominal behavior rather than relying on first-
order moments of the distributions. This is a reliable metric be-
cause the same moments can be satisfied by multiple distributions.
Other inference methods could also be used here such as the
Kolmogorov-Smirnov test employed in [34]. On the other hand,
the work in [30] can be only applied if all competing terminals
are assumed to have equal channel access opportunities. However,
this assumption does not hold in heterogeneous coexistence where
devices use different priority classes and have different airtime per
transmission. Fair channel access does not translate to an equal
number of transmissions, as it may be the case for homogeneous
networks running the same protocol with the same parameters.

LTE-LAA Release 15: We consider an LTE system that fol-
lows the LAA Release 15 specification [23]. The standard defines
four traffic priority classes. The first two classes are suitable for
transmitting control messages and short frames, whereas classes
C3 and C4 accommodate longer LTE frames.

Downlink channel access: The downlink channel access
mechanism of LTE-LAA is shown in Fig. 1 with parameters listed
in Table 1. The channel access steps are as follows.
1) Before transmitting a frame, the eNB freezes for an initial

time Tinit consisting of a defer time Tdef = 16µs plus p
observation slots, each of length Ts = 9µs. The parameter p
takes larger values for lower priority classes to compensate for
the longer frame size. If the channel stays idle during Tinit,
the eNB proceeds to the backoff phase described in Step 2,
otherwise it repeats Step 1. The channel state (busy or idle)
is determined by sensing the power on a given channel. If
the power is less than the CCA threshold (Pth ≈ −72 dBm
according to [23]), for at least 4µs, the channel is inferred to
be idle and it is busy, otherwise.

2) The eNB initializes the backoff counter to a value b uniformly
selected in {0, 1, . . . , q−1}, where q is the contention window
(CW) size, initially set to a minimum value qmin.

3) The eNB decrements its backoff counter by one with every idle
slot. If a slot is sensed busy, the eNB freezes its backoff counter
until the channel becomes idle. The channel must remain idle
for Tinit before the backoff countdown can be resumed.

4) When the backoff counter becomes zero, the eNB transmits
a frame with a maximum duration of TMCOP. The eNB
then waits for an ACK/NACK. If it receives an ACK, the
transmission round is completed. Otherwise, the process is
repeated from Step 1 by doubling the CW size, up to a qmax.
Uplink channel access: To make an uplink transmission, a

UE must receive an uplink (UL) grant permission from the eNB.
The UL grant permission determines the access type that should
be used by the UE. The standard specifies two candidate types.
• Type 1: The UE follows the same backoff process as in the

downlink, but with slightly different parameters (see Table 1).
• Type 2: The UE waits for the channel to be idle for 25 µs and

then accesses the channel without further contention.
From both the DL and the UL procedures, we note that the

priority classes differ in both the defer time and allowed CW sizes.
As will be shown later, these differences can be exploited by LTE
devices to shorten the time between consecutive transmissions.

TABLE 1: LTE parameters for different priority classes.
Class p

(slots)
qmin

(slots)
TMCOP

(ms)
q (slots)

Downlink channel access
C1 1 4 2 {4, 8}
C2 1 8 3 {8, 16}
C3 3 16 8 or 10 {16− 64}
C4 7 16 8 or 10 {16−1024}

Uplink channel access
C1 2 4 2 {4, 8}
C2 2 8 4 {8, 16}
C3 3 16 6 or 10 {16−1024}
C4 7 16 6 or 10 {16−1024}

3 MODELS AND FRAMEWORK OVERVIEW

3.1 System Model
We consider NL LTE devices that coexist with NW Wi-Fi

access points (APs), each serving a set of Wi-Fi devices, over
the 5 GHz unlicensed band. The one-hop neighborhood set (other
devices inside the interference range) of device X is denoted
by N (1)

X . LTE devices and Wi-Fi APs may transmit at different
powers, so Y ∈ N (1)

X does not imply that X ∈ N (1)
Y . As an

example, in Fig. 2, AP B is in the interference range of LTE
A (solid line), but LTE A is not in the interference range of B
(dashed line). The transmission powers of the LTE and Wi-Fi
are denoted by P` and Pw, respectively. LTE devices and Wi-
Fi terminals are considered to follow the LTE-LAA and IEEE
802.11ac standards, respectively.

We consider the misbehavior of one or more LTE devices
which are monitored by any AP in their vicinity. The monitoring
APs can perform simple operations on RF signals like sampling
and correlation. LTE-related observations are collected by APs and
analyzed at a central hub. This could be achieved through a cloud
service that allows the uploading of all observations made by the
APs to a central repository. Such scenario is relevant in enterprise
networks where multiple APs are under a single administrative
control or can be offered as an overlay service to which APs
subscribe. This assumption also helps us identify if misbehavior is
detectable at the system level, given all distributed observations.

We initially focus on detecting the LTE misbehavior in back-
logged conditions. Under such conditions, gains in performance
due to LTE misbehavior occur at the expense of the Wi-Fi
system. We later consider the detection of LTE misbehavior under
unsaturated traffic conditions.

3.2 Misbehavior Model
The goal of a misbehaving LTE is to capture the channel more

frequently and for a longer time than competing APs. This can
be achieved by manipulating the LAA protocol parameters in the
uplink or downlink direction.

Misbehavior in the downlink direction. This is the most
beneficial type of misbehavior because the downlink direction
carries a far higher traffic volume than the uplink one and the
eNB nodes transmit to a large number of LTE devices. An eNB
node can misbehave in the following ways.

1) Decrease the defer time p: An LTE device can reduce the
defer time to initiate the backoff countdown process faster. It can
select a defer time that belongs to a high priority class and transmit
a frame of low priority class with longer duration. Alternatively,
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Fig. 2: Coexistence between LTE and Wi-Fi. Wi-Fi and LTE
stations have different interference ranges.

the LTE can completely ignore the defer time and initiate the
backoff countdown immediately within a transmission round.

2) Increase the CCA threshold: Another manipulation strategy
is to avoid freezing the backoff counter in the presence of active
Wi-Fi APs. This leads to faster acquisition of the medium, which
can be beneficial if a high-power eNB transmission overshadows
Wi-Fi transmissions. Note that avoiding backoff freezing can
occur due to hidden terminals or due to power asymmetry. This is
illustrated in Fig. 2. Assume that Wi-Fi AP B acts as a monitor for
the behavior of LTE A, which is outside the interference range of
AP C (hidden terminal) and therefore does not freeze its backoff
counter when AP C transmits. This behavior may be perceived
by AP B, which is within the interference range of LTE A, as
misbehavior. In another scenario, AP B observes that LTE A does
not freeze its backoff window when AP B is active. This could be
due to the transmission power asymmetry or due to misbehavior.

3) Reduce the backoff window: An LTE system can manipulate
the LAA backoff process by selecting its backoff counter from a
smaller window range b ∈ {0, 1, . . . , qm − 1}, where qm < q.
The value of qm may be selected from a high-priority class so
that the LTE appears to be protocol-compliant. Moreover, the LTE
can avoid increasing its CW size after a collision, to reduce the
delay between two consecutive channel access attempts. Here, we
consider a general model in which the LTE remains protocol-
compliant for a fraction of time 0 ≤ α ≤ 1, while it uses a
smaller CW of size qm for the remaining time. As an example
of backoff manipulation, the LTE device can consistently select
backoff values in the range [0− 3], irrespective of the priority
class. Essentially, all priority classes are treated as if they were
of C1. We emphasize that there is an inherent difficulty in at-
tributing collisions to a transmitting device because: (a) collisions
are receiver-dependent, and (b) in a heterogeneous setting, one
system cannot decode the transmissions of other systems. Hence,
detecting misbehavior that involves collisions is challenging.

Misbehavior in the uplink direction. Unlike DL transmis-
sions, any UL transmission must be preceded by an UL grant
permission from the eNB. This grant specifies the subframe where
the UL transmission should start. Once the UL grant is received,
the UE starts the backoff process. Here, the misbehavior strategies
described for the DL direction are possible. However, they have
limited benefit for the UE because a failure to seize the channel
for a Type 1 transmission will lead to a much more aggressive
channel access strategy for the next subframe (Type 2).

If the UE cannot complete the backoff process before the
beginning of the allocated subframe due to contention (case 2
in Fig. 3), the UE is allowed to access the channel in the following
subframe by only deferring for an initial time Tinit = Tdef+p·Ts,
where p = 1. That is, the UE senses the channel for minimal time
and does not follow a backoff process, thus increasing the chances
of capturing the channel substantially.

Given the significantly higher volume of DL traffic, the re-

Fig. 3: Uplink channel access procedures.

Fig. 4: Overview of the misbehavior detection mechanism.

quirement for a DL frame to schedule an UL transmission, and the
aggressive channel access strategy of UL Type 2 transmissions, we
only focus on detecting LTE misbehavior in the DL direction.

