
Distributed Traffic Synthesis and Classification in Edge Networks: A
Federated Self-supervised Learning Approach

Yong Xiao, Senior Member, IEEE , Rong Xia, Yingyu Li, Guangming Shi, Fellow, IEEE , Diep N. Nguyen,
Senior Member, IEEE , Dinh Thai Hoang, Senior Member, IEEE , Dusit Niyato, Fellow, IEEE , and Marwan

Krunz, Fellow, IEEE

✦

Abstract—With the rising demand for wireless services and increased
awareness of the need for data protection, existing network traffic analy-
sis and management architectures are facing unprecedented challenges
in classifying and synthesizing the increasingly diverse services and
applications. This paper proposes FS-GAN, a federated self-supervised
learning framework to support automatic traffic analysis and synthesis
over a large number of heterogeneous datasets. FS-GAN is composed
of multiple distributed Generative Adversarial Networks (GANs), with a
set of generators, each being designed to generate synthesized data
samples following the distribution of an individual service traffic, and
each discriminator being trained to differentiate the synthesized data
samples and the real data samples of a local dataset. A federated
learning-based framework is adopted to coordinate local model training
processes of different GANs across different datasets. FS-GAN can
classify data of unknown types of service and create synthetic samples
that capture the traffic distribution of the unknown types. We prove that
FS-GAN can minimize the Jensen-Shannon Divergence (JSD) between
the distribution of real data across all the datasets and that of the
synthesized data samples. FS-GAN also maximizes the JSD among the
distributions of data samples created by different generators, resulting in

Y. Xiao was supported in part by the National Natural Science Foundation of
China under grant 62071193 and the Key R & D Program of Hubei Province
of China under grants 2021EHB015 and 2020BAA002. G. Shi was supported
in part by the National Natural Science Foundation of China under grants
62293483, 61871304, and 61976169. Y. Xiao and G. Shi were supported
in part by the major key project of Peng Cheng Laboratory (grant No.
PCL2021A12). M. Krunz was supported by the National Science Foundation
(grants 1910348, 1731164, 1813401, 2229386, and IIP-1822071) and by the
Broadband Wireless Access & Applications Center (BWAC). Any opinions,
findings, conclusions, or recommendations expressed in this paper are those of
the author(s) and do not necessarily reflect the views of NSF.

Y. Xiao is with the School of Electronic Information and Communications at
the Huazhong University of Science and Technology, Wuhan 430074, China,
also with the Peng Cheng Laboratory, Shenzhen, Guangdong 518055, China,
and the Pazhou Laboratory (Huangpu), Guangzhou, Guangdong 510555,
China (e-mail: yongxiao@hust.edu.cn).

R. Xia is with the School of Electronic Information and Communications at
the Huazhong University of Science and Technology, Wuhan 430074, China
(e-mail: rong xia@hust.edu.cn).

Y. Li is with the School of Mech. Eng. and Elect. Inform. at the
China University of Geosciences, Wuhan, China, 430074 (e-mail: liy-
ingyu29@cug.edu.cn).

G. Shi is with the Peng Cheng Laboratory, Shenzhen, Guangdong, 518055,
China and is also with the School of Artificial Intelligence, the Xidian Univer-
sity, Xi’an, Shanxi, China, 710071, and Pazhou Lab (Huangpu), Guangdong,
510555, China (e-mail: gmshi@xidian.edu.cn).

D. Nguyen and D. T. Hoang are with the School of Electrical and Data En-
gineering, University of Technology Sydney, Australia (e-mail: {diep.nguyen,
hoang.dinh}@uts.edu.au).

D. Niyato is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore (e-mail: dniyato@ntu.edu.sg).

M. Krunz is with the Department of Electrical and Computer Engineering,
the University of Arizona, Tucson, AZ (e-mail: krunz@arizona.edu).

each generator producing synthetic data samples that follow the same
distribution as one particular service type. Extensive simulation results
show that the classification accuracy of FS-GAN achieves over 20%

improvement in average compared to the state-of-the-art clustering-
based traffic analysis algorithms. FS-GAN also has the capability to
synthesize highly complex mixtures of traffic types without requiring any
human-labeled data samples.

Index Terms—Traffic classification, self-supervised learning, edge com-
puting, federated learning, generative adversarial networks.

1 INTRODUCTION

Telecommunication technologies have evolved tremen-
dously over the past few decades, driven by innovative
services and applications in a wide range of verticals [1],
[2]. In particular, recently standardized 5G technology in-
troduces three major use cases: eMBB (enhanced Mobile
BroadBand), URLLC (Ultra Reliable Low Latency Commu-
nications), and mMTC (massive Machine Type Communica-
tions), with promises to enable novel applications including
IoT [3]–[5] and autonomous vehicles [6]. According to recent
reports [7], [8], the next-generation mobile technologies, e.g.,
B5G and 6G, are expected to further extend the application
scenarios of 5G by bringing more diverse and innovative
services, such as holographic-type communications, Tactile
Internet [9], semantic communications [10], [11], and others
[12].

As more services and applications are introduced and
adopted at different times in different regions, network
traffic analysis and management face unprecedented chal-
lenges. In particular, the diverse demands and requirements
of different services significantly increase the dynamics of
network traffic, making traffic prediction, network planning,
resource allocation and scheduling more challenging than
before [13], [14]. Most existing solutions rely on regression
or convolutional neural network (CNN)-based supervised
learning to fit historical data and accordingly classify the
traffic of existing services [15]. These solutions often require
a large amount of manually labeled datasets, which may not
be practically feasible to obtain [16]. Recent works employ
clustering-based unsupervised learning solutions to analyze
and cluster unknown traffic [17]. However, these solutions
often suffer from limited accuracy and cannot be applied to
predict or keep track of highly mixed and evolving service
traffic flows. There is a pressing need to develop intelligent

traffic analysis and classification solutions that can automat-
ically identify known services and classify/label unknown
services and data samples that emerge in decentralized
datasets across various locations.

One promising solution to the above challenges is self-
supervised learning, a novel algorithmic framework that can
learn features and representations without requiring any
labeled data samples for training machine learning (ML)
models. Self-supervised learning combines the advantages
of supervised-learning and unsupervised-learning by first
solving some carefully designed pretext tasks to automati-
cally create pseudo-labels for the unlabelled data samples. It
then employs supervised-learning-based downstream train-
ing tasks to construct ML models based on pseudo-labelled
dataset [18]–[20]. Due to its potential to significantly im-
prove data efficiency and model generality, self-supervised
learning is commonly believed to be one of the key enablers
for the ‘next artificial intelligence revolution” [21].

Despite their potential, most existing works on self-
supervised learning focus on designing pretext tasks that
utilize the attributes of images or videos, such as im-
age orientation, gray-scale image colorization, and image
jigsaw puzzle solving, none of which can be applied to
analyze network traffic datasets. Also, compared to image
data samples, each consists of rich (pixel-level) information
with well-known representation features and attributes, net-
work packets generally have much smaller sizes. The data
streams communicated throughout the network contain
highly mixed traffic types and data packets associated with
different services may exhibit very similar frame patterns
that are challenging to classify. There is still no commonly
known attributes of data packets associated with each indi-
vidual service.

The increasingly stringent requirements on the respon-
siveness of smart services and the growing awareness of
data protection and network security further exacerbate the
above challenges. This is especially the case, considering
that most existing self-supervised learning solutions are
cloud-based in which every mobile device must upload
its locally collected data samples to a cloud server and
wait for feedback before making decisions [22], [23]. These
solutions are known to suffer from long communication
delay and risk of privacy leakage caused by showing raw
data. To address these issues, edge intelligence has been
recently introduced, which enables distributed data process-
ing and learning over a large number of low-cost, often
decentralized edge devices, e.g., mobile edge servers [24].
It is considered one of the most sought-after functions in
B5G/6G.

One of the challenges of implementing edge intelligence
is to develop simple and effective algorithmic solutions
for decentralized data learning and processing over large
resource-limited wireless networks [12]. As an emerging dis-
tributed AI solution, federated learning (FL) allows collabo-
rative construction of ML models without exposing any raw
data across decentralized datasets. Integrating FL with self-
supervised learning will have the potential to significantly
reduce communication overhead, enhance data protection,
and improve efficiency of model training. Unfortunately,
conventional FL approaches often suffer from slow conver-
gence and bias when the distributions of traffic across dif-

ferent datasets are highly heterogeneous and unbalanced. In
fact, the most commonly used federated learning solution,
FedAvg, can only be applied when all decentralized datasets
observe the same set of features. Furthermore, most existing
FL solutions are based on supervised learning, which re-
quire high-quality labeled samples across all decentralized
datasets [25]. Currently, there is no simple and effective
self-supervised learning solution that allows joint model
construction based on heterogeneous datasets.

In this paper, we propose the federated self-supervised
Generative Adversarial Networks (FS-GAN), a novel frame-
work for distributed traffic analysis and synthesis over de-
centralized datasets consisting of highly heterogeneous and
unbalanced traffic types. FS-GAN is comprised of multiple
decentralized GANs, deployed at a set of edge servers,
each of which can access an exclusive set of data samples
associated with a combination of local services. Different
edge servers can access different combinations of services.
A set of generators is deployed at the edge servers or virtual
machines that offer computational functions. In contrast,
each discriminator is implemented at an edge server and
has been assigned with an exclusive right to access a local
dataset requiring a certain privacy protection for local data
samples. FS-GAN learns to create synthetic data samples
that capture the statistical features of real data (i.e., its
distribution) obtained from each individual type of services
to support automatic traffic classification. Compared to a
traditional GAN, FS-GAN provides three unique advan-
tages. First, it supports collaborative model construction
based on decentralized datasets by adopting a federated
learning-based approach to coordinate model training at
different edge servers. Second, it addresses the model col-
lapse problem suffered by many GAN-based approaches by
associating a classifier with each local datatset to classify
samples generated by different generators. Third, FS-GAN
does not require any labeled samples to train the model;
rather, it adopts a self-supervised learning-based approach
that automatically assigns different pseudo-labels to synthe-
sized data samples generated by different generators. Com-
pared to a traditional network data classification/clustering
solution, the proposed FS-GAN trains multiple generators,
each of which is capable of synthesizing data traffic for a
given service. These features of FS-GAN make it possible
to further improve the performance of data traffic classifica-
tion, especially when traffic samples of different services are
highly unbalanced, i.e., some services have much fewer data
samples than others. They also make FS-GAN applicable to
a wide range of scenarios and use cases that involve traffic
prediction and synthesis, such as dynamic network slicing
that involves multi-service traffic tracking and prediction,
unknown attack detection, and prediction-based network
planning. We conduct extensive simulations based on real-
world traffic associated with ten popular services applica-
tions including email, FTP, video and audio chat, etc [26].
Our results show that the classification accuracy of FS-GAN
achieves over 20% improvement, on average, compared
to the state-of-the-art clustering-based traffic analysis algo-
rithms.

To highlight the advantages of FS-GAN, in Fig. 1, we
present the traffic distribution of the data packets from
the real traffic data associated with 3 types of (unknown)

F-G
A

N
FS

-G
A

N

True Service
Distribution

Synthetic Sample
Distribution

(a)

(c)

(b)

F-G
A

N
FS

-G
A

N

True Service
Distribution

Synthetic Sample
Distribution

(a)

(c)

(b)

F-G
A

N
FS

-G
A

N

(a)

(c)

(b)Packet value

facebook

Pr
ob

ab
ili

ty

youtube

Packet value

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty
sftp

Packet value

Packet value

Pr
ob

ab
ili

ty

Packet value

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Packet value

Pr
ob

ab
ili

ty

Packet valuePacket value

Pr
ob

ab
ili

ty

Packet value

Pr
ob

ab
ili

ty

Synthetic Sample
Distribution

Synthetic Sample
Distribution

Packet value

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Packet valuePacket value

Pr
ob

ab
ili

ty

Packet value

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Packet valuePacket value

Pr
ob

ab
ili

ty

True Service
Distribution
True Service
Distribution

Fig. 1: Comparison between (a) the distribution of three service traffics
T1, T1, T3 measured in packet value (converted decimal value of data
packet) and (b) the synthesized traffic data produced by FS-GAN and
(c) the synthesized traffic produced by F-GAN.

applications (Fig. 1(a)) and the distribution of synthesized
traffic generated by FS-GAN after 50 rounds of training (Fig.
1(b)), compared with the distribution of data produced by
a straightforward extension of traditional multi-generator
GAN into an FL setting, referred to as F-GAN (Fig. 1(c)).
It can be observed that FS-GAN is able to successfully
generate synthetic data samples that match distributions
of different types of applications. F-GAN, however, fails to
capture data distribution differences between various ser-
vices but can only generate samples with a limited diversity.

The main contributions of this paper are as follows:

1) We introduce a novel framework called FS-GAN that
exploits concepts from GAN, FL, and self-supervised
learning to enable automatic learning, synthesis, and
classification of heterogeneous traffic over decentral-
ized datasets. Compared to regression-based cluster-
ing solutions, which separate data samples based
on a single or a limited number of pre-selected
features, FS-GAN autonomously creates synthetic
samples with pseudo-labels to capture the distri-
butions of local mixtures of traffic types and then
applies supervised-learning-like solutions to further
improve the classification performance. To the best of
our knowledge, FS-GAN is the first network traffic
synthesis and classification solution that uses self-
supervised learning.

2) We prove that the model trained by FS-GAN mini-
mizes the difference between the distribution of the
real traffic and that of the synthetic data samples
created by the FS-GAN generators. The unique abil-
ity of FS-GAN to learn and create synthetic samples
that capture the distribution of a heavily mixed but
unknown traffic across decentralized datasets allows
it to be applied to a range of novel applications, well
beyond traditional traffic classification. We discuss

some potential applications and pointed out the lim-
itations of FS-GAN under different scenarios.

3) We conduct extensive simulations using real traffic
datasets. Our results show that FS-GAN achieves
significant improvement in both traffic classification
and data synthesis.

The rest of the paper is organized as follows. In section
2, we first review recent works that are relevant to FS-
GAN. We then introduce the architecture and discuss its
application scenarios in Section 3. Details of the proposed
architecture, algorithms, as well as the main theoretical
results are presented in Section 4. We conduct extensive
simulations and evaluate the performance of FS-GAN in
Section 5. The paper is concluded in Section 6.

2 RELATED WORK

The solution proposed in this paper is closely related to
recent progress in deep-learning-based traffic classification
and FL-based data analysis and synthesis. Most related
works are reviewed in this section.

2.1 Deep-learning-based Traffic Classification

Deep neural network (DNNs), are one of the promising
solutions for network traffic classification [15], [17], [27]–
[34]. For example, Wang et al. proposed a hybrid neural
network that combines a recurrent neural network (RNN)
and a CNN to learn dynamic features of mobile data for
traffic classification [15]. Liang et al. introduced a deep
reinforcement learning-based approach, called NeuroCuts,
for packet classification [30]. Zhang et al. proposed a deep
learning-based traffic clustering solution that can classify
packets associated with unknown classes and automatically
build a new training dataset to update the classifier of
unknown traffic [17]. Liu et al. applied an RNN-based flow
sequence network approach to classify encrypted traffic
flows [28]. Ensemble learning-based methods have been
adopted to improve the traffic classification accuracy by
Aouedi et al. [35] and Jin et al. [36].

2.2 FL-based Network Data Analysis

FL and its applications in network data analysis have re-
cently attracted significant interest [37]–[44]. FL has the
potential to protect data privacy during distributed train-
ing and coordination across decentralized datasets. Thus,
network Wen et al. proposed a two-step FL framework to
achieve privacy preserving model training with high com-
munication efficiency. Wang et al. proposed an empirically
driven solution to optimize the selection of client devices
that participate in model updating [39]. Recently, FL was
extended to data analysis in resource-limited networking
systems. For example, Wang et al. investigated the conver-
gence of gradient descent-based FL solutions and optimized
the tradeoff between local update and global model aggre-
gation under a given resource constraint [45]. Luo et al.
introduced a low-cost sampling-based algorithm to learn
the convergence-related parameters and minimize the cost
of learning time and energy [46]. Xiao et al. proposed a fed-
erated edge intelligence (FEI) framework for implementing

FL in edge computing-assisted IoT networks with commu-
nication and computational resource constraints [47]. This
framework has been further extended to real-time learning
in edge intelligence networks [48], as well as semantic com-
munications [10] and semantic-aware networking systems
[11], [49], [50]. Zhang et al. [51] studied the homomorphic
encryption-based FL for communication and computation
cost of private medical data analysis and Lu et al. [52] in-
vestigated FL-based imbalanced classification for industrial
data.

2.3 Self-supervised learning-based Data Analysis
Recently, self-supervised learning was introduced as a way
to improve data efficiency and model generalization [18]–
[20], [53]–[56]. In particular, Araslanov et al. proposed a do-
main adaptation approach for semantic segmentation based
on predictions produced by pseudo-supervision targets [20].
Li et al. proposed a two-stage framework for anomaly
detection in which a self-supervised deep representation
model was learned to build a generative classifier [53]. Sun
et al. introduced a novel model training algorithm for Graph
Convolutional Networks (GCNs). Self-supervised model in
[54] improved model generalization performance while re-
duce the number of required labeled samples. Zhang et al.
proposed a self-supervised learning method with adaptive
memory network to improve model generalization and en-
rich feature representativeness [57]. Shi et al. studied a novel
mask image model for self-supervised learning, where the
idea of adversarial training was utilized [58]

Our proposed FS-GAN differs from traditional
clustering-based data analysis techniques in that it adopts
a self-supervised learning-based solution to first create
synthetic samples with pseudo-labels that statistically
match a mixture of real traffic types and then train an ML
model using the pseudo-labeled datasets to classify and
identify each individual service traffic.

3 ARCHITECTURE OVERVIEW AND APPLICATION
SCENARIOS

3.1 Architecture Overview

 Local Model
Uploading

Local Dataset 1 Local Dataset 2 Local Dataset 3

33
55

Global Model
Coordinator44

D
22

D
22

D
22

33
55

Edge Server

G

Edge Server Edge Server

G G G

Data
Synthesizing &
Classification

11

Data
Discrimination
22

Model
Aggregation

33

44

 Global Model
Feedback

55

C

... G

C

G

C

11 1111

Fig. 2: FS-GAN architecture, including components generators (G),
discriminators (D), classifiers (C), and a global model coordinator (left
figure); and the main algorithmic procedures (right figure).

The main architecture, including the key components
and algorithmic procedures of FS-GAN, is presented in Fig.

2. FS-GAN consists of: (1) multiple generators that create
synthetic samples whose statistical distribution is similar to
that of real traffic in local datasets, and (2) multiple discrim-
inators, each of which discriminator tries to differentiate
the real traffic from the synthetic samples produced by the
generators. Our proposed FS-GAN framework employs the
following three procedures:
(1) Local Data Synthesis: One discriminator is deployed
in each edge server with exclusive right access to a local
dataset. Each discriminator is jointly trained with several
associated generators. Although GANs, in general, have
high flexibility in generating synthetic samples [59]–[61],
they suffer from the so-called model collapsing problem, where
the generator learns to produce synthetic samples with ex-
tremely limited diversity, e.g., samples that only capture the
data distribution of a single traffic type or a fixed mixture of
a given set of traffic types. To tackle this problem, we borrow
the idea of multi-generator GANs [62]–[64] and assign a
pseudo-label to each generated sample to indicate which
generator the sample came from. As will be proven later,
a generator that is locally trained with a discriminator is
able to create synthetic data samples that match the data
distribution of the real traffic in the local dataset.
(2) Global Model Coordination: The local models trained
by the discriminators and generators will be periodically
uploaded to a global model coordinator. The coordinator
can be deployed at one of the edge servers or at the
cloud data center. One straightforward implementation of
model coordination is to adopt FL solutions [40], [41], in
which the local model parameters (of generators and/or
discriminators) are aggregated, e.g., averaged in FedAvg
algorithm [65], to form an updated global model that is
then broadcasted to edge servers. Note that the number of
model parameters from local edge servers will affect the
communication efficiency. In this paper, we consider two
model coordination schemes:

(i) Coordination Scheme I (C-I): Both locally trained
discriminators and the associated generators are up-
loaded to the global coordinator.

(ii) Coordination Scheme II (C-II): Only discriminators
are uploaded and aggregated by the coordinator.

C-II requires less model-related data to be exchanged be-
tween edge servers and the coordinator, resulting in a higher
communication efficiency. However, as will be shown later
in this paper, C-I has faster convergence than C-II, which
in some cases compensates for the extra communication
overhead.

In the local data synthesis procedure, each discriminator
only determines whether the data samples belong to a real
traffic or are synthetic data produced by generators. After
the global model coordination, all the discriminators should
be able to differentiate real data in any local dataset from
synthetic data generated by any generator. Similarly, the
generators will be able to capture richer features across
different local datasets. To address the model collapsing
problem, we introduce a classifier in each local datatset to
classify samples from different generators. As shown in Sec-
tion 4, this classifier increases the divergence of the synthetic
data distributions of different generators, hence alleviating
the model collapsing problem of traditional GANs.

(3) Self-Supervised Learning: The aforementioned trained
and updated classifier creates pseudo-labels for synthetic
samples generated by different generators. As the genera-
tors become more capable of producing close-to-real syn-
thetic data, the classifier associated with each discriminator
will naturally support data classification and self-labeling
of real traffic that arrive in the future. We show that the
classifier actually shares the same model parameters as the
locally trained discriminator, and therefore does not require
any extra effort for model training.

We present a theoretical analysis that proves the ef-
fectiveness of the FS-GAN framework. In particular, we
prove that FS-GAN possesses two important properties:
(1) the difference between the distributions of the mixture
of the synthetic data generated by generators and that
of the real traffic data distribution is minimized, and (2)
the JSD divergence of the distributions of synthetic data
samples generated by different generators is maximized.
Based on these properties, we prove the main result of this
paper, namely, the synthetic data samples generated by each
individual generator captures the real traffic distribution
of each individual traffic type, and that the classifier can
differentiate all the synthetic samples coming from different
generators, if the distributions of the traffic data associated
with different services are separable.

Compared to existing self-supervised learning solutions,
FS-GAN provides the following unique advantages that
make it more suitable for network traffic classification prob-
lems. First, FS-GAN can be applied to a large network with
highly decentralized and imbalanced traffic distribution
with data privacy protection requirements. Second, FS-GAN
does not require any pre-labeling of data, which makes
it suitable for many of today’s networking systems that
involve a large volume of unlabeled network traffic datasets
that are prohibitively expensive to label. Third, the data
synthesizing capability of FS-GAN makes it possible to be
applied in many emerging networking services that involve
traffic prediction and synthesis.