3.3 Misbehavior Detection Framework Overview
To detect misbehaving eNBs, we propose a detection frame-

work which consists of a behavior monitoring phase and a be-
havior evaluation phase, as shown in Fig. 4. During the behavior
monitoring phase, monitoring APs listen to the wireless medium
when they do not transmit. Each monitoring AP overhears LTE
frames and infers behavior-related parameters such as the start
and end times of the LTE frame, the transmitting eNB, the
retransmission round, the traffic class, and the topological relation
of the AP to the LTE (whether the AP is a hidden terminal to the
transmitting LTE or not). All parameters are implicitly estimated
without decoding LTE frames. Monitoring APs periodically report
a time series of observations along with a time series of their own
activity to a central hub for further processing.

In the behavior evaluation phase, the hub processes the in-
formation reported by the distributed network of APs to derive
the channel access pattern of each monitored eNB. If the access
pattern is deemed to deviate from the LAA specifications, the LTE
system is considered misbehaving.

4 BEHAVIOR MONITORING PHASE

The key challenge in monitoring the LTE behavior is the
system heterogeneity. The monitoring APs cannot decode LTE
transmissions as they may not be equipped with LTE receivers.
In this section, we present several techniques for the implicit
estimation of the LTE operating parameters. Specifically, each
monitoring AP listens to the wireless medium when it is not active.
Upon detection of channel activity that is not Wi-Fi decodable, it
processes the signal without decoding to determine if it belongs to
an LTE. For the ith detected LTE transmission, the AP estimates
an observation vector o(i) of six parameters

o(i) :=< ts(i), te(i), ID(i), C(i), r(i), h(i) >, (1)



5

Fig. 5: Detecting LTE transmissions using CP correlation.

where ts(i) and te(i) denote the start and end times of the ith

transmission, respectively, ID(i) denotes an eNB identity, C(i)
denotes the LTE traffic class, r(i) denotes the retransmission
round, and h(i) is a flag that denotes if the monitoring AP belongs
to the one-hop neighborhood of the transmitting LTE. In the
remainder of the section, we describe this parameter estimation.

4.1 Detecting LTE Transmissions
The first step for estimating the LTE operating parameters is

to determine when and for how long eNBs transmit. This allows
the estimation of ts(i) and te(i). To detect LTE transmissions,
we adopt the cyclic prefix (CP)-based method proposed in [33].
Like any OFDM modulated signal, LTE transmissions utilize the
CP concept to mitigate inter-symbol interference. The end of an
OFDM symbol is appended at the beginning, forming the CP. In
Fig. 5, CP1 is equal to D1, CP2 is equal to D2, etc.

A Wi-Fi AP can attribute a signal to an eNB by verifying that
the CP and its copy are LS − LCP samples away, where LS

and LCP denote the lengths, in samples, of the LTE symbol and
the CP, respectively. The duration of the LTE OFDM symbol, and
consequently the appended CP, are fixed to unique values in the
LTE standard [23]. Based on the fixed duration and the sampling
rate, the AP determines the values of LS and LCP . The main idea
of this method is to detect high signal correlation when the CP
samples are correlated to the end of the LTE symbol.

Algorithm 1: LTE transmission detection
Step 1: The AP samples the received signal.
Step 2: The AP fixes two time windows W1 and W2 of length

LCP , separated by LS − LCP samples. Then, it shifts the two
windows simultaneously by one sample at a time while keeping
the window separation fixed to LS − Lcp.

Step 3: For each shift n, the AP obtains the vectors of signal
samples s1(n) and s2(n) that correspond to windows W1 and W2

(each of length LCP ) and computes

ρ(n) =
|A(n)|2

(max(Es1(n), Es2(n)))2
, (2)

where A(n) is the correlation between s1(n) and s2(n),

A(n) =
LCP−1∑
k=0

s1(n− k)s∗2(n− k − LS). (3)

Here, s∗ is the complex conjugate of s. The energies Es1(n) and
Es2(n) are computed as

Es1(n) =
LCP−1∑
k=0

s1(n− k)s∗1(n− k), (4)

Es2(n) =
LCP−1∑
k=0

s2(n− k − LS)s∗2(n− k − LS). (5)

We use the max in the denominator to ensure that ρ(n) always
stays within [0, 1] and to help minimize the value of ρ(n) when
s1(n) and s2(n) are different.

Step 4: If s1(n) ≈ s2(n), the correlation spikes indicating
that s1(n) is the CP of s2(n). The correlation spike is recognized
if ρ(n) ≥ γLTE where γLTE is a minimum correlation threshold
that defines a signal match. We discuss the selection of the
threshold γLTE in Section 6.2.

Step 5: The AP sets ts(i) to the time of the first local
maximum (correlation spike) that exceeds γLTE and te(i) to the
time of the last local maximum that exceeds γLTE .

The required signal processing for implementing the monitoring
function at the APs is less computationally- and energy-intensive
than the typical receiving and decoding operation for OFDM
signals. Only the signal sampling stage is implemented for mon-
itoring purposes (no CP removal, FFT, and demodulation). Once
samples are collected, the computation of signal correlation is a
fairly efficient operation.

4.2 Differentiating Between eNBs

Attributing transmissions to individual eNBs is necessary for
building the behavioral profile of each eNB. However, this re-
quires: (a) to distinguish downlink LTE transmissions from uplink
ones and (b) differentiate between eNBs in the downlink.

To perform these two operations, we propose that monitor-
ing APs use two distinct frame fields included only in the DL
direction. Those are the primary synchronization signal (PSS)
and the secondary synchronization signal (SSS), which are used
for synchronization and carry information about the transmitting
eNB’s identity. As shown in Fig. 6, the PSS and SSS fields are
repeated twice at fixed locations in an LTE DL frame. Samples of
DL LTE signals at those fixed locations are identical. This gives
the opportunity to a monitoring AP to identify DL frames.

Fig. 6: The PSS and SSS fields in LTE frames.

Moreover, the identity of an eNB is calculated as ID = ID1 +
3ID2, where ID1 and ID2 define the physical-layer cell identity
group and physical layer identity of the LTE, respectively. The
ID1 and ID2 values are part of the PSS and SSS fields. The pair
(ID1, ID2) is unique for every eNB, however, both can only be
obtained by decoding the PSS and SSS fields.

Monitoring APs can exploit the known locations for ID1 and
ID2 to attribute LTE transmissions to different eNBs. Note that
we are not interested in extracting the ID value, but to identify
LTE frames with the same ID. We use the “signal signature” of
the static PSS and SSS fields for this attribution. The main idea
is to detect the unique fields (ID1, ID2) by sampling the LTE
transmission at the PSS and SSS locations and correlating the sig-
nal samples with previously recorded samples. Two transmissions
from the same eNB will exhibit a high correlation on the ID fields,
if the channel effect is neutralized. A monitoring AP can identify
DL frames and differentiate between different eNBs by executing
the following LTE frame attribution algorithm.
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Algorithm 2: LTE Frame Attribution
Step 1: For the ith LTE frame, the AP applies the CP-based

LTE detection algorithm and synchronizes with the frame start
time ts(i).

Step 2: The AP collects two sets of samples s(i)ID and s̃
(i)
ID of

length LID, at the two locations of the PSS and SSS fields.
Step 3: The AP computes the signal correlation ρDL(i)

between these two sets of samples as follows

ρDL(i) =
|
∑LID

k=1 s
∗(i)
ID(k) s̃

(i)
ID(k)|2

(max(E
s
(i)
ID

, E
s̃
(i)
ID

))2
, (6)

where E
s
(i)
ID

and E
s̃
(i)
ID

are the energies of s(i)ID and s̃
(i)
ID, respec-

tively, calculated in a similar way to (4). A downlink transmission
is inferred if the correlation exceeds a threshold value that defines
a signal match (see Section 6.3). If the correlation is below the
threshold, the current LTE frame is ignored (uplink transmission).
Otherwise, the AP proceeds to the following steps.

Step 4: The AP maintains a signature database that includes
the observed LTE signatures up to the current observation. The sig-
nature sIDj of the jth LTE represents the samples carrying ID1

and ID2, collected from previous transmissions. The database is
assumed to be initially empty and is updated gradually according
to the collected observations.

Step 5: Due to the change in the channel impulse response
over time, the AP adjusts the samples s

(i)
ID by a fixed phase to

compensate for the channel effect. The AP observes the phases of
the complex samples s(i)ID collected over the ith frame, denoted
by vector θ(i)ID. The AP recovers the phases θIDj

of the complex
samples sIDj

stored in the signature database, for each IDj . The
AP computes the average phase shift between the two sample
vectors s(i)ID and sIDj

as,

θ̄(i, j) =
1

LID

LID∑
k=1

|θ(i)ID(k)− θIDj
(k)|. (7)

The AP updates the phase part of s(i)ID as θ(i)ID =
(
θ
(i)
ID + θ̄(i, j)

)
mod π. The phase compensation method is explained in detail in
the experimental validation section (Section 6.3).

Step 6: The AP computes the signal correlation between s
(i)
ID

and every signature in the database,

ρID(i, j) =
|
∑LID

k=1 s
∗
IDj

(k) s
(i)
ID(k)|2

(max(EsIDj
, E

s
(i)
ID

))2
,∀j, (8)

where EsIDj
and E

s
(i)
ID

are the energies of sIDj
and s

(i)
ID,

respectively, calculated in a similar way to (4).
Step 7: The AP attributes the ith LTE transmission to LTE

IDj that yields the maximum ρID(i, j),

ID = arg max
IDj

{ ρID(i, j)| ρID(i, j) ≥ γID}. (9)

Here γID is a minimum correlation threshold that defines a
signal match. If a match is found, the AP also replaces sIDj

, the
current signature of LTE IDj , with s

(i)
ID.

Step 8: If no correlation value exceeds γID, the AP adds s(i)ID
to the database as a new eNB signature.

A challenge for this method is the attribution of an LTE
transmission when it collides with another transmission. Although

performing such classification via signal correlation in the pres-
ence of collisions is possible [37], we leverage the distributed
nature of the monitoring operation to resolve colliding transmis-
sions. As collisions are receiver-dependent, not all monitoring APs
experience collisions. Those APs that do not experience a collision
correctly classify the LTE transmission. As an example, AP A in
Fig. 2 is in the interference range of LTE A and LTE B thus being
unable to classify frames of A and B that collide. Such frames
are correctly monitored by AP B and D. Finally, even if colliding
frames fail to be correctly classified, they only represent a small
fraction of the transmitted frames.

4.3 Priority Class Estimation
The channel access parameters of LTE transmissions depend

on the priority class. Lower priority classes utilize longer frames
and thus are designed to access the channel less frequently,
whereas higher classes accommodate shorter frames, shorter defer
times, and smaller contention windows.

To evaluate the compliance of an eNB with the class parame-
ters, the APs classify frames to one of the four classes of Table 1
using the transmission duration. By measuring the length of the ith

frame as TMCOP = te(i)−ts(i), the AP can classify the frame to
classes C1, C2, and C3/C4. Note that the TMCOP values for C3

and C4 are equal. However, C3 has shorter defer time allowing for
faster medium access and a better choice for misbehavior. Thus,
for all practical purposes, we air on the conservative side and
assume that any frame of length 8ms or 10ms belongs to class C3.

4.4 Contention Window Size Estimation
Another important behavior parameter is the CW used at every

LTE transmission. Maintaining a small CW improves the channel
access opportunities for the LTE. Monitoring APs can estimate the
CW size of an eNB by tracking the retransmission round r(i) of
a frame. The CW size q(i) at the ith transmission is given by

q(i) = min{2r(i)qmin, qmax}, (10)

where qmin and qmax are the minimum and maximum allowed
CW sizes, as listed in Table 1. Following the LTE protocol spec-
ifications, the monitoring AP sets r(i) to zero after a successful
transmission by the eNB and increments it by one with every
retransmission attempt. Note that the AP needs to keep track of
r(i) individually for each eNB.

Parameter r(i) is difficult to infer in practice via overhearing
because collisions are receiver-dependent. Rather than attempting
to directly infer collisions, APs rely on identifying retransmissions
to estimate r(i). Specifically, a monitoring AP utilizes the signal
correlation method to detect if the same frame is retransmitted
by an LTE. The AP exploits the fact that the payload and most
fields in the header of a retransmitted frame remain identical to
the original transmission. Therefore, the sampled signal of two
identical transmissions should exhibit high signal correlation, even
if one is corrupted by a colliding signal. The main challenge in
performing signal correlation is identifying the start and end times
of the LTE frame, along with the ID field of the collided eNB in
the presence of a collision.

Collision between Wi-Fi and LTE: We first consider the
case of an LTE colliding with an AP. This is the most common
case, as eNBs are typically deployed to minimize collisions and
are usually assigned different operating frequencies. A monitoring
AP can estimate r(i) through the following steps.
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Fig. 7: Example of applying the CP-based LTE detection method
in case of collisions with a Wi-Fi frame.

Algorithm 3: Transmission Round Estimation
Step 1: The AP applies the CP-based LTE detection method

described in Algorithm 1 to determine the start time ts(i) and end
time te(i) of the ith LTE frame. These times are identified by
the first and last correlation peaks of the CP with the end of the
symbols, respectively, as shown in Fig. 7.

Step 2: Using the start time ts(i) as a time reference, the AP
extracts the samples carrying the LTE ID. As the collision does
not necessarily corrupt all samples (e.g., only half of the samples
are involved in the collision in Fig. 7), the samples carrying the
LTE ID may be clean or corrupted. If the samples are clean, the
AP identifies the LTE ID field by performing Algorithm 2 and
it proceeds to the following step. Otherwise, if the samples are
corrupted, it proceeds to Step 5.

Step 3: The AP buffers the samples of the ith and (i + 1)st

eNB transmission denoted by s(i) and s(i+ 1), respectively.
Step 4: The AP correlates s(i) with s(i + 1) using the

correlation function in (8) and computes the correlation value
ρ(i, i+1). If ρ(i, i+1) ≥ γrt, where γrt is a correlation threshold
that defines a signal match, the AP identifies the (i + 1)st frame
as a retransmission and sets r(i+ 1) = r(i) + 1.

Step 5: If the samples carrying the ID field are corrupted
(no match in Step 4), the AP determines the length of the ith

LTE frame as the difference between the start and end times
identified in Step 1. The AP buffers the samples s(i) of the ith

LTE transmission.
Step 6: The AP tracks subsequent frames transmitted by the

eNB that have the same length as the ith frame. For each of these
frames, the AP buffers the related samples.

Step 7: Let s(j) be the buffered samples of a subsequent
eNB transmission. The AP correlates s(i) with s(j) using the
correlation function in (8) and computes the correlation value
ρ(i, j). If ρ(i, j) ≥ γrt, the AP identifies the frame j as a
retransmission of the ith frame, sets r(j) = r(i) + 1. It further
identifies the ID of the ith frame to be the same as the ID carried
in the jth frame.

Step 8: If no frame is found to exceed γrt, the AP ignores the
particular transmission. As our behavior estimation depends on
many observations, we can tolerate ignoring a small percentage of
collisions that remain unidentifiable.

Collision between two eNBs: If the eNB transmissions col-
lide, Algorithm 3 can be applied to each of the colliding frames
separately, with a modification to Step 1. In this case, symbols in
both frames cause a peak in signal correlation. The AP observes
two groups of peaks as shown in Fig. 8. The peaks in each group
are separated by a period equal to the duration of an LTE OFDM
symbol. Each group of peaks identifies the start and end times of
the related LTE frame. The start time ts of the first frame (group)
is identified with the first peak. The end time te of the first frame
is identified with the last peak that is multiple symbol periods
away from the first peak (last peak in the group). The start of the

Fig. 8: Example of applying the CP-based LTE detection method
in case of collisions between LTE frames.
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Fig. 9: Probability of r consecutive collisions when the LTE uses
class C4 for different contending eNBs.

second frame is identified as the first peak that is not periodic to
the OFDM symbol length. The end of the second LTE frame is
identified as the last peak that is multiple symbol periods away
from the first peak of the second frame. From parameter r(i) and
the class priority C(i), the hub can infer q(i) using (10). The
class C(i) is used to determine both qmin and qmax. For instance,
the q(i) of a Class 3 frame with r(i) = 1 should be equal to 32
according to Table 1.

Impact of the priority class on the estimation of the
CW . In the priority class estimation method, we have stated
that all C4 traffic is classified as C3. This can impact the CW
size estimation as follows. The transmission round estimation
algorithm (Algorithm 3) still provides the correct estimation of
r(i), as this is solely based on detecting retransmissions. Using
C3 instead of C4 impacts the estimated CW size given the correct
r(i) because the maximum contention window is capped at 64
when C3 is assumed. However, this error in CW estimation only
occurs when the retransmission round exceeds two. The first three
contention window sizes are the same forC3 andC4. We highlight
that observing three or more consecutive collisions is a rare event.

To demonstrate this, we measured the probability of con-
secutive collisions as a function of the number of competing
stations when class C4 is adopted. Figure 9 shows the results
of the simulation under saturation condition (worst contention
scenario). We observe that three or more consecutive collisions
occur with negligible probability (less than 2× 10−3), indicating
that classifying all traffic as C3 has a negligible impact on the
CW size estimation. An alternative approach is to ignore any
observations for which the transmission round exceeds two. Given
the rarity of such events, ignoring two every 1,000 observations
does not affect the detection accuracy.