3.2 Examples of Application Scenarios

Compared to traditional traffic classification solutions, FS-
GAN adopts a fundamentally different approach by first
training multiple generator networks to generate synthetic
samples that capture the distribution of real traffics asso-
ciated with an individual service and then applying the
parameters of the already trained models for classifying
traffics of different services. This uniqueness of FS-GAN
makes it applicable to a range of new application scenarios
and use cases, including the following:

1) Dynamic Network Slicing in 5G/B5G: 5G NR release
16 [66] introduced the concept of network slicing, which
focuses on isolating and preserving partitions of network re-
sources and functions, commonly referred to as slices. These
slices are tailored and orchestrated to support applications
with diverse QoS requirements. One of the key challenges in
network slicing is now to keep track of the traffic demands
of potentially unknown applications, so the appropriate
amount of resources can be reserved while meeting the
needs of these applications. FS-GAN can be directly applied
to classify and keep track of the needs of different services

from a highly mixed traffic. It can also assist the network
slicing manager in identifying newly observed service traffic
types that do not have a sufficient amount of pre-labeled
data.

2) Unknown Attack Detection: An important appli-
cation scenario for traffic classification is attack detection.
Existing solutions mostly focus on detecting known attacks.
Detecting unknown attacks is a notoriously difficult prob-
lem [67]. FS-GAN has the potential to identify unknown
attacks and simulate various attack scenarios as well as their
mixtures.

3) Traffic Prediction-based Network Planning: Because
the final model obtained by FS-GAN is capable of gener-
ating synthetic data samples that are statistically similar to
the real data of various types of emerging traffic, FS-GAN
can be applied to predict future traffic trends and assist
in planning the network infrastructure to better cope with
anticipated needs.

4 FS-GAN DESIGN AND THEORETICAL ANALYSIS

In this section, we present the algorithmic details of the
main procedures of FS-GAN (both C-I and C-II): local data
synthesis, global model coordination, and self-supervised
learning. The detailed architecture is shown in Fig. 3. Theo-
retical analysis is presented at the end of this section.

TABLE 1: List of Notation
Notation Description

d the index of local datasets
D discriminator of FS-GAN
G generator of the FS-GAN
P distribution of data
z noise of Gaussian distribution
m index of generator
L loss function
x real data sample
x̂ synthetic data sample
λ diversity hyper-parameter
ω parameters of generator
θ parameters of discriminator and classifier

4.1 Local Data Synthesis

First, we consider local-model training of a single gener-
ator at the dth local dataset, d = 1, ..., N . As mentioned
before, the main objective of this procedure is to train a
model to generate synthetic data samples that captures the
distribution of real traffic of a local dataset. Let Gd and
discriminator Dd be, respectively, the generator and dis-
criminator associated with the dth dataset. Training GANs
can be formulated as a minimax game between Gd and Dd

[59]. The generator and the discriminator are often DNNs.
Let Pdata be the distribution of the real dataset and suppose
that x is drawn from Pdata, i.e., we write as x ∼ Pdata.
The generator Gd aims to train a multi-layer neural network
to map its input variables. Initially, a random noise z is
generated to synthesize data samples whose distribution
is denoted as Pz . Without loss of generality, we abuse the
notation and use Gd(z) to denote the trained generator’s
output given training input z. Meanwhile, the discriminator
Dd tries to distinguish real data samples from synthetic

......

……

…… ……

……

......

……

……

Discriminator D

Classifier C Global

Model

Coordinator

θθ

θθ

......

......

......

Pz
Noise
Input

Generators GGenerators G

Generators G

Pz
Noise
Input

Shared Parameters θ Shared Parameters θ

Pseudo-
label

Pseudo-
label

Distinguish
Result

Distinguish
Result

N

1 1

1

modelP1
modelP1

Synthesized
Samples

Choose
Generator

Gv
 1

dataP1
dataP1

Local
Dataset 1

……

……

Discriminator D

Classifier C

Shared Parameters θ Shared Parameters θ

Pseudo-
label

Pseudo-
label

Distinguish
Result

Distinguish
Result

N

N

modelPN
modelPN

Synthesized
Samples

Choose
Generator

G

dataPN
dataPN

Local
Dataset N

N
v

 1

0

 1

0

ω

ω

ω

ω

 1

 N

θθ

θθ 1

0

 1

0

ω

ω

ω

ω

()

()

()

()

Fig. 3: Detailed architectural components of FS-GAN

samples produced by the generator. We use Dd(·) to denote
the output of discriminator, which represents the probability
that the discriminator decides the given input sample comes
from the real dataset rather than being synthesized by the
generator. More formally, we can express the adversarial
training process between a single generator and a single
discriminator via the following minimax problem:

min
Gd

max
Dd

Ex∼Pdata
[logDd(x)] + Ez∼Pz [log (1−Dd(Gd(z)))].

(1)
The key idea of FS-GAN is to use multiple generators

Gd = {G1
d, G

2
d, ..., G

M
d }, rather than a single one to jointly

train a model that can capture the distribution of a mixture
of different traffic types in a given local dataset d. To
address the issue of model collapse, we introduce a classifier
network Cd that classifies synthetic data produced by the
generators. More specifically, the classifier first generates
a pseudo-label for each synthetic data sample, indicating
which generator it came from. It then minimizes its loss to
encourage generators to create samples that are different
from each other. As we prove later in this section, by
employing Cd, each of the generators will synthesize data
samples that represent a specific type of traffic, provided
that the differences between the distributions of different
traffic types are sufficiently large.

Now we focus on the training process for the multi-
generator local model. We use the subscript to denote the
index of the local dataset and the superscript for the gen-
erator index. Suppose a set Gd = {G1

d, G
2
d, ..., G

M
d } of M

generators has already been assigned to the discriminator
Dd, where d ∈ {1, 2, ..., N} represents the discriminator
index. Each discriminator Dd also interacts with a local
dataset Xd, and each generator Gm

d ,m ∈ {1, 2, ...,M}, maps
the input noise z to x̂ = Gm

d (z). The classifier Cd, is co-
trained with Gd and Dd. Let PGm

d
be the distribution of the

synthetic samples produced by Gm
d . We now describe the

rule for each generator to interact with the discriminator. We

set an index vector v, randomly drawn from a predefined
multinomial distribution v ∼ M (π) where π = ⟨πv⟩v∈Gd

is the weighting coefficient of the distribution mixture. By
setting Gv

d ≜ {Gi
d : i ∈ v} as the subset of Gd, we can

convert the multi-generator GANs into a standard GAN
with a generator vector Gv

d and discriminator Dd. We use
P d
data to denote the real distribution of dataset Xd. We can

then formulate the model of local data synthesis with a
multi-generator as the following minimax game:

min
Gd,Cd

max
Dd

Ex∼Pd
data

[logDd(x)]

+
M∑

m=1

Ez∼Pz [log (1−Dd(G
m
d (z)))]

− λ
M∑

m=1

(
πmEx̂∼PGm

d
[logCm

d (x̂)]
) (2)

where Cm
d (x̂) is the output of classifier Cd, specifying the

probability that data sample x̂ is generated by Gm
d . The last

term in (2) is a standard softmax loss in a multi-classification
setting [68]. In other words, minimizing Cd according to (2)
under fixed Dd minimizes the entropy for Cd, which leads
to increased divergence among generators. We introduce a
diversity hyper-parameter λ > 0 to specify the degree that
the classifier can influence the generators. We compare the
model performance under different λ in Section 5.

Let ωd be the model parameters of the generators Gd

associated with discriminator Dd, and let ωm
d be the model

parameters of the generator Gm
d ,m ∈ {1, ...,M}. Classifier

Cd and discriminator Dd share the same model parameters
except for the last layer. Let θd be the model parameters
shared between the classifier and the discriminator Dd. Note
that the last layer of Cd outputs an automatically learned
pseudo-label for each input data sample, while the last layer
of Dd outputs a binary result. Similar to a standard GAN, we
alternatively learn ωd and θd using the stochastic gradient

descend (SGD) method. The local data synthesis framework
is illustrated in Fig. 3.

Let B be the selected mini-batch size during the train-
ing process. At the beginning of each local training it-
eration, each discriminator Dd will sample a mini-batch
of B data points (x

(1)
d ,x

(2)
d , ...,x

(B)
d) from the real data

distribution P d
data. A mini-batch of B synthetic data sam-

ples (x̂
(1)
d , x̂

(2)
d , ..., x̂

(B)
d) will also be created by a mixture

of generators Gv
d in Gd. This mixture can be generated

according to a predefined sampling probability πm. During
each training iteration, we update Cd, Dd, and Gv

d along the
gradients of their loss functions. According to (2), we can
write the loss functions under the aforementioned settings
as follows:

L(Cd, x̂d) = −
1

B

B∑
b=1

logCm
d

(
x̂
(b)
d

)
(3a)

L(Dd,xd, x̂d) = −
1

B

B∑
b=1

(
logDd

(
x
(b)
d

)
+ log

(
1−Dd

(
x̂
(b)
d

)))
(3b)

L(Gv
d , x̂d) = −

1

B

B∑
b=1

(
logDd

(
x̂
(b)
d

)
+ λ logCm

d

(
x̂
(b)
d

))
(3c)

We summarize the detailed procedure in Algorithm 1.

4.2 Global Model Coordination

In the previous section, the generators associated with a
local discriminator produce synthetic data samples that
capture the distributions of different traffic types in the local
dataset. However, different local datasets may have different
mixtures of traffic. It is therefore desirable to train a global
model that can capture the diverse traffic across all local
datasets. We adopt the FL-based framework to coordinate
the local model training procedures without requiring any
exchange of local datasets. One of the key ideas in FL is
to coordinate different local model training procures via
their model parameters. In one of the popular FL solutions,
called FedAvg, each edge server periodically uploads its
locally trained models to a global coordinator. The uploaded
models are then averaged to form an updated global model,
which will be broadcasted to all edge servers.

Formally, let Ω′ be the subset of discriminators in coor-
dination scheme C-II (or discriminator-and-generator pairs
in scheme C-I) that has been selected for uploading the
local models. Note that Ω′ ⊆ Ω. Let ω0 and θ0 be the
corresponding global model parameters, and let pd be the
weight of the dth local dataset such that pd ≥ 0 and∑N

d=1 pd = 1. We can write the global model coordination
procedure as follows:

ω0 =
∑

d∈Ω′
pdωd and θ0 =

∑
d∈Ω′

pdθd, if Scheme C-I,

θ0 =
∑

d∈Ω′
pdθd, if Scheme C-II. (4)

Algorithm 1 Local Data Synthesis
Input: Local dataset Xd; noise distribution Pz ; sampling
probability πm;
Output: Updated local parameter ωd generators Gd; up-
dated local parameter θd for discriminator Dd and classifier
Cd;
Initialize: λ > 0; mini-batch size B; network parameters ωd

and θd; maximum number of Iterations I ;
for each iteration i ≤ I

Generator Gd do:
1) Select generators Gv

d according to πm;
2) Each generator Gd

m ∈ Gv
d simultaneously do:

• Sample a noise input variable z from Pz ;
• Synthesize a batch of data sample

x̂
(b)
d , b ∈ {1, 2, ..., B};

3) Send the synthesize data sample x̂
(b)
d to the

discriminator Dd and classifier Cd;
4) Update ωd by ascending along its gradient of

loss function: ∇ωd
L(Gv

d);
Discriminator Dd do:

1) Sample a batch of data x
(b)
d , b ∈ {1, 2, ..., B}

from local dataset Xd;
2) Distinguish x

(b)
d and x̂

(b)
d ;

3) Update θd by descending along their gradi-
ents of loss functions: ∇θd (L(Cd) + L(Dd));

Classifier Cd do:
1) Classify the synthesized samples x̂

(b)
d with

respect to different generators;
2) Update θd by descending along their gradi-

ents of loss functions: ∇θd (L(Cd) + L(Dd));
i = i+ 1;

Return locally trained parameters

4.3 Self-Supervised Learning

As mentioned in the previous procedures, the classifier
shares the same network parameters with the local dis-
criminator. Therefore, this classifier can be updated in the
global model coordination procedure to classify and create
pseudo-labels for the synthetic samples according to their
corresponding generators. This classifier will also be able
to classify the real data associated with all traffic types in
all datasets. Since this classifier is a part of the training
process of FS-GAN and is trained based on the pseudo-
labeled synthetic datasets, it does not introduce any extra
training efforts.