4.5 Discovering APs in the LTE Collision Domain

The final parameter to be estimated is the value of the flag h(i)
that defines if a monitoring AP belongs to the one-hop neighbor-
hood of a transmitting LTE. Although h(i) may be fixed over all
i’s for static topologies, we update it with every transmission to
reflect channel fluctuations. The importance of h(i) is shown in
Fig. 10. AP K can overhear LTE A when A is active. Contrary,
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Fig. 10: AP K is a hidden terminal to A but not B. eNBs A and
B are hidden terminals.

the received power at A falls below A’s CCA threshold when
K is transmitting because K transmits at lower power than A.
Moreover, although A and B are both overheard at K, they are
hidden terminals to each other. These topological configurations
impact how K estimates the freeze time of a monitored LTE. Let
LTE A be monitored by AP K . To determine if K is overheard
by A, i.e., K ∈ N (1)

A , the AP executes the following algorithm.

Algorithm 4: Discovering APs in the LTE Collision Domain

Step 1: A monitoring AP K keeps track of the average
received power over the last z transmissions by eNB A. Let this
series be represented by a z × 1 vector P(K)

r . The jth element
P

(K)
r (j) of P(K)

r is equal to

P (K)
r (j) = P`|hA,K(j)|2 + σ2, (11)

where hA,K(j) denotes the channel impulse response, P` is the
transmission power of the eNB, and σ2 is the noise power.

Step 2: AP K exploits the channel reciprocity principle
(hK,A(j) = hA,K(j)) to estimate the received power at A when
K transmits. AP K generates a z × 1 vector P(A)

r that represents
the received power at A, if K were to transmit using power Pw

over the same channel. The jth average received power value at
eNB A is computed as

P (A)
r (j) = Pw|hK,A(j)|2 + σ2 =

Pw(P
(K)
r (j)− σ2)

P`
+ σ2.

(12)
The number of observations z is chosen based on the channel
fading conditions. For slow fading channels, z should take small
values, whereas longer observation times are needed if the AP
experiences a fast fading channel.

Step 3: If the majority of the power samples in P
(A)
r exceed

the CCA threshold, AP K considers itself a member of the one-
hop neighborhood N (1)

A of A and sets h(i) to zero. Otherwise, K
is a hidden terminal to A, and sets flag h(i) to one.

We note that channel reciprocity is a well-established principle
in communications that holds due to the symmetry in the space
geometry (multipath).

Monitoring Wi-Fi activity: Although we have our framework
on implicit estimation of LTE activity, the main principles are
general and can be applied to implicitly estimate the related
parameters of Wi-Fi activity. The main necessary changes to adjust
the framework to Wi-Fi are: (a) adjust the parameters in Section 4
to observe Wi-Fi activity and (b) update the channel access param-
eters (defer time, transmission duration, classes, etc.) for defining
compliant Wi-Fi behavior. For instance, Wi-Fi transmissions can
be detected using the CP-based technique presented in Section 4.1
by adjusting the length and location of the CP. The ID of a Wi-Fi
can be extracted by looking at fields in Wi-Fi frame headers that
carry information similar to PSS and SSS (e.g., MAC addresses).

Collecting 
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based on LTE ID

Matching all 

reported IDs

Backoff pattern 

estimation  

Inferring one-hop

neighborhood

from AP A

OA OA( IDj )

for IDj

O( IDj )

Fig. 11: Overview of the behavior evaluation phase.

5 BEHAVIOR EVALUATION PHASE

The behavior monitoring phase is followed by the behavior
evaluation phase where the central hub models and analyzes the
behavior of each eNB based on the collected observations. An
overview of the behavior evaluation phase is shown in Fig. 11. The
hub first integrates the data from the different APs into a single
observation set. Subsequently, the observation set is analyzed to
detect any LTE misbehavior.

5.1 Integration of the AP Observations

The first task in the evaluation phase is to attribute the reported
observations by the multiple APs to eNBs. Each AP independently
associates the observations with unique ID fields. Recall that
no LTE frame decoding takes place, so the real LTE ID is not
recorded in the observation sets reported by the APs. To match the
unique IDs, the central hub exploits the timing reported with each
observation. The intuition here is that LTE transmissions recorded
by multiple APs will share common start and end times. The hub
matches the different LTE ID versions using the following steps.

Algorithm 5: Matching the Reported LTE ID Fields
Step 1: Let OA be the set of observations reported by a

monitoring AP A to the hub. The hub partitions OA based on
the reported ID field, such that the observations tagged with IDj

are included in subset OA(IDj) ⊂ OA.
Step 2: The hub utilizes the start and end times within ob-

servation subsets from different APs to match the LTE IDs. These
times are almost synchronous when the reported observations from
different APs represent the same eNB. For any two LTE IDs IDj

and IDk reported by monitoring APs A and B, respectively,
if the start and end times of most observations within subsets
OA(IDj) and OB(IDk) are identical, then IDj (reported by
AP A) and IDk (reported by AP B) represent the same eNB. The
ith observation from A and `th observation from B shall satisfy
the following conditions:

|ts(i)− ts(`)| ≤ ε, te(i)− ts(i) = te(`)− ts(`). (13)

That is, the frame start times recorded by the two monitoring APs
should not differ by more than ε and the frame length should be
the same. Parameter ε represents the synchronization error due to
differences in propagation delay, and clock offsets. As the two APs
do not necessarily collect the same number of observations, the
previous relation should be true for some fraction of observations
in OA(IDj) and OB(IDk).

Step 3: The hub merges the observation sets that correspond
to the same LTE ID. Specifically, if subsets OA(IDj) and
OB(IDk) are attributed to the same ID based on Step 2, the
two sets are merged into a single one as follows: (a) any unique
observation is retained intact and (b) for a duplicate observation
o(i) only one copy is retained, except for the hidden terminal flag
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TABLE 2: Observations reported by AP 1 and AP 2.

i Observations reported by AP A (OA)
1 < 10, 150, ID1, C1(1), r1(1), h1(1) >
2 < 160, 300, ID2, C1(2), r1(2), h1(2) >
3 < 320, 500, ID2, C1(3), r1(3), h1(3) >
4 < 510, 650, ID1, C1(4), r1(4), h1(4) >
` Observations reported by AP B (OB)
1 < 160.1, 300.1, ID3, C2(1), r2(1), h2(1) >
2 < 320.1, 500.1, ID3, C2(2), r2(2), h2(2) >
3 < 550.1, 700.2, ID4, C2(3), r2(3), h2(3) >
4 < 720.1, 820.1, ID4, C2(4), r2(4), h2(4) >

h(i). The flag h(i) is extended to a vector h(i) that includes the
different h(i)’s reported by APs.

To illustrate Algorithm 5, let AP A and AP B report
the observation sets shown in Table 2. First, the hub sepa-
rates the observations of each AP into subsets based on the
ID field. This creates subsets OA(ID1) = {oA(1),oA(4)}
and OA(ID2) = {oA(2),oA(3)} for AP A and sub-
sets OB(ID3) = {oB(1),oB(2)} and OB(ID4) =
{oB(3),oB(4)} for AP B. Next, the hub checks if there is
any matching between the four reported ID fields by applying
the checks in (13) on the observations of each subset. Based
on the reported timings, the hub matches subset OA(ID2) with
OB(ID3). This is because the respective observations have al-
most identical start and end times. Also, we observe no matching
for OA(ID1) and OB(ID4). The hub concludes that there
are three different ID fields reported by the two APs, namely
ID1, ID2, and ID4. The last step is to merge the observations
within OA(ID2) and OB(ID3) in a new observation set. This
is done by keeping only one copy for each repeated observation
and expanding the hidden terminal flag to a vector. For example,
oA(2) and oB(1) are merged into following observation:

< 160Ts, 300Ts, ID2, C1(2), r1(2),h(i) = {h1(2), h2(1)} >

We emphasize that C1(2) and r1(2) should be the same
as C2(1) and r2(1), respectively. Once the hub matches all
reported IDs, it analyzes the behavior of each eNB individually.
Without loss of generality, we focus on the behavior evalua-
tion of a single eNB. The same process is repeated for other
eNBs. For notation simplicity, we reduce the observation set to
O = {o(1),o(2), . . . ,o(n)}.

One vital step in evaluating the LTE behavior is the identifica-
tion of the one-hop neighborhood for each eNB. This is important
to estimate when a given eNB should freeze its contention process
relative to other active eNBs and APs. The topological information
is inferred at the central hub using the following process.