4.4 Implementation Complexity

Since FS-GAN reuses the model parameters of discrimi-
nators and therefore does not have to introduce any new
computational complexity, compared to the traditional fed-
erated learning implementation of GAN. In other words,
the complexity of implementing FS-GAN is closely related
to two types of implementation cost: communication and
computational cost. The computational complexity of FS-
GAN mainly includes the training of a set of local generative

Algorithm 2 Global Model Coordination (Scheme C-I)
Input: Locally trained parameter θd of Dd and Cd; locally
trained parameter ωd of Gd;
Output: Aggregated parameter θ0 for the global discrimi-
nator D0 and classifier C0; aggregated parameter ω0 for the
global generators G0

Initialize: The number of local datasets N ; maximum num-
ber of communication rounds J ;

for the number of communication rounds j ≤ J

The global model coordinator do:
1) Calculate the aggregated parameter θ0 and ω0

according to equation (4):
θ0, ω0 ← Local Data Synthesis(Xd, θd, ωd)

2) Broadcast θ0 to and ω0 to local discriminator,
classifier and generator, respectively;

Each local model do:
Initialize local parameter θd and ω0 by:
θd ← θ0; ωd ← ω0;

j = j + 1;

end for

Algorithm 3 Global Model Coordination (Scheme C-II)
Input: Locally trained parameter θd of Dd and Cd;
Output: Aggregated parameter θ0 for the global discrimina-
tor D0 and classifier C0;
Initialize: The number of local datasets N ; maximum num-
ber of communication rounds J ;

for the number of communication rounds j ≤ J

The global model coordinator do:
1) Calculate the aggregated parameter θ0 ac-

cording to equation (4b):
θ0 ← Local Data Synthesis(Xd, θd)

2) Broadcast θ0 to local discriminator and classi-
fier;

Each local model do:
Initialize local parameter θd by:

θd ← θ0;
j = j + 1;

end for

and discriminative models in parallel based on SGDs, i.e.,
the total number of local SGD rounds performed by edge
servers are given by O(MKT). The communication cost
depends on the model size and the number of coordination
rounds. In other words, FS-GAN introduces novel capabil-
ities and address the issues of traditional federated GAN
without introducing any extra computational and commu-
nication complexity.

4.5 Theoretical Analysis
We analyze FS-GAN from the following two aspects: data
synthesis ability and classification accuracy across local
models. Consistent with our previous notation, we use P d

data

to denote the mixture distribution of real data samples in
dataset Xd, and use P d

model to denote the distribution of
the combination of synthetic data samples generated by
generators G1

d, G
2
d, ..., G

M
d . First, we provide the optimal

solution for classifier Cd in Equation (2).

Proposition 1. For a set of generators G and for a given sam-
pling probability πm, the optimal distribution learned by
classifier Cd

∗(x; θd) has the following form:

Cm
d

∗(x; θd) =
πmPGm

d
(x)∑M

i=1 πiPGi
d
(x)

,m ∈ {1, 2, ...,M}

(5)

Proof: See Appendix A.
The result of the output of the optimal classifier

Cd
∗(x; θd) can be seen as a weighted normalization of

different synthesized sample distributions.
We follow a commonly adopted setting and use Jensen

Shannon Divergence (JSD) [69] to quantify the differ-
ence between two distributions. For the optimal generator
Gd

∗(x;ωd), we have the following proposition:
Proposition 2. Given the optimal discriminator and classifier,

the objective of generators is to minimize:

Gd
∗(x;ωd) = argmin

G
(2 · JSD(P d

data∥P d
model) (6)

−λ · JSDπ1,π2,...,πM
(PG1

d
, PG1

d
, ..., PGM

d
).

Proof: See Appendix B.
It can be observed that the two terms on the right-

hand-side of (6) correspond, respectively, to the difference
between distributions P d

data and P d
model, and the inverse

of the difference among the synthetic data generated by
different generators. In other words, minimizing these two
terms directly results in minimizing the difference between
P d
data and P d

model while maximizing the differences among
the generators.

Before presenting the main theorem, we make the fol-
lowing assumption:
Assumption 1. The real data distribution P d

data of dataset Xd

can be written in the form:

P d
data(x) =

M∑
m=1

πmpmd (x), (7)

where for any given x, if pmd (x) > 0 for m ∈
{1, 2, ...,M}, then m′ ̸= m, pm

′

d (x) = 0.

Equation (7) means that the data distribution of data
samples is a mixture of M separable distributions given
by pmd (x) for m = 1, 2, ...,M . We can prove the following
theorem:
Theorem 1. Suppose that Assumption 1 holds. At the

equilibrium point of the minimax game defined in equa-
tion (2), the optimal classifier and generators satisfy the
following equations:

Cm
d

∗(x)→
{
1, if x ∼ PGm

d
,

0, if x ∼ PGm′
d
, for m′ ̸= m,

(8a)

P ∗
Gm

d
(x) = pmd (x), ∀m = 1, 2, ...,M, (8b)

P d
model(x) = P d

data(x). (8c)

Proof: See Appendix C.
We can observe from (8a) that the classifier can cor-

rectly differentiate synthetic samples produced by different
generators, i.e., the probability for the classifier to identify

the correct generator Gm
d that produces each given syn-

thetic samples x approaches one. As shown in (8b) and
(8c), synthetic samples produced by optimal generator Gm

d
∗

follow the same distribution as pmd . Also, all the generators
weighted by πm together synthesize samples that match the
same data distribution of that of the real dataset.

In cases where Assumption 1 is not satisfied, Theorem
1 can be considered as an upper-bound for the local data
synthesis and classification performance. Existing works as
well as our own experiments show that in many practical
scenarios, even if Assumption 1 does not hold, FS-GAN
can still create high-quality synthesized data with high
classification accuracy performance. We will come back to
this issue in Section 5.

So far, we have analyzed the optimal solution of the local
model. Next, we focus on the convergence of the global
model. In the global model coordination procedure, we use
Federated Averaging (FedAvg) [65], a widely popular algo-
rithm in federated learning, to periodically aggregate local
models. More specifically, suppose that each participating
local model performs I local updates after receiving the
latest global model. Let T be the total number of local
iterations performed by each client. Let B be the mini-batch
size. Let Ld(ε, ξ

d
t), d ∈ {1, 2, ..., N}, be the loss function

of local model in tth iteration with network parameters
ε and a mini-batch of B samples ξdt . We define Ld(ε) as
the mean value of Ld(ε, ξ

d
t), t = 1, ..., T , i.e., we have

Ld(ε) = E[Ld(ε, ξ
d
t)]. Consider the following optimization

model:

min
ε
{L(ε) ≜

N∑
d=1

pdLd(ε)}. (9)

Theoretical guarantees of (9) can be obtained by follow-
ing the same approach as [43], [70], [71].

We can observe that Theorem 1 has proved that the pro-
posed FS-GAN has addressed the two fundamental issues of
federated learning and self-supervised GAN. In particular,
compared to the federated learning which requires all the
decentralized datasets to share the same combinations of
data features, FS-GAN allows edge servers with different
combinations of service traffics to jointly construct a shared
model that can identify and synthesize service traffics of
all the edge servers. Also, FS-GAN addresses the model
collapse problem of GAN by reuse the model trained by the
discriminator. Furthermore, as described in Section 4.4, FS-
GAN does not introduce any new components or increase
the complexity, compared to traditional federated GAN.
This further justifies the flexibility and practicality of FS-
GAN in practical networking systems.

5 PERFORMANCE EVALUATION

In this section, we conduct extensive experiments using
real-world traffic datasets to verify two key capabilities of
FS-GAN proved in Theorem 1 including classification of
unknown service traffics and synthesis of different types of
service traffics. In the rest of this section, we first introduce
the setup of our simulations in Sections 5.1 and then present
detailed simulation results to evaluate the classification per-
formance and traffic data synthesis performance of FS-GAN
in Sections 5.2 and 5.3, respectively.

5.1 Simulation Setup
To evaluate the performance of FS-GAN, we consider
real-world dataset, “VPN-nonVPN dataset” (ISCXVPN2016)
[26], to evaluate a highly mixed traffic data flow consisting
of multiple types of unknown services. Within this dataset,
we select data samples associated with 10 popular services,
summarized in Table 2. As our focus is on classification of
valid information, we remove the PHY and MAC headers
from the packets and limite the length of each payload to the
same size of 2500 bytes so as to achieve a proper trade-off
between the training efficiency and classification accuracy.

TABLE 2: Dataset Used for Evaluation of FS-GAN

Service # of Packets Service # of Packets
Email 32,566 Youtube 12,738

ftps (upload) 47,795 sftps (upload) 107,234
SCP (download) 85,018 Skype Video 140,569
Facebook Audio 91,815 Skype Chat 53,996

Tor-Youtube 54,294 VPN-Vimeo 215,102

We conduct our experiments on a workstation with
an Intel(R) Core(TM) i9-9900K CPU@3.60GHz, 64.0 GB
RAM@2133 MHz, 2 TB HD and two NVIDIA Corporation
GP102 [TITAN X] GPUs. Each edge server ia simuylated
with a TITAN X GPU running on Ubuntu 16.04, Python 3.6,
CUDA 10.0 and PyTorch 1.3.1. The training process between
edge servers is simulated using the PySyft framework [72].
We combine the packet of all selected traffic types into one
trace and equally divide the data into six local datasets,
each being assigned to a discriminator (an edge server).
The network architecture and parameter setting for the
generator, discriminator, and classifier are summarized in
Table 3.