Algorithm 6: Inferring the One-hop Neighborhood of an eNB
Step 1: For the ith observation, the hub uses the reported

vector h(i) to identify the APs that belong to the one-hop
neighborhood of the eNB. Let h(i, w) be the flag reported by
AP W . The hub places W to the one-hop neighborhood of the
eNB if h(i, w) = 0.

Step 2: For eNBs, the hub utilizes the reported start and end
times for each monitored eNB to identify the airtime intervals.
If the fraction of overlapping transmissions between two eNBs
exceeds a threshold γint, the hub concludes that the involved eNBs
are not in separate collision domains.

Fig. 12: Transmissions of two eNBs which are hidden terminals.
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Fig. 13: Fraction of overlap vs. arrival rate for two competing
out-of-range eNBs.

Step 3: If the fraction of overlapping transmissions is below
γint, the eNBs are placed in the same one-hop neighborhood.

To demonstrate Algorithm 6, consider the transmission time-
line shown in Fig. 12. The two transmitting eNBs are not within
range and therefore several frames overlap in time, indicating that
one is not aware of the other’s transmissions.

Setting γint. The threshold γint has to be greater than the
expected fraction of colliding frames between two eNBs in the
same collision domain, but smaller than the expected number of
frame overlaps between two eNBs at separate collision domains.
From Fig. 9, we observe that the probability of two eNBs col-
liding is below 6% when both eNBs are backlogged. We further
simulated two eNBs that are located in separate collision domains
at different saturation conditions controlled by a Poisson arrival
process. Figure 13 shows the fraction of the frame overlap per
1,000 transmission rounds. The fraction approaches one with the
increase in the level of saturation (the medium saturates at 500
frames/second), controlled by the arrival rate. From Fig. 9 and
Fig. 13, we can select γint to be a safe margin between the
probability of collision and the probability of overlap. A typical
value would be in the order of 15% of the reported frames.

5.2 Number of Required Monitoring APs
For monitoring one eNB, the minimum number of required

monitoring APs is one. The monitoring AP has to be within the
same collision domain as the eNB to perform the monitoring func-
tion. Note that the AP will be able to overhear all the eNB trans-
missions because, according to the coexistence etiquette, the AP
would have to defer from transmission when the eNB transmits.
Thus, a single AP has the ability to monitor the behavior of the
eNB. Multiple monitoring APs add redundancy in the monitoring
process, as multiple APs observe the same transmissions. Because
of this redundancy, the observations have to be consolidated when
they are fused at the central hub (using Algorithm 5). The multiple
APs enhance the monitoring process in two ways. First, they can
observe collisions between the eNB and other monitoring APs.
Second, they provide a better estimation of the eNB’s one-hop
neighborhood, which is used to accurately estimate the eNB’s
freeze time. In practice, three APs that surround the eNB would
be more than sufficient for accurate monitoring.
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5.3 Backoff Pattern Estimation

Consider the behavior analysis of an eNB A. After the obser-
vation set O and the one-hop neighborhood N (1)

A of A have been
determined, the hub performs the following steps to estimate the
backoff pattern b̂ of the eNB.

Algorithm 7: Backoff Pattern Estimation
Step 1: The hub computes the inter-transmission time between

two successive transmissions o(i− 1) and o(i) as:

T (i) = ts(i)− te(i− 1), (14)

where te(i− 1) and ts(i) are the end and start times reported
during the o(i− 1) and o(i) observations, respectively.

Step 2: Let vi denote the number of all intermediate trans-
missions that occur between o(i − 1) and o(i), from stations
in the one-hop neighborhood N (1)

A . The hub computes vi by
tracking all observations that have a starting time ts such that
te(i− 1) < ts < ts(i) and belong to N (1)

A .
Step 3: According to the LAA-LTE backoff process, the

time T (i) between two successive transmissions consists of defer,
freeze, and backoff times and can be expressed as:

T (i) =
vi+1∑
j=1

(Tdef + pj · Ts)︸ ︷︷ ︸
defer time

+
vi∑
j=1

Lj(i)︸ ︷︷ ︸
freeze time

+ b(i) · Ts︸ ︷︷ ︸
backoff time

. (15)

In eq. (15), Tdef is the default defer time followed after every
transmission, pj is the number of defer slots before the jth

intermediate transmission and Lj(i) is the length of the jth inter-
mediate transmission. Recall that vi is the number of intermediate
transmissions and Ts is the slot duration. We emphasize that the
collision of more than one transmissions is registered as only one
intermediate transmission whose length is the combined interval
of the colliding transmissions.

Step 4: Let p(i) be the number of observation slots related to
the class C(i) (see Table 1) reported within the observation o(i).
The hub computes the defer slots pj as

pj = min{p(i), Tj − Tdef
Ts

}, (16)

where Tj is the idle time before the jth intermediate transmission.
This means that pj is calculated based on one of the following two
scenarios

• If the channel stays idle until the p(i) observation slots have
passed

(
Tj−Tdef

Ts
≥ p(i)

)
, then pj = p(i) .

• When another device starts transmitting before p(i) slots are
observed

(
Tj−Tdef

Ts
< p(i)

)
, then pj =

Tj−Tdef

Ts
< p(i).

Step 5: The hub estimates the backoff counter b(i) from (15):

b(i) =
T (i)− (vi + 1)Tdef −

∑vi+1
j=1 pj · Ts −

∑vi
j=1 Lj(i)

Ts
.

(17)
Intuitively, eq. (17) states that the backoff counter selected by an
eNB is equal to the time between two successive transmissions
from that eNB minus all the defer time, and minus all the freeze
time (normalized over the slot duration to convert it to slots). The
correct estimation of b(i) requires the knowledge of p(i), which
is determined according to the reported priority class C(i) during
the observation o(i).

Fig. 14: Estimation of the ith backoff counter between two succes-
sive transmissions from LTE A.

An example of all the timings involved in the estimation
of b(i) is shown in Fig. 14. The time between two successive
transmissions from LTE A is T (i) = ts(i) − te(i − 1). Two
intermediate transmissions occurred during T (i) from devices in
the one-hop neighborhood of A. The first transmission was from
a Wi-Fi station and the second from another LTE, so vi is set to
two. The backoff is computed by reducing T (i) by the duration
of the two intermediate transmissions (freeze time) and the defer
time before each transmission (Tdef+observation slots). The Wi-
Fi transmission duration L1(i) is known because Wi-Fi APs report
their own activity to the hub (see Fig. 3), whereas the duration
L2(i) for LTEB is implicitly sensed and reported by APs. Finally,
pj is inferred using Step 4.

Unsaturated LTE Traffic: It is worth noting that the backoff
counter in (17) is accurate under saturation conditions where idle
slots only exist due to the backoff and channel sensing processes.
However, if traffic is not saturated, idle slots can inflate the backoff
estimation. To avoid misdetection due to backoff inflation, the hub
excludes all observations that definitively include idle slots outside
those related to the backoff process. To identify these observations,
we rely on the estimated backoff counter values from (17). Let
q(i) and b(i) be the estimated CW size and backoff counter
for the ith observation. The hub excludes o(i) if the estimated
backoff exceeds the contention window (i.e., b(i) > q(i) − 1.)
This is because it is expected that the idle slots due to an empty
transmission queue will far exceed the small values taken by the
backoff counter.

This process will filter most of the unwanted observations
where a correct backoff estimate cannot be made, especially
for low levels of saturation. We emphasize that eliminating the
observations that belong to unsaturated conditions provides a
misbehavior opportunity to the LTE, which can reduce its defer
and backoff time, once a frame arrives at its transmission queue.
However, as we show through simulations, this misbehavior has a
limited impact on the Wi-Fi performance due to low contention.

5.4 LTE Misbehavior detection

By processing each observation in set O using Algorithm 7,
the hub recovers the estimated backoff pattern b̂ for a monitored
eNB. This pattern is used to evaluate the LTE behavior as follows.
The hub creates two distributions M and W representing the
observed and the expected backoff counter distributions, respec-
tively. Distribution M is the empirical distribution obtained from
the appearance frequency of each backoff counter value in b̂. The
density function of M is expressed as:

PM(x) =

∑n
i=1 I(b(i) = x)

n
, x ∈ {bmin, . . . , bmax}, (18)

where I(·) is the indicator function, and bmin and bmax are the
minimum and maximum backoff counters found in b̂.

The expected backoff counter distribution for a protocol-
compliant node is then calculated from the contention window
values used in every transmission. Those can be extracted from
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observation set O, which contains the retransmission round r(i)
and class C(i) for each of the n observations. The contention
window for the ith transmission is:

q(i) = min{2r(i)qmin, qmax}, (19)

where qmin and qmax are the minimum and maximum allowed
CW sizes for the reported class C(i). Using (19), the hub esti-
mates vector q̂ of all contention windows. A protocol-compliant
eNB should choose each backoff counter at random within each
contention window, leading to a density function for the following
backoff counter distribution.