TABLE 3: Simulation Setup

Architecture Setup Network Type
Generator Discriminator Classifier

Input Size 100×1 2500×1 2500×1
Output Size 2500×1 2×1 # of Generator

Activation Function LeakyReLU Sigmoid LeakyReLU
of Layers 8 6
Optimizer Adam with β1 = 0.5 and β2 = 0.9

5.2 Classification Performance
As mention earlier, compared to existing clustering solu-
tions, FS-GAN introduces a novel clustering solution for
model training by autonomously creating synthetic data
with pseudo-labels. In this subsection, we compare the clus-
tering performance of FS-GAN with existing clustering so-
lutions. We consider three commonly adopted performance
metrics:
(1) Rand Index (RI): measures the fraction of samples pairs
being correctly clustered, including similar samples being
classified into the same category and different samples being
classified into different categories. Formally, RI is defined as
follows:

RI =
TP + TN

TP + TN + FN + FP
, (10)

where TP is the number of two same-type packets being
assigned to the same traffic. TN refers to the number of
different-type packet pairs being assigned to different ser-
vice types. FN is the number of same-type packets pairs

TABLE 4: Clustering Performance of FS-GAN and State-of-the-art Schemes

Scheme Training Loss Training Method RI NMI ACC

K-means++ Mean Square Error Iterative Method 0.71 0.30 0.32

DEC Reconstruction and Pretraining and 0.82 0.39 0.39Cluster Assignment Fine-tuning

DCN Reconstruction and Pretraining and 0.81 0.31 0.35K-means Loss Joint Training

IDEC Reconstruction and Pretraining and 0.85 0.42 0.40Cluster Assignment Joint Training

FS-GAN Adversarial and Jointly Adversarial 0.89 0.62 0.58Classification Loss Training

TABLE 5: Model Training Time and Clustering Performance under Different Schemes

N n E B
Time RI NMI ACCper-round (sec)

C-I C-II C-I C-II C-I C-II C-I C-II

1 12,000 4 100 31.19 0.91 0.64 0.63
6 2,000 4 100 34.32 39.16 0.89 0.89 0.62 0.43 0.58 0.57

3 2,000 4 100 34.72 35.43 0.89 0.88 0.61 0.42 0.60 0.58
6 2,000 4 100 34.32 39.16 0.89 0.89 0.62 0.43 0.58 0.57
9 2,000 4 100 38.03 37.21 0.89 0.88 0.60 0.40 0.63 0.57

6 500 4 100 10.14 11.36 0.89 0.88 0.62 0.41 0.60 0.51
6 1000 4 100 18.33 18.14 0.89 0.89 0.60 0.47 0.56 0.55
6 2000 4 100 34.32 39.16 0.89 0.89 0.62 0.43 0.58 0.57

6 2000 2 100 20.32 19.73 0.89 0.88 0.62 0.43 0.60 0.53
6 2000 4 100 34.32 39.16 0.89 0.89 0.62 0.43 0.58 0.57
6 2000 8 100 68.15 75.32 0.89 0.90 0.64 0.47 0.61 0.54

6 2000 4 50 61.17 62.73 0.90 0.89 0.63 0.46 0.57 0.60
6 2000 4 100 34.32 39.16 0.89 0.89 0.62 0.43 0.58 0.57
6 2000 4 200 21.50 24.13 0.89 0.89 0.57 0.43 0.57 0.57

23

1141 3

35923

1141 3

359

13

0 0

813

0 0

8

59

661 91

1359

661 91

13

0

1 995

10

1 995

1

0

102 17

5130

102 17

513

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Sftps (upload)

Tor-Youtube

0

5

1195

0

1

32

0

0

767

0

VPN-Vimeo

Sftps (upload)

Email

Tor-Youtube

SCP (download)

Youtube

Facebook Audio

Skype Chat

Skype Video

Ftps (upload)

907

3 767

0907

3 767

0

15

10 1231

115

10 1231

1

9

108 0

09

108 0

0

902

9 0

0902

9 0

0

37

0 1

037

0 1

0

Sftps (upload)

VPN-Vimeo

Tor-Youtube

Email

SCP (download)

Youtube

Facebook Audio

Skype Chat

Skype Video

Ftps (upload)

1

0 0

11

0 0

1

0

1977 1431

00

1977 1431

0

1

1 0

01

1 0

0

0

2 538

00

2 538

0

0

18 29

10

18 29

1

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Sftps (upload)

Tor-Youtube

1050

0 0

2451050

0 0

245

0

0 345

00

0 345

0

37

0 0

837

0 0

8

12

901 0

012

901 0

0

0

0 1394

50

0 1394

5

Sftps (upload)

VPN-Vimeo

Tor-Youtube

Email

SCP (download)

Youtube

Facebook Audio

Skype Chat

Skype Video

Ftps (upload)

26

443 7

12026

443 7

120

652

0 0

165652

0 0

165

147

639 84

4147

639 84

4

0

4 563

00

4 563

0

89

0 1024

3389

0 1024

33

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Sftps (upload)

Tor-Youtube

832

46 6

646832

46 6

646

251

7 1140

57251

7 1140

57

317

76 36

1317

76 36

1

333

0 2

0333

0 2

0

138

0 0

112138

0 0

112

Sftps (upload)

VPN-Vimeo

Tor-Youtube

Email

SCP (download)

Youtube

Facebook Audio

Skype Chat

Skype Video

Ftps (upload)

23

1141 3

35923

1141 3

359

13

0 0

813

0 0

8

59

661 91

1359

661 91

13

0

1 995

10

1 995

1

0

102 17

5130

102 17

513

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Sftps (upload)

Tor-Youtube

108

37 0

0108

37 0

0

15

907 0

115

907 0

1

9

9 0

09

9 0

0

902

0 1

0902

0 1

0

3

10 1231

7673

10 1231

767

1

0 0

11

0 0

1

0

1977 1431

00

1977 1431

0

1

1 0

01

1 0

0

0

2 538

00

2 538

0

0

18 29

10

18 29

1

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Tor-Youtube

0

0 5

00

0 5

0

0

1050 245

00

1050 245

0

37

901 0

837

901 0

8

12

0 1394

012

0 1394

0

0

0 345

00

0 345

0Sftps (upload)

26

443 7

12026

443 7

120

652

0 0

165652

0 0

165

147

639 84

4147

639 84

4

0

4 563

00

4 563

0

89

0 1024

3389

0 1024

33

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Sftps (upload)

Tor-Youtube

76

138 112

3676

138 112

36

251

832 646

57251

832 646

57

317

0 2

1317

0 2

1

333

0 0

0333

0 0

0

46

7 1140

646

7 1140

6

23

1141 3

359

13

0 0

8

59

661 91

13

0

1 995

1

0

102 17

513

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Sftps (upload)

Tor-Youtube

108

37 0

0

15

907 0

1

9

9 0

0

902

0 1

0

3

10 1231

767

1

0 0

1

0

1977 1431

0

1

1 0

0

0

2 538

0

0

18 29

1

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Tor-Youtube

0

0 5

0

0

1050 245

0

37

901 0

8

12

0 1394

0

0

0 345

0Sftps (upload)

26

443 7

120

652

0 0

165

147

639 84

4

0

4 563

0

89

0 1024

33

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Sftps (upload)

Tor-Youtube

76

138 112

36

251

832 646

57

317

0 2

1

333

0 0

0

46

7 1140

6

(a) (b) (c)

23

1141 3

359

13

0 0

8

59

661 91

13

0

1 995

1

0

102 17

513

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Sftps (upload)

Tor-Youtube

108

37 0

0

15

907 0

1

9

9 0

0

902

0 1

0

3

10 1231

767

1

0 0

1

0

1977 1431

0

1

1 0

0

0

2 538

0

0

18 29

1

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Tor-Youtube

0

0 5

0

0

1050 245

0

37

901 0

8

12

0 1394

0

0

0 345

0Sftps (upload)

26

443 7

120

652

0 0

165

147

639 84

4

0

4 563

0

89

0 1024

33

Skype Video

SCP (download)

VPN-Vimeo

Email

Facebook Audio

Youtube

Ftps (upload)

Skype Chat

Sftps (upload)

Tor-Youtube

76

138 112

36

251

832 646

57

317

0 2

1

333

0 0

0

46

7 1140

6

(a) (b) (c)

Fig. 4: Clustering results of 10 service traffic data using: (a) FS-GAN, (b) K-means++, and (c) IDEC.

being assigned to different service types. Finally, FP is the
number of different-type packet pairs being assigned to one
service type. RI evaluates the clustering performance by
judging whether samples of the same type fall into the same
category. In particular, the value of RI must be grater than
or equal to 0 and it approaches 1 if the values of FN and FP
approach zero.
(2) Normalized Mutual Information (NMI): measures the
uncertainty that can be reduced about the ground truth
clustering result when the clustering solution is given. Let
U be the ground truth class and V be the resulting label of
the proposed clustering algorithm. NMI is defined as:

NMI(U, V) =
2MI(U, V)

H(U) +H(V)
, (11)

where MI(U, V) is the mutual information between U and
V , and H(∗) is the entropy. We have

(3) Unsupervised Accuracy (ACC): measures the best one-
to-one relationship between the resulting label of the pro-
posed clustering solution and the ground-truth classes. ACC
is defined as:

ACC =
1

n
max
σ

n∑
i=1

1yi=σ(xi) (12)

where xi and yi refer respectively, to the labels of the cluster-
ing solution and the ground-truth class for each data sample
i. σ represents all the possible one-to-one permutations
between any two class labels.

Note that each of the above three metrics takes values
between 0 and 1. The larger the better is the clustering
performance.

In Table 4, we compare FS-GAN with four clustering
solutions: K-means++, DEC [73], IDEC [74], and DCN [75]. It
can be observed that FS-GAN achieves the best performance

0 10 20 30 40 50
Training round(#)

0

0.1

0.2

0.3

0.4

0.5

0.6

N
M

I

C-I N=6 n=2K E=4 B=50
C-I N=6 n=2K E=4 B=100
C-I N=6 n=2K E=4 B=200
C-II N=6 n=2K E=4 B=50
C-II N=6 n=2K E=4 B=100
C-II N=6 n=2K E=4 B=200

(a)

0 10 20 30 40 50
Training round(#)

0

0.1

0.2

0.3

0.4

0.5

0.6

N
M

I

C-I N=6 n=2K E=2 B=100
C-I N=6 n=2K E=4 B=100
C-I N=6 n=2K E=8 B=100
C-II N=6 n=2K E=2 B=100
C-II N=6 n=2K E=4 B=100
C-II N=6 n=2K E=8 B=100

(b)

0 10 20 30 40 50
Training round(#)

0.1

0.2

0.3

0.4

0.5

0.6

N
M

I

C-I N=3 n=2K E=4 B=100
C-I N=6 n=2K E=4 B=100
C-I N=9 n=2K E=4 B=100
C-II N=3 n=2K E=4 B=100
C-II N=6 n=2K E=4 B=100
C-II N=9 n=2K E=4 B=100

(c)

0 10 20 30 40 50
Training round(#)

0

0.1

0.2

0.3

0.4

0.5

0.6

N
M

I

C-I N=6 n=0.5K E=4 B=100
C-I N=6 n=1K E=4 B=100
C-I N=6 n=2K E=4 B=100
C-II N=6 n=0.5K E=4 B=100
C-II N=6 n=1K E=4 B=100
C-II N=6 n=2K E=4 B=100

(d)

Fig. 5: Clustering performance of FS-GAN-I and FS-GAN-II based on
real-world traffic datasets.

0 10 20 30 40 50
Training round(#)

0

0.1

0.2

0.3

0.4

0.5

0.6

N
M

I

C-I N=6 n=2K E=4 B=100

C-II N=6 n=2K E=4 B=100

SD-GAN n=12K B=100

(a)

0 10 20 30 40 50
Training round(#)

0

0.1

0.2

0.3

0.4

0.5

0.6

N
M

I

C-I N=6 n=2K E=4 B=50

C-II N=6 n=2K E=4 B=50

SD-GAN n=12K B=50

(b)

Fig. 6: Clustering performance of FS-GAN and SD-GAN based on real-
world traffic datasets.

of all tested solutions in all three performance metrics. In
particular, DEC, IDEC, and DCN use deep neural networks
to recover different latent representations for clustering.
Compared to K-means++, which directly searches for cluster
centers or centroids of the data samples, deep-learning-
based solutions often achieve better performance. FS-GAN
takes a novel approach by first generating synthetic data
samples with pseudo-labels and then training a classifier
based on the labeled dataset. In some senses, this approach
addresses the poor performance caused by the lack of
labelled dataset and can result in improved performance
when the quality of the pseudo-labeled synthetic data sam-
ples is high.