PW(x) =
∑

k∈Ncw

Pr(q = k) · Pr(x|q = k), (20)

where Ncw = {4, 8, . . . , 1024} is the set of all possible con-
tention window sizes and Pr(q = k) is the probability that the
LTE uses a CW of size k. Taking into account that the backoff
counter selection is uniform regardless of the CW size, we get,

PW(x) =
∑

k∈Ncw

Pr(q = k) · 1

k
. (21)

To determine the probability Pr(q = k), the hub relies on the
frequency of appearance of value k in vector q̂, which can be
written as:

Pr(q = k) =

∑n
i=1 I(q(i) = k)

n
. (22)

To detect a deviation from the expected behavior, the hub
measures the distance between the observed backoff counter
distribution M and the expected distribution based on the CW
sizes W. The distance is measured through the Jensen-Shannon
divergence defined as

DJS(M||W) ,
1

2
D(M||C) +

1

2
D(W||C), (23)

where D(·||·) is the Kullback-Leibler divergence, and C =
1/2(M + W). An eNB is suspected of misbehavior if
DJS(W||M) > δ, where δ is a threshold specified by the hub.

Effect of multi-channel Operation: Through this work, we
have been primarily concentrated on misbehavior over a single
channel. A salient feature of operating in the unlicensed bands is
that multiple channels can be combined via channel aggregation
(CA) for LTE or channel bonding for Wi-Fi. Extending misbe-
havior to multiple channels can have a more severe impact on the
performance of Wi-Fi.

Release 15 [23] includes two models for multi-channel access
of unlicensed bands. In LBT Type A, an independent backoff
process is followed on each of the aggregated 20 MHz channels.
The Wi-Fi APs residing on each of those channels can perform
misbehavior detection independently on each channel. In LBT
Type B, the backoff process is followed only on the primary
channel and simultaneous access on all channels is granted, once
the primary channel is seized. A short sensing period on the
secondary channels is meant to avoid interference. For LBT Type
B, our misbehavior detection framework can be applied on the
primary channel.

Some new challenges emerge when the LTE is allowed to
operate on multiple channels. As the LTE may switch between
the channels, the required time to collect enough observations to
detect misbehavior through each channel could be longer. More-
over, matching the reported LTE ID across monitored channels is
required. Algorithm 5 can be used for this purpose in the case

when the LTE uses multiple channels simultaneously. Algorithm
2 can still be used by correlating LTE signatures reported through
different channels. We leave the treatment of multi-channel mis-
behavior detection as future work.

6 VALIDATION OF IMPLICIT TECHNIQUES

To evaluate the performance of our proposed misbehavior
detection framework, we first evaluate the accuracy of the implicit
LTE monitoring techniques proposed in Section 4. For this part,
we performed experimentation using the USRP platform and mea-
sured the efficacy of extracting various LTE operation parameters
without decoding using signal correlation.

6.1 Experimental Setup
For the experimental part, relied on the LabVIEW NI software

to program NI-USRP 2921 radios. To implement LTE transmis-
sions, we employed the LabVIEW Modulation Toolkit to create
OFDM signals and tuned the parameters (CP length, frequency,
BW, etc) to match the LTE specifications, respectively. A similar
approach was followed to implement Wi-Fi OFDM signals, but
with parameters that matched the Wi-Fi specifications. To imple-
ment the monitoring mechanisms at the AP, we used the available
sampling function at LabVIEW, without incorporating any further
functions on the receiving chain such as FFT and demodulation.
The samples were then used on custom-made modules within
LabVIEW to compute the signal correlation functions.

The devices were tuned to the 5 GHz U-NII band. The physical
layer of the LTE device was programmed in LabVIEW to operate
according to the LTE standard. The transmission bandwidth was
set to 20MHz (limit of the 2921 USRP devices), whereas the IQ
rate was set to 1.92MHz. The LTE frame duration was set to 10ms.
Each frame consisted of 10 subframes occupying 2 slots. Each
slot had a duration of 0.5ms and allowed for the transmission of 6
OFDM symbols. The duration of each OFDM symbol was set to
83.4µs of which 16.7µs corresponded to the extended CP. The AP
sampled the LTE signal on the same band, without implementing
any further decoding. The experiment setup is shown in Fig. 15(a).

6.2 Detecting LTE Transmissions
In the first set of experiments, we evaluated the Wi-Fi’s ability

in identifying the LTE signals using the CP detection method
proposed in Section 4.1. For LTE signals, the number of samples
per data symbol was set to LS = 256 and for the CP to
LCP = 64. The eNB continuously transmitted 6,000 OFDM
symbols, repeating the sequence {0, 1, 1, 0}. To further ensure
that other signals are not misclassified as LTE, we repeated the
experiments but configured the transmitting USRP device to send
Wi-Fi OFDM symbols. Each Wi-Fi OFDM symbol had a duration
of 4µs (3.2µs for the data symbol and 0.8µs for the CP).

The AP sampled the LTE signal and applied Algorithm 1
to compute the correlation ρ(n) as a function of the shift n.
Figure 15(b) shows sample values of ρ(n) for the duration of ten
LTE and Wi-Fi symbols. We observe that when an LTE transmits
and the correlation windows W1 and W2 align with the CP and
its copy, the correlation ρ(n) peaks to values higher than 0.6. The
peaks also denote the start time of OFDM symbols. Using the LTE
CP detection parameters on Wi-Fi transmissions yields correlation
values of almost zero. This is due to the different OFDM symbol
length and CP length in Wi-Fi transmissions.
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Fig. 16: (a) The absolute phase difference as a function of the LTE sample index, (b) correlation ρ(i, j) as a function of the LTE frame
index, and (c) detection and false alarm probabilities vs. the threshold γID.

In Fig. 15(c), we show the detection probability Pd and false
alarm probability Pfa for the CP-based approach, computed over
6,000 OFDM symbols, as a function of the correlation threshold
γLTE . The Pd was computed as the fraction of LTE symbols
that were correctly classified, whereas Pfa was calculated as the
fraction of Wi-Fi OFDM symbols falsely classified. Intuitively,
a greater threshold would lower the false alarm rate but will
decrease the detection probability. We observe that for thresholds
in the 0.4-0.6 range, Pd ≈ 1, whereas Pfa = 0. Following these
experiments, we set the detection threshold to 0.4.

In the next experiment, we investigated the effect of the
received signal strength (RSS) on the detection probability. We
repeated the LTE signal detection experiment while moving the
eNB away from the AP. In Fig. 15(d), we show Pd and Pfa as
a function of the RSS at the AP. The signal correlation threshold
was set to 0.4. Even at low power levels, Pd remains high whereas
Pfa remains quite low with the exception of -70dBm, which is
close to the CCA threshold for detecting any activity.

6.3 Differentiating between eNBs
In this set of experiments, we evaluated the LTE frame attri-

bution algorithm for classifying LTE frames to different eNBs.
In the first part of the experiments, one USRP transmitted LTE
frames with the same primary and secondary synchronization
signal (SSS/PSS) while the second USRP sampled the signal. The
signal correlation ρID(i, j) was calculated over a total of 640
samples per frame, which is equal to the combined length of the
two OFDM symbols carrying the SSS and PSS fields.

One practical issue in correlating the sampled PSS and SSS
fields over different frames is the fact that the channel changes
over time. Whereas the channel attenuation could remain relatively
constant for a static LTE-AP distance, the phase of the impulse

response could vary more rapidly. Indeed during our experiment,
we noted an almost constant phase difference between samples of
the same fields that belong to different frames of the same LTE
ID. Figure 16(a) shows the absolute phase difference |θdiff (k)|
between the samples carrying the PSS and SSS fields in two
consecutive frames as a function of the OFDM sample index k,

|θdiff (k)| = |θ(i)ID(k)− θ(i−1)ID (k)|, ∀k ∈ [1 : LID], (24)

where θ(i−1)ID (k) and θ(i)ID(k) are the phases of the kth sample
in the LID samples carrying both SSS and PSS fields in the i −
1st and ith LTE frames, respectively. We observe a fixed shift
when both frames belong to the same LTE ID. This fixed shift
is due to the coherence time of the channel. The channel remains
relatively constant over the transmission of one frame, but changes
over multiple frames. On the other hand, when two frames carry
different PSS and SSS fields, the phase difference is random. To
improve the eNB identification method, we apply a compensation
technique for the channel response phase in Step 4 of the frame
attribution algorithm, which operates as follows.
• The AP extracts LID = 640 samples representing s

(i)
ID, i.e.,

the SSS and PSS fields of the ith LTE frame. Denote the
phases of the LID samples in s

(i)
ID by vector θ(i)ID.