To compare FS-GAN with the most state-of-the-art self-
supervised learning solution, we consider a recent extension
of the DEC algorithm, called semi-supervised DEC (SDEC)
[76], which incorporates the semi-supervised information
learned from the labelled data samples in DEC to further
improve the clustering performance. We use the SDEC
as the pretext tasks and then include the peudo-labelled
data samples into the self-supervised GAN algorithm to
train the model, we referred to this approach as the SD-

GAN. Note that, compared to FS-GAN, SD-GAN requires
labelled datasets to learn a prior information to guide the
learning process, it also requires an extra neural network
model to perform the data clustering and peudo-labelling.
In Fig. 6, we compare FS-GAN with SD-GAN with different
setups under different number of training rounds, we can
observe that FS-GAN-I outperforms SD-GAN and FS-GAN-
II achieves similar performance in terms of NMI.

To compare the impact of model training parameters
on the computational loads of FS-GAN under different
setups, we present in Table 5 the running time per round
of computation for FS-GAN in a fixed hardware and soft-
ware environment under various performance metrics for 50
rounds of model training. We mainly evaluate the impact of
four key parameters, including the number of local datasets,
size of each dataset, the number of local training steps (N ,
n, E) between two consequent global model coordination,
and the mini-batch size B. The learning results under one
centralized dataset is also presented. We can see that both
the learning time and performance of FS-GAN are slightly
degraded compared with a centralized setting, because the
model aggregation procedure is no longer needed. It can be
observed that the computational load is most sensitive to
the size of the dataset. Compared to scheme C-I, Scheme
C-II always results in slightly more computational load for
training. This is because, in scheme C-I, both generators and
discriminators are coordinated, which accelerates conver-
gence of the model training and leads to reduced overall
computational time. The improved performance offered by
Scheme C-I over C-II can be further shown in the NMI
and ACC metrics. More specifically, C-I always exhibits a
more accurate clustering performance than C-II when the
number of training rounds is fixed. C-I and C-II offer similar
performance in terms of RI. This is because RI measures
the combined performance of the correct solutions over all
the clustering results, instead of the highest performance
among individual classes as NMI and ACC. Therefore, the
performance difference in RI achieved by different schemes
is always smaller than that of the other two performance
metrics.

In Fig. 4, we present the clustering results when FS-
GAN is used to classify the 10 services in Table 2. Once
again, FS-GAN delivers superior performance to IDEC and
K-means++. Note that since K-means++ directly separates
data samples based on the centroid, it tends to cluster most
of the samples into a single or a limited number of clusters.

TABLE 6: Performance under Different Classifier Level λ

Diversity Parameter λ = 0.1 λ = 0.5 λ = 5

FS-GAN (C-I)
RI 0.89 0.89 0.90

NMI 0.60 0.60 0.64
ACC 0.57 0.58 0.60

FS-GAN (C-II)
RI 0.88 0.89 0.88

NMI 0.43 0.47 0.40
ACC 0.52 0.57 0.51

In Fig. 5, we compare the convergence performance
based on NMI under different model parameters. We can
observe that C-I always offers better convergence perfor-
mance than C-II. This result is consistent with the previous
observation. When the size of local dataset is the same,
the convergence performance is closely correlated with this
size. Specifically, the larger the dataset size, the faster is

TABLE 7: Quality of Synthesized Under Different Scenarios

Metric F-GAN(C-I) F-GAN(C-II) FS-GAN(C-I) FS-GAN(C-II)
Three-G Six-G Three-G Six-G Three-G Six-G Three-G Six-G

KL Divergence 5.643 0.360 0.226 0.224 0.091 0.043 0.188 0.099
JS Divergence 0.086 0.062 0.054 0.051 0.022 0.011 0.041 0.025

Wasserstein Distance 0.647 0.619 1.013 0.578 0.353 0.286 0.484 0.387

Email Ftps(upload) SCP (download) Sftps (upload) Skype Video Youtube
0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 N
um

be
r

of
 S

am
pl

es FGAN-I (three-G)
FGAN-II (three-G)
FSGAN-I (three-G)
FSGAN-II (three-G)
FGAN-I (six-G)
FGAN-II (six-G)
FSGAN-I (six-G)
FSGAN-II (six-G)

Fig. 7: Distribution of the assigned labels under different schemes.

the convergence of the model training process. Note that
the fluctuations in NMI is due to the interaction between
generators and discriminators in the local data synthesis as
well as the global model coordination.

As mentioned earlier, the classifier helps increasing the
diversity of the synthesized samples produced by gener-
ators. At the same time, it interferes with the adversarial
training process between the generator and discriminator.
We investigate the impact of the classifier on the data
clustering performance by adjusting the diversity hyper-
parameter λ in Equation (2). Intuitively, when the penalty
brought by the classifier becomes larger than that of the
discriminator, generators will be encouraged to produce
more diversified samples even if these samples may not
follow the same distribution as the real data. In Table 6, we
present the clustering performance of FS-GAN for different
values of λ. We can observe that a very large or small
value of λ will not typically offer the best performance The
optimal λ varies with the model setup. Finding the optimal
λ that achieves the right balance between classification and
discrimination will be left for future work.

5.3 Performance Evaluation of Traffic Data Synthesis

As mentioned earlier, FS-GAN is more than just a traffic
classification approach. It can also learn from the decentral-
ized datasets and produce synthetic data samples that cap-
ture the distribution of real data associated with unknown
services. In this subsection, we evaluate this aspect of FS-
GAN.

We compare the data synthesis capability of FS-GAN
to various extensions of multi-generator GANs with FL,
which we refer to as F-GAN. In particular, we compare the
following 4 different schemes:

1) F-GAN (three-G): 3 generators for each dataset with-
out the classifier.

2) FS-GAN (three-G): 3 generators for each dataset.
3) F-GAN (six-G): 6 generators for each dataset without

the classifier.
4) FS-GAN (six-G): 6 generators for each dataset.

As mentioned earlier, one of the key challenges of GAN-
based solutions is the possibility of triggering a model
collapse problem where, in this case, different generators
will only produce samples with limited variety regardless of
the input. In Fig. 7, we evaluate the diversity of synthesized
data samples produced by different schemes. We compare
the default numbers of synthetic samples produced by each
scheme that are associated with different services when the
same input is employed. It can be observed that different
generators tend to produce different numbers of synthetic
samples. For example, among all six types of services, SCP
(download) is the least popular service to be synthesized
with the least number of synthesized data samples, e.g.,
less than 0.02% of total synthesized samples produced by
F-GAN(C-I, six-G) falls into this service category. We, how-
ever, observe that FS-GAN, especially C-I scheme with six
generators, produces relatively uniform number of samples
for different services. This means that FS-GAN offers the
best performance in terms of balancing synthesized data
samples.

To quantify the diversity of the synthesized samples, we
use statistical distance metrics, which measure the differ-
ence between the distribution of the synthetic data samples
and that of the real service traffic data. We consider three
distance metrics: Kullback-Leibler (KL) divergence, Jensen
Shannon (JS) divergence [69], and Wasserstein (W) distance
[77], consider two random variables, p and q, with respective
distributions p(x) and q(x). Table 7 provides the distance
results under both FS-GAN and F-GAN. FS-GAN achieves
the smallest distance between synthetic and real data, where
the JS divergence under FS-GAN-I is shown to be as low as
0.011, almost one fifth of the lowest distance result achieved
by F-GAN. This means that the proposed FS-GAN is ideal
to classify and synthesize highly heterogeneous traffic flows
with mixed services.

6 CONCLUSIONS

In this paper, we proposed FS-GAN, a federated self-
supervised learning framework to automatically recognize,
classify, and synthesize different types of traffic over a
large number of decentralized datasets. FS-GAN consists
of three components: local data synthesis, global model
coordination, and self-supervised learning. We adopted an
FL-like approach and proved that our jointly trained global
model can simultaneously minimize the JSD between the
distribution of real data across all the datasets and that of the
synthesized data samples.It also maximizes the JSD among
the distributions of data samples created by different gen-
erators. Simulation results show that FS-GAN can achieve
significant performance improvement over state-of-art data
clustering solutions, and almost five times improvement
over the federated GAN solutions in terms of data synthesis
diversity.

REFERENCES

[1] K. Pentikousis, Y. Wang, and W. Hu, “Mobileflow: Toward
software-defined mobile networks,” IEEE Communications Maga-
zine, vol. 51, no. 7, pp. 44–53, Jul. 2013.

[2] V. Yazıcı, U. C. Kozat, and M. O. Sunay, “A new control plane for
5G network architecture with a case study on unified handoff, mo-
bility, and routing management,” IEEE Communications Magazine,
vol. 52, no. 11, pp. 76–85, Nov. 2014.

[3] M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless
Networks: A comprehensive survey,” IEEE Communications Sur-
veys & Tutorials, vol. 18, no. 3, pp. 1617–1655, Feb. 2016.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technolo-
gies, protocols, and applications,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 4, pp. 2347–2376, Jun. 2015.

[5] Y. Xiao, M. Krunz, and T. Shu, “Multi-operator network sharing
for massive iot,” IEEE Communications Magazine, vol. 57, no. 4, pp.
96–101, Apr. 2019.

[6] T. Luettel, M. Himmelsbach, and H. Wuensche, “Autonomous
ground vehicles—concepts and a path to the future,” Proceedings
of the IEEE, vol. 100, pp. 1831–1839, Apr. 2012.

[7] “ITU 2019 network 2030,” Geneva, Jul.
2018. [Online]. Available: https://www.itu.int/en/ITU-
T/focusgroups/net2030/Pages/default.aspx

[8] I. FG-NET2030, “New services and capabilities for network 2030:
description, technical gap and performance target analysis,” Oct.
2019.

[9] Y. Xiao and M. Krunz, “Distributed optimization for energy-
efficient fog computing in the Tactile Internet,” IEEE J. Sel. Areas
Commun., vol. 36, no. 11, pp. 2390–2400, Nov. 2018.

[10] G. Shi, Y. Xiao, Y. Li, and X. Xie, “From semantic communication
to semantic-aware networking: Model, architecture, and open
problems,” IEEE Commun. Magazine, vol. 59, no. 8, pp. 44–50, Aug.
2021.

[11] Y. Xiao, Z. Sun, G. Shi, and D. Niyato, “Imitation learning-
based implicit semantic-aware communication networks: Multi-
layer representation and collaborative reasoning,” IEEE J. Sel.
Areas Commun., vol. 41, no. 3, March 2023.

[12] Y. Xiao, G. Shi, Y. Li, W. Saad, and H. V. Poor, “Towards self-
learning edge intelligence in 6G,” IEEE Communications Magazine,
vol. 58, no. 12, Dec. 2020.

[13] M. Reiter and R. Steinberg, “Forward contracts for complementary
segments of a communication network,” in IEEE INFOCOM, San
Diego, USA, Mar. 2010, pp. 1–9.

[14] Y. Xiao and M. Krunz, “AdaptiveFog: A modelling and optimiza-
tion framework for fog computing in intelligent transportation
systems,” IEEE Transactions on Mobile Computing, vol. 21, no. 12,
pp. 4187–4200, Dec. 2022.

[15] X. Wang, S. Chen, and J. Su, “App-net: A hybrid neural network
for encrypted mobile traffic classification,” in IEEE INFOCOM,
Virtual conference, Jul. 2020, pp. 424–429.

[16] M. H. Almannaa, M. Elhenawy, and H. A. Rakha, “A novel
supervised clustering algorithm for transportation system appli-
cations,” IEEE Transactions on Intelligent Transportation Systems,
vol. 21, no. 1, pp. 222–232, Jan. 2020.

[17] J. Zhang, F. Li, F. Ye, and H. Wu, “Autonomous unknown-
application filtering and labeling for dl-based traffic classifier
update,” in IEEE INFOCOM, Virtual conference, Jul. 2020, pp. 397–
405.

[18] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang,
“Self-supervised learning: Generative or contrastive,” IEEE Trans-
actions on Knowledge and Data Engineering, 2021.

[19] X. Wang, S. Zhang, Z. Qing, Y. Shao, C. Gao, and N. Sang,
“Self-supervised learning for semi-supervised temporal action
proposal,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Jun. 2021.

[20] N. Araslanov and S. Roth, “Self-supervised augmentation consis-
tency for adapting semantic segmentation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Jun. 2021.

[21] Y. LeCun, “Self-supervised learning.” Keynote Presentation at
AAAI 2020 conference, Feb. 2020.

[22] S. B. Baker, W. Xiang, and I. Atkinson, “Internet of things for
smart healthcare: Technologies, challenges, and opportunities,”
IEEE Access, vol. 5, pp. 26 521–26 544, 2017.

[23] D. Perepelkin and M. Ivanchikova, “Problem of network traffic
classification in multiprovider cloud infrastructures based on ma-
chine learning methods,” Budva, Jun. 2021.

[24] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[25] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang,
Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile
edge networks: A comprehensive survey,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.

[26] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghor-
bani, “Characterization of encrypted and vpn traffic using time-
related features,” in ICISSP, Portugal, Feb. 2016, pp. 407–414.

[27] P. Tang, Y. Dong, and S. Mao, “Online traffic classification using
granules,” in IEEE INFOCOM, Virtual conference, Jul. 2020, pp.
1135–1140.

[28] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “Fs-net: A flow sequence
network for encrypted traffic classification,” in IEEE INFOCOM,
Paris, France, Apr. 2019, pp. 1171–1179.

[29] E. Areström and N. Carlsson, “Early online classification of
encrypted traffic streams using multi-fractal features,” in IEEE
INFOCOM, Paris, France, Apr. 2019, pp. 84–89.

[30] E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural packet classifica-
tion,” Proceedings of the ACM Sigcomm, Beijing, China, Aug. 2019.

[31] R. Li, X. Xiao, S. Ni, H. Zheng, and S. Xia, “Byte segment neural
network for network traffic classification,” in IEEE ACM IWQoS,
Alberta, Canada, Jun. 2018, pp. 1–10.

[32] A. Nascita, A. Montieri, G. Aceto, D. Ciuonzo, V. Persico, and
A. Pescapé, “Xai meets mobile traffic classification: Understanding
and improving multimodal deep learning architectures,” IEEE
Transactions on Network and Service Management, 2021.

[33] A. M. Sadeghzadeh, S. Shiravi, and R. Jalili, “Adversarial network
traffic: Towards evaluating the robustness of deep-learning-based
network traffic classification,” IEEE Transactions on Network and
Service Management, vol. 18, no. 2, pp. 1962–1976, 2021.

[34] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Distiller:
Encrypted traffic classification via multimodal multitask deep
learning,” Journal of Network and Computer Applications, vol. 183,
p. 102985, 2021.

[35] O. Aouedi, K. Piamrat, and B. Parrein, “Ensemble-based deep
learning model for network traffic classification,” IEEE Transac-
tions on Network and Service Management, pp. 1–12, 2022.

[36] D. Jin, Y. Lu, J. Qin, Z. Cheng, and Z. Mao, “Swiftids: Real-
time intrusion detection system based on lightgbm and parallel
intrusion detection mechanism,” Computers Security, vol. 97, pp.
1–12, 2020.

[37] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Transactions on Intelligent
Systems and Technology, vol. 10, no. 2, pp. 1–19, Jan. 2019.

[38] H. Wen, Y. Wu, C. Yang, H. Duan, and S. Yu, “A unified feder-
ated learning framework for wireless communications: towards
privacy, efficiency, and security,” in IEEE INFOCOM, Virtual con-
ference, Jul. 2020, pp. 653–658.

[39] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated
learning on non-iid data with reinforcement learning,” in IEEE
INFOCOM, Virtual conference, Jul. 2020, pp. 1698–1707.

[40] Q. Li, Z. Wen, and B. He, “Federated learning systems: Vi-
sion, hype and reality for data privacy and protection,” ArXiv:
1907.09693, Jul. 2019.

[41] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process-
ing Magazine, vol. 37, no. 3, pp. 50–60, May 2020.

[42] J. Shi, H. Zhao, M. Wang, and Q. Tian, “Signal recognition based
on federated learning,” in IEEE INFOCOM, Virtual conference, Jul.
2020, pp. 1105–1110.

[43] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the
convergence of fedavg on non-iid data,” ICLR, New Orleans, Apr.
2019.

[44] X. Zhu, N. Shu, H. Wang, and T. Wu, “A distributed traffic classi-
fication model based on federated learning,” in IEEE International
Conference on Big Data Computing and Communications (BigCom),
2021, pp. 75–81.

[45] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37,
no. 6, pp. 1205–1221, June 2019.

[46] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning design,” in IEEE INFOCOM, Virtual confer-
ence, 2021.

[47] Y. Xiao, Y. Li, G. Shi, and H. V. Poor, “Optimizing resource
efficiency for federated edge intelligence in iot networks,” in Inter-
national Conference on Wireless Communications and Signal Processing
(WCSP), Nanjing, China, Oct. 2020.

[48] Y. Xiao, X. Zhang, Y. Li, G. Shi, M. Krunz, D. N. Nguyen, and D. T.
Hoang, “Time-sensitive learning for heterogeneous federated edge
intelligence,” accepted at IEEE Transactions on Mobile Computing,
Jan. 2023.

[49] Y. Xiao, Y. Li, G. Shi, and H. V. Poor, “Reasoning on the air: An
implicit semantic communication architecture,” in Proc. of the IEEE
ICC Workshop on Data Driven Intelligence for Networks and Systems,
Seoul, South Korea, May 2022.

[50] Y. Xiao, X. Zhang, Y. Li, G. Shi, and T. Basar, “Rate-distortion
theory for strategic semantic communication,” in Proc. of the IEEE
Information Theory Workshop, Mumbai, India, Nov. 2022.

[51] L. Zhang, J. Xu, P. Vijayakumar, P. K. Sharma, and U. Ghosh,
“Homomorphic encryption-based privacy-preserving federated
learning in iot-enabled healthcare system,” IEEE Transactions on
Network Science and Engineering, pp. 1–17, 2022.

[52] S. Lu, Z. Gao, Q. Xu, C. Jiang, A. Zhang, and X. Wang, “Class-
imbalance privacy-preserving federated learning for decentralized
fault diagnosis with biometric authentication,” IEEE Transactions
on Industrial Informatics, pp. 1–11, 2022.

[53] C.-L. Li, K. Sohn, J. Yoon, and T. Pfister, “Cutpaste: Self-supervised
learning for anomaly detection and localization,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Jun. 2021.

[54] K. Sun, Z. Lin, and Z. Zhu, “Multi-stage self-supervised learning
for graph convolutional networks on graphs with few labeled
nodes,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, no. 04, New York, USA, Feb. 2020.

[55] A. Saeed, F. D. Salim, T. Ozcelebi, and J. Lukkien, “Federated self-
supervised learning of multisensor representations for embedded
intelligence,” IEEE Internet of Things Journal, vol. 8, no. 2, pp. 1030–
1040, 2021.

[56] J. Z. Bengar, J. van de Weijer, B. Twardowski, and B. Raducanu,
“Reducing label effort: Self-supervised meets active learning,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 1631–1639.

[57] Y. Zhang, J. Wang, Y. Chen, H. Yu, and T. Qin, “Adaptive memory
networks with self-supervised learning for unsupervised anomaly
detection,” IEEE Transactions on Knowledge and Data Engineering,
pp. 1–13, 2022.

[58] Y. Shi, N. Siddharth, P. Torr, and A. R. Kosiorek, “Adversarial
masking for self-supervised learning,” in Proceedings of the 39th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, vol. 162, 17–23 Jul 2022, pp. 20 026–
20 040.

[59] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial
Nets,” in NIPS, Montreal, Canada, Dec. 2014, pp. 2672–2680.

[60] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence Gener-
ative Adversarial Nets with Policy Gradient,” in AAAI conference
on artificial intelligence, San Francisco, California USA, Feb. 2017.

[61] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets,” in NIPS,
Barcelona, Spain, Dec. 2016, pp. 2172–2180.

[62] Q. Hoang, T. D. Nguyen, T. Le, and D. Phung, “MGAN: Training
Generative Adversarial Nets with Multiple Generators,” in ICLR,
Vancouver, Canada, May 2018.

[63] A. Ghosh, V. Kulharia, V. P. Namboodiri, P. H. Torr, and P. K. Doka-
nia, “Multi-agent Diverse Generative Adversarial Networks,” in
ICPR, Beijing, China, Aug. 2018, pp. 8513–8521.

[64] H. Zhang, S. Xu, J. Jiao, P. Xie, R. Salakhutdinov, and E. P. Xing,
“Stackelberg GAN: Towards Provable Minimax Equilibrium via
Multi-Generator Architectures,” Nov. 2018.

[65] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-Efficient Learning of Deep Networks
from Decentralized Data,” in AISTATS, vol. 54, Ft. Lauderdale,
USA, Apr. 2017, pp. 1273–1282.

[66] “Release 16,” Jul. 2020. [Online]. Available:
https://www.3gpp.org/release-16

[67] N. Mangrulkar, A. Bhagat Patil, and A. Pande, “Network attacks
and their detection mechanisms: A review,” International Journal of
Computer Applications, vol. 90, Feb. 2014.

[68] K. Duan, S. S. Keerthi, W. Chu, S. K. Shevade, and A. N. Poo,
“Multi-category classification by soft-max combination of binary
classifier,” in Multiple Classifier Systems, Berlin, Heidelberg, Jun.
2003, pp. 125–134.

[69] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Transactions on Information theory, vol. 37, no. 1, pp. 145–151, Sep.
1991.

[70] M. Rasouli, T. Sun, and R. Rajagopal, “FedGAN: Federated Gen-
erative Adversarial Networks for Distributed Data,” arXiv preprint
arXiv: 2006.07228, Jun. 2020.

[71] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Feder-
ated learning with non-iid data,” ArXiv preprint arXiv: 1806.00582,
Jun. 2018.

[72] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert,
and J. Passerat-Palmbach, “A generic framework for privacy pre-
serving deep learning,” arXiv preprint arXiv:1811.04017, 2018.

[73] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embed-
ding for clustering analysis,” in ICML, NY, USA, Jun. 2016, pp.
478–487.

[74] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded
clustering with local structure preservation.” in IJCAI, Melbourne,
Australia, Aug. 2017, pp. 1753–1759.

[75] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-
means-friendly spaces: Simultaneous deep learning and cluster-
ing,” in ICML, Sydney, Australia, Aug. 2017, pp. 3861–3870.

[76] Y. Ren, K. Hu, X. Dai, L. Pan, S. C. Hoi, and Z. Xu, “Semi-
supervised deep embedded clustering,” Neurocomputing, vol. 325,
pp. 121–130, 2019.

[77] S. Vallender, “Calculation of the wasserstein distance between
probability distributions on the line,” Theory of Probability & Its
Applications, vol. 18, no. 4, pp. 784–786, Feb. 1973.

[78] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Trans. Inf. Theor., vol. 37, no. 1, Jan. 1991.

Yong Xiao (Senior Member, IEEE) received his
B.S. degree in electrical engineering from China
University of Geosciences, Wuhan, China in
2002, M.Sc. degree in telecommunication from
Hong Kong University of Science and Technol-
ogy in 2006, and his Ph. D degree in electrical
and electronic engineering from Nanyang Tech-
nological University, Singapore in 2012. He is
now a professor in the School of Electronic In-
formation and Communications at the Huazhong
University of Science and Technology (HUST),

Wuhan, China. He is also with Peng Cheng Laboratory, Shenzhen,
China and Pazhou Laboratory (Huangpu), Guangzhou, China. He is the
associate group leader of the network intelligence group of IMT-2030
(6G promoting group) and the vice director of 5G Verticals Innovation
Laboratory at HUST. His research interests include machine learning,
game theory, distributed optimization, and their applications in semantic
communications and semantic-aware networks, cloud/fog/mobile edge
computing, green communication systems, wireless communication net-
works, and Internet-of-Things (IoT).

Rong Xia received her B.S. degree and M.Sc.
degree both in information and communication
engineering from Huazhong University of Sci-
ence and Technology, Wuhan, China in 2018
and 2022, respectively. Her research interests
include federated edge intelligence and edge
computing networks.

Yingyu Li (Member, IEEE) received the B.Eng.
degree in electronic information engineering and
the Ph.D. degree in circuits and systems from
the Xidian University, Xi’an, China, in 2012 and
2018, respectively. From 2014 to 2016, she
was a Research Scholar with the Department
of Electronic Computer Engineering at the Uni-
versity of Houston, TX, USA. She was a post-
doctoral researcher in the School of Electronic
Information and Communications at Huazhong
University of Science and Technology from 2018

to 2021. She is now an associate professor at the School of Me-
chanical Engineering and Electronic Information, China University of
Geosciences (Wuhan). Her research interests include semantic commu-
nications, edge intelligence, green communication networks, and IoT.

Guangming Shi (Fellow, IEEE) received the
M.S. degree in computer control and the Ph.D.
degree in electronic information technology from
Xidian University, Xi’an, China, in 1988, and
2002, respectively. He was the vice president of
Xidian University from 2018 to 2022. Currently,
he is the Vice Dean of Peng Cheng Laboratory
and a Professor with the School of Artificial Intel-
ligence, Xidian University. He is an IEEE Fellow,
the chair of IEEE CASS Xi’an Chapter, senior
member of ACM and CCF, Fellow of Chinese

Institute of Electronics, and Fellow of IET. He was awarded Cheung
Kong scholar Chair Professor by the ministry of education in 2012.
He won the second prize of the National Natural Science Award in
2017. His research interests include Artificial Intelligence, Semantic
Communications, and Human-Computer Interaction.

Diep N. Nguyen (Senior Member, IEEE) re-
ceived the M.E. degree in electrical and com-
puter engineering from the University of Califor-
nia at San Diego (UCSD), La Jolla, CA, USA,
in 2008, and the Ph.D. degree in electrical and
computer engineering from The University of
Arizona (UA), Tucson, AZ, USA, in 2013. He
is currently a Faculty Member with the Faculty
of Engineering and Information Technology, Uni-
versity of Technology Sydney (UTS), Sydney,
NSW, Australia. Before joining UTS, he was a

DECRA Research Fellow with Macquarie University, Macquarie Park,
NSW, Australia, and a Member of the Technical Staff with Broadcom
Corporation, San Jose, CA, USA, and ARCON Corporation, Boston,
MA, USA, and consulting the Federal Administration of Aviation, Wash-
ington, DC, USA, on turning detection of UAVs and aircraft, and the
U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base,
OH, USA, on anti-jamming. His research interests include computer
networking, wireless communications, and machine learning applica-
tion, with emphasis on systems’ performance and security/privacy. Dr.
Nguyen received several awards from LG Electronics, UCSD, UA, the
U.S. National Science Foundation, and the Australian Research Council.
He is currently an Editor, an Associate Editor of the IEEE Transac-
tions on Mobile Computing, IEEE Communications Surveys & Tutorials
(COMST), IEEE Open Journal of the Communications Society, and
Scientific Reports (Nature’s).

Dinh Thai Hoang (Senior Member, IEEE) is cur-
rently a faculty member at the School of Elec-
trical and Data Engineering, University of Tech-
nology Sydney, Australia. He received his Ph.D.
in Computer Science and Engineering from the
Nanyang Technological University, Singapore, in
2016. His research interests include emerging
wireless communications and networking top-
ics, especially machine learning applications in
networking, edge computing, and cybersecurity.
He has received several awards, including the

Australian Research Council and IEEE TCSC Award for Excellence
in Scalable Computing (Early Career Researcher). He is an Editor of
IEEE Transactions on Wireless Communications, IEEE Transactions
on Cognitive Communications and Networking, IEEE Transactions on
Vehicular Technology, and Associate Editor of IEEE Communications
Surveys & Tutorials.

Dusit Niyato (Fellow, IEEE) is a professor in the
School of Computer Science and Engineering,
at Nanyang Technological University, Singapore.
He received B.Eng. from King Mongkuts Institute
of Technology Ladkrabang (KMITL), Thailand in
1999 and Ph.D. in Electrical and Computer Engi-
neering from the University of Manitoba, Canada
in 2008. His research interests are in the areas
of Internet of Things (IoT), machine learning,
and incentive mechanism design.

Marwan Krunz (Fellow, IEEE) is a Regents Pro-
fessor at the University of Arizona. He holds the
Kenneth VonBehren Endowed Professorship in
ECE and is also a professor of computer sci-
ence. He directs the Broadband Wireless Ac-
cess and Applications Center (BWAC), a multi-
university NSF/industry center that focuses on
next-generation wireless technologies. He also
holds a courtesy appointment as a professor
at University Technology Sydney. Previously, he
served as the site director for Connection One,

an NSF/industry-funded center of five universities and 20+ industry af-
filiates. Dr. Krunz’s research is in the fields of wireless communications,
networking, and security, with recent focus on applying AI and machine
learning techniques for protocol adaptation, resource management, and
signal intelligence. He has published more than 320 journal articles
and peer-reviewed conference papers, and is a named inventor on 12
patents. His latest h-index is 60. He is an IEEE Fellow, an Arizona
Engineering Faculty Fellow, and an IEEE Communications Society Dis-
tinguished Lecturer (2013-2015). He received the NSF CAREER award.
He served as the Editor-in-Chief for the IEEE Transactions on Mobile
Computing. He also served as editor for numerous IEEE journals. He
was the TPC chair for INFOCOM’04, SECON’05, WoWMoM’06, and
Hot Interconnects 9. He was the general vice-chair for WiOpt 2016
and general co-chair for WiSec’12. Dr. Krunz served as chief scien-
tist/technologist for two startup companies that focus on 5G and beyond
wireless systems.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: According to the multi-player zero-sum game
in Equation (2), classifier Cd tries to maximize the softmax
quantity V (C), where

V (C) =

∫
x

M∑
m=1

πmPGm
d
(x) logCm

d (x)dx

=

∫
x
π1PG1

d
(x) log(1−

M∑
m=2

Cm
d (x))dx

+

∫
x

M∑
m=2

πmPGm
d
(x) logCm

d (x)dx.

(13)

In order to get the optimal classifier, we first calculate
the functional derivative w.r.t. Cm

d ,m = 2, 3, ...,M , we get:

∂V (C)

∂Cm
d (x)

=
πmPGm

d
(x)

Cm
d (x)

−
π1PG1

d
(x)

Cm
d (x)

. (14)

Then, by setting the above equation to zero for m ∈
{2, 3, ...,M}, we obtain:

π1PG1
d
(x)

C1
d(x)

=
πmPGm

d
(x)

Cm
d (x)

,∀m ∈ {2, 3, ...,M}. (15)

Given the fact that all the training samples used
by classifier definitely come from generators, meaning∑M

m=1 C
m
d (x) = 1, we can get the optimal solution of

classifier Cm
d , that is:

Cm
d

∗(x; θd) =
πmPGm

d
(x)∑M

i=1 πiPGi
d
(x)

,m ∈ {1, 2, ...,M}. (16)

This concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: Let the optimal discriminator be Dd
∗. Here,

we directly use the conclusion in [59] that Dd
∗ =

P d
data(x)

P d
data(x) + P d

model(x)
. Denote the quantity function of gen-

erators as V (G). According to the multi-player zero-sum
game in (2), given the optimal discriminator Dd

∗ above and
classifier Cd

∗ in proposition 1, generators try to minimize:

V (G(x;ωd)) =Ex∼Pd
data

[log
P d
data(x)

P d
data(x) + P d

model(x)
]

+ Ex∼Pd
model

[log
P d
model(x)

P d
data(x) + P d

model(x)
]

− λ{
M∑

m=1

πmEx∼PGm
d
[log

πmPGm
d
(x)∑M

i=1 πiPGi
d
(x)

]}.

(17)
The first two terms in the right-hand of (17) is same

as in the standard GANs [59], which equals to 2 ·
JSD(P d

data∥P d
model) − log 4. Here, we focus on the last term

of this equation to clarify the effect of the auxiliary classifier.

In light of the conclusion in standard GANs, we can
formulate (17) as follows:

V (G(x;ωd)) =2 · JSD(P d
data∥P d

model)− log 4

− λ{
M∑

m=1

πmEx∼PGm
d
[log

πmPGm
d
(x)∑M

i=1 πiPGi
d
(x)

]}

(18)
In order to convey the proof more clearly, we use

−λ{V̂ } to denote the last term in (18), and let P̂G(x) =∑M
m=1 πmPGm

d
(x). Then, We have:

V̂ =
M∑

m=1

πmEx∼PGm
d
[log

πmPGm
d
(x)∑M

i=1 πiPGi
d
(x)

] (19a)

=
M∑

m=1

πmEx∼PGm
d
[log

PGm
d
(x)

P̂G(x)
] +

M∑
m=1

πm log πm

(19b)

= π1Ex∼P
G1

d

[log
PG1

d
(x)

P̂G(x)
] + ...

+ πMEx∼P
GM

d

[log
PGM

d
(x)

P̂G(x)
] +

M∑
m=1

πm log πm.

(19c)

Using the standard definition of KL divergence, the
above formula can be expressed by the sum of multiple KL
divergences and the negative entropy of π, that is:

V̂ = π1 · KL(PG1
d
(x)∥P̂G) + ...

+ πM · KL(PGM
d
(x)∥P̂G) +

M∑
m=1

πm log πm (20a)

=
M∑

m=1

πmKL(PGm
d
(x)∥P̂G) +

M∑
m=1

πm log πm (20b)

= JSDπ1,π2,...,πM
(PG1

d
, PG1

d
, ..., PGM

d
) +

M∑
m=1

πm log πm,

(20c)

where JSDπ1,π2,...,πM
(PG1

d
, PG1

d
, ..., PGM

d
) is the generalized

Jensen-Shannon divergence [78]. Therefore, we can rewrite
the quantity