• For each signature sIDj
stored in its database, the AP

calculates the mean difference θ̄(i, j) between θ(i)ID and θIDj

denoting the phases of the corresponding samples in sIDj
,

θ̄(i, j) =
1

LID

LID∑
k=1

|θ(i)ID(k)− θIDj (k)|. (25)

• The phase part of s(i)ID is compensated by θ̄(i, j) as follows

θ
(i)
ID =

(
θ
(i)
ID + θ̄(i, j)

)
mod π. (26)
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Fig. 17: (a) ρ(n) for a collision between LTE and Wi-Fi frames, (b) correlation ρ(i, j) as a function of the LTE frame index and (c)
detection and false alarm probabilities as a function of the threshold γrt.

• The AP computes the correlation ρID(i, j) between s
(i)
ID and

sIDj
after the former has been phase-compensated, using

equation (26).
We emphasize that the proposed phase compensation method does
not require decoding LTE transmissions at the AP, as all operations
occur on signal samples. Fig. 16(b) shows ρID(i, j) for 10 LTE
frames in the following cases: (1) frames from the same eNB, (2)
frames with the same PSS (cell ID) but different SSS (eNB ID),
and (3) frames with different PSS and SSS fields. For the first
case, we always have a high correlation as all frames belong to
the same LTE. For the second and third cases, frames belong to
different eNBs, thus the correlation is much lower. In Fig. 16(c),
we plot the detection and false alarm probabilities as a function
of the detection threshold, we vary the threshold from 0.1 to 0.9.
The false alarm P ′fa represents the case of the same cell ID but
different SSS, whereas Pfa represents the case of the different
PSS and SSS. The value of Pfa is almost zero even for very low
thresholds. For the second case, P ′fa becomes almost zero when
the detection threshold is selected to be higher than 0.35, whereas
Pd remains close to 1. The experiments confirm that applying the
correlation technique on the PSS and SSS fields can successfully
attribute LTE signals to the transmitting eNB.

6.4 Transmission Round Estimation
In the final set of experiments, we evaluated the transmission

round estimation algorithm discussed in Section 4.4. First, we
evaluated Step 1 in Algorithm 3 by implementing a collision
between LTE and Wi-Fi frames and applying the CP-based cor-
relation method. Figure 17(a) shows the correlation ρ(n) as a
function of the OFDM symbol index for a sample LTE collision
with Wi-Fi. We observe that once the LTE frame starts, correlation
peaks start to appear. Although the correlation is not as high as the
case when the samples are interference-free, it is still sufficiently
high to indicate the start of the LTE frame.

Furthermore, we implemented retransmissions of the same
LTE frame and computed the signal correlation over a window
of 38,400 samples, which is the length of one LTE frame. The
phase compensation mechanism was also used here to account
for the variations in the CIR. The phase difference was computed
over the entire frame. Figure 17(b) shows the correlation between
10 pairs of frames when the frames in each pair are identical
(retransmission due to channel impairments), identical but one is
corrupted by another transmission (collision), and when they differ
(not a retransmission). In the collision case, half of the samples
representing the initial LTE frame are corrupted. We observe that

the signal correlation between two identical transmissions is sub-
stantial enough to distinguish it from two different transmissions,
even if some of the samples are corrupted.

In Fig. 17(c), we show the probability Pd of detecting a
retransmission when both the original frame and the retransmis-
sion do not collide with other frames. Moreover, we show the
detection probability P ′d of a retransmission when the original
frame collided with another frame and the false alarm probability
Pfa as a function of the threshold γrt. The false alarm Pfa is
evaluated by changing the payload of consecutively transmitted
LTE frames. We observe that the correlation technique yields a
nearly perfect detection for any threshold less than 0.8 when the
frames are not corrupted and 0.2 when the frames are corrupted.
The false alarm, on the other hand, is close to zero for any thresh-
old greater than 0.1. Setting γrt = 0.2 allows the identification
of retransmissions for both clean and corrupted frames. The high
accuracy is attributed to the large number of samples used in the
computation of the correlation.

7 PERFORMANCE EVALUATION

In this section, we validate the proposed misbehavior detection
framework using simulations.

7.1 Simulation Setup
We implemented an event-based MATLAB simulator for the

LTE/Wi-Fi coexistence. Specifically, we deployed a set of LTE
and Wi-Fi devices within the same collision domain so that
activity from every device affects the behavior of others. The eNBs
followed the LTE-LAA standard whereas the APs implemented
the IEEE 802.11ac protocol. No actual transmissions took place
and the channel was assumed to be ideal. The simulator imple-
mented the respective channel access protocols dictated by the
two standards. Each experiment was run for 100,000 events, where
each event corresponds to a transmission round. For each device,
we evaluated the transmission attempt rate defined as the number
of times a device tried to transmit (backoff reached zero) including
collisions, over the total number of attempts by any device. This
metric indicates the success rate in seizing the common medium.
We further evaluated the detection and false alarm probabilities,
Pd and Pfa, under different misbehavior scenarios.

7.2 Effect of LTE Misbehavior on Wi-Fi
In the first set of experiments, we evaluated the effect of

LTE misbehavior on the Wi-Fi channel access opportunities.
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Fig. 19: Attempt rate for LTE and Wi-Fi systems vs. number of
Wi-Fi terminals for: (a) class 3 LTE and class 2 Wi-Fi with qm =
0.5q, and α = 0.5, and (b) class 2 LTE and class 3 Wi-Fi with
qm = 0.5q, and α = 0.5.

LTE misbehavior was implemented by adopting smaller values
for the default CW. The LTE chose its backoff uniformly in
{0, 1, . . . , qm − 1}, where qm is the modified CW that is chosen
independently of the frame class and transmission round. In
Fig. 18(a), we show the transmission attempt rate as a function of
the normalized reduction in the CW size, denoted by qm/q, where
q is the compliant CW (qm/q = 1 indicates no misbehavior). We
set α, the fraction of time that the LTE remains compliant, to
0.5. We considered the coexistence of one LTE with Nw = 1
and Nw = 5 Wi-Fi APs, respectively. Wi-Fi APs are assumed
to use class 3. The Wi-Fi channel access opportunities are shown
to degrade when the LTE adopts smaller qm values whereas the
opportunities equalize when qm approaches q. In addition, the
LTE maintains its channel access advantage even when a larger
number of Wi-Fi stations compete (note that for NW = 5, the
Wi-Fi attempt rate is normalized per AP). The degradation in the
Wi-Fi attempt rate goes up to 50%. Figure 18(b) gives similar
intuition when the fraction of time that the LTE misbehaves is
varied and qm = 0.5q.

Next, we studied the relation between the number of APs
competing with the LTE and the attempt rate. We evaluated the
effect of two misbehavior types. In Type 1 misbehavior, the LTE
always decreases the CW to qm = 0.5q, whereas in Type 2 it used
the compliant CW (qm = q), but disregarded the CW exponential
growth after collisions. We compared the attempt rate under the
two misbehavior types with the attempt rate when there is no LTE
misbehavior, represented by the labels LTE and Wi-Fi with no
type. In Fig. 18(c), we show the attempt rate as a function of NW .
An interesting point here is that the effect of Type 1 misbehavior
is more prominent at small NW ’s, whereas Type 2 misbehavior
has a higher impact at high NW . Overall, Type 1 misbehavior has

higher impact than Type 2, as it affects all retransmission rounds.
In the previous set of experiments, the LTE and all Wi-Fi

APs used the same priority class, i.e., almost similar backoff
parameters. In the next set of experiments, we varied the priority
class and measured the achieved attempt rate. In Fig. 19(a), the
APs employed a lower priority class that utilizes a smaller CW.
We observe that the Wi-Fi performance is almost the same as that
of the LTE because reducing the CW for the LTE to qm = 0.5q
equalizes the channel access opportunities for all devices. As
expected, the LTE gains are significant when the LTE uses a
lower class than Wi-Fi and the LTE also misbehaves. These results
are shown in Fig. 19(b) where we see a larger difference in
performance relative to Fig. 18(c), where the LTE and the APs
operate the same class.

7.3 Receiver Operating Characteristic Curves
To investigate the efficacy of our misbehavior detection frame-

work, we studied the tradeoff between Pfa and Pd, for different
values of the misbehavior detection threshold δ, through receiver
operating characteristic (ROC) curves.

7.3.1 Manipulation of the CW q

To measure Pd, we implemented a Type 1 misbehavior
strategy with qm = 0.5q when the LTE misbehaved 50% of
the simulation time. To measure Pfa, we applied our detection
framework when the LTE did not misbehave. Figure 20(a) shows
the ROC curve for different lengths of observation set (sizes of set
O) denoted by J . Indeed, with the increase in the length of the
observation set, the ROC approaches the optimal curve indicating
that our system can operate with almost sure detection and almost
zero false alarm probability. Figure 20(a) also shows that 1,000
observations are sufficient to drive the detection probability to one
with a negligible false alarm rate. As the duration of a single
transmission is at most 8 ms, the required airtime for these 1,000
transmissions does not exceed 8 seconds. Considering different
channel access delays before each of these transmissions, the 8 ms
may be extended in the order of seconds to minutes. Generally,
this time depends on the used parameters and how severe the
misbehavior is. In Fig. 20(b), we see the effect of the fraction
of time the LTE misbehaves. Even at low levels of misbehavior
(e.g. α = 0.9), the misbehavior is detectable.

7.3.2 Manipulation of the defer time p
We further evaluated the performance of the proposed detec-

tion framework when the LTE manipulates the defer time p. To
simulate this misbehavior, we implemented an LTE that uses the
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defer time from traffic class C1 (i.e., p = 1) while transmitting
frames that belong to class C3 (p = 3). Our simulations in Fig.
20(c) show an almost perfect ROC curve for any non-zero false
alarm probability, when Nw = 1 and Nw = 3. The results
are justified by the fact that the consistent selection of a smaller
defer time skews the estimated distribution of backoff values in a
detectable manner. This is a detectable phenomenon for any δ that
fixes the false alarm probability to a given value.

7.3.3 CCA threshold manipulation

We further performed another set of experiments to evaluate
the manipulation of the CCA threshold. A selection of a higher
CCA threshold increases the number of APs that are ignored by
the LTE. To simulate the CCA threshold manipulation scenario,
we uniformly deployed multiple APs and one LTE in a square
area of 200× 200 meters. We set the transmission power of each
Wi-Fi AP to 20dBm and modeled the channels between terminals
using the free path-loss model (the channel model is not really
important here). We set the carrier frequency to 5 GHz.

We evaluated the performance of our detector when the CCA
threshold is increased by 5, and 10 dBm. To highlight the effect
of CCA threshold manipulation, we implemented a deployment
of NW = 200 APs. Here, we increased the number of APs
to ensure that we have a non-negligible number of ignored Wi-
Fi transmissions. This is shown in Fig. 21(a) where we plot the
average number of ignored Wi-Fi transmissions, normalized over
the LTE channel access attempts. For instance, when the CCA
threshold is set to -70 dBm, the LTE ignores on average one
Wi-Fi transmission every five channel access attempts. On the
other hand, the LTE ignores on average one Wi-Fi transmission
every other channel access attempt when the threshold is set to
-62 dBm. The high number of APs is a relevant scenario in urban
areas where there are dense deployments of APs. In Fig. 21(b), we

show the ROC for increasing the CCA threshold by 5 or 10 dBm.
We observe that when the CCA is increased by more than 5dBm,
the ROC approaches the optimal one.

7.4 Comparison of Statistical Framework with Methods
from Homogeneous Networks

To demonstrate the adequacy of our statistical inference
method presented in Section 5.4, we compared it to representative
methods that were developed for homogeneous networks. Such
methods are comparable because they all analyze a time series
of backoff counter observations. Specifically, we selected the
methods in [36] that compares the average backoff counter to a
threshold derived from the nominal behavior. First, we simulated
an LTE eNB that reduces the CW size from 16 (typical value
in class C3) to 8, but still selects the backoff randomly from
the reduced range. A total of 1,000 observations were collected.
Figure 23(a) shows the ROC curve for both frameworks. We
observe that both methods have similar performance and are able
to detect misbehavior with perfect detection probability and a near-
zero false alarm rate.

We further repeated our simulations under a different misbe-
havior model. In this set of simulations, the LTE manipulated the
backoff counter b based on the following non-uniform distribution.

Pr(b = i) =


0.8, i = 0,

0.2, i = 38,

0, otherwise.

(27)

This particular distribution was selected in the following way.
First, we fixed the probability of selecting a zero backoff counter
to 0.8. That is, the majority of the time the LTE does not back off.
Then, we assigned the remaining probability mass to a backoff
value that would make the average backoff equal to that of the
uniform distribution U [0, 15]. Figure 23(b) shows the ROC curve
for the non-uniform distribution strategy. In this case, we can see
that the framework in [36] fails to provide a reliable detection
without having a high false alarm rate. On the other hand, our
proposed framework can still guarantee a very high detection
probability with a near-zero false alarm rate (We were not able
to observe any false alarm in our experiments).

7.5 Unsaturated traffic
In the last set of experiments, we studied misbehavior under

unsaturated traffic conditions. We implemented a Poisson frame
arrival process with an average rate λ for each device. We
measured the saturation level by the percentage of time a device’s
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Fig. 22: (a) Attempt rate vs. λ, and (b) η vs. λ when Wi-Fi traffic is saturated. (c) Attempt rate vs. λ, and (d) η vs. λ when Wi-Fi traffic
is unsaturated.
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(b) LTE arrival rate λ.

queue stays empty and denoted this parameter by η. A device is
saturated if η = 0, i.e., it always has a frame to transmit.

In Fig. 22, we show the effect of the arrival rate on the attempt
rate for different levels of saturation. We implemented a Type
1 misbehavior strategy where the eNB transmits class 3 frames
but reduces the contention window to qm = 0.5q. The eNB
misbehaved half the time (α = 0.5). Figure 22(a) shows the
saturation levels of both LTE and Wi-Fi with and without LTE
misbehavior when the Wi-Fi traffic is always saturated and one
eNB competes with five APs. Figure 22(b) shows the respective
attempt rates. Here, the arrival rate is normalized by 1/TMCOP
which is the maximum service rate (transmissions per second) that
meets the medium capacity. In Fig. 22(a), we note that η always
equals zero for the Wi-Fi APs, as they are backlogged by design.
For the LTE station, we observe that when the LTE misbehaves,
saturation occurs at a higher arrival rate indicating that the LTE
gains an advantage in accessing the channel sooner.

Figure 22(b) shows that when the arrival rate is low, misbe-
havior has no effect on the attempt rate of the Wi-Fi. However,
when λ increases and the devices approach saturation, the gap

between the attempt rate, with and without misbehavior, increases.
As expected, the attempt rate gap remains constant after saturation
is reached (and is consistent with the results shown in Fig. 19).

Figures 22(c) and 22(d) show the same experiments, but when
the APs remain unsaturated while the arrival rate for the LTE
increases. The unsaturated condition for the Wi-Fi is also evident
in Fig. 22(c), where the Wi-Fi queue is empty over 70% of the
time for any λ. From Fig. 22(c), we further observe that the gain
from misbehavior is practically diminished. The LTE saturates
almost at the same rate λ = 0.6. Further, we observe in Fig.
22(d) that the LTE misbehavior increases the LTE attempt rate in
an imperceptible manner. This makes misbehavior detection less
necessary compared to saturated conditions.

Finally, we evaluated the misdetection probability Pmd under
unsaturated traffic conditions. In Fig. 24(a), we show Pmd as
a function of the threshold δ, for Type 1 misbehavior with
qm = 0.5q and α = 0.5. As expected for λ = 0.5

TMCOP
(i.e.,

under saturated conditions as seen in Fig. 22 (a)), we have almost
perfect detection. Under unsaturated conditions (λ = 0.1

TMCOP
),

the method of excluding observations that yield idle times larger
than expected during a backoff process enables us to have a
reasonable Pmd with careful selection of δ. Misdetection becomes
very small for δ ≤ 0.05, however, for this range, the AP is
required to collect a large number of observations to avoid false
alarms. Generally, this range of δ is only required whenever the
LTE is found operating under unsaturated traffic conditions. Figure
24(b) shows Pmd as a function of the arrival rate λ at the LTE,
for Type 1 misbehavior. As expected, Pmd approaches zero as we
approach saturation.

8 CONCLUSION

We studied the problem of LTE misbehavior under the LTE-
LAA protocol for coexistent LTE and Wi-Fi systems. We outlined
several misbehavior scenarios and developed a suite of implicit
monitoring techniques that enable the Wi-Fi system to estimate the
operational parameters of the LTE, without decoding LTE signals.
This is a desired property as Wi-Fi devices are not necessarily
equipped with LTE receivers. Our methods rely on operations
in the signal domain to identify and classify LTE transmissions.
We evaluated these techniques using an experimental setup and
verified their efficiency in practical scenarios.

We further developed a behavior evaluation framework in
which a central hub collects all observations from a distributed
set of monitoring APs to build a behavior profile for the eNBs and
detect misbehavior. We extended our detection method to work
reliably for both unsaturated and saturated traffic. We evaluated
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the performance of our detector via simulations and showed that
LTE misbehavior can cause a significant performance degradation
for Wi-Fi devices. However, such misbehavior was detectable by
our framework with very high probability while achieving a low
false alarm probability. Although our framework focuses on the
coexistence between LTE and Wi-Fi systems, our ideas can be
extended to other coexistence scenarios.
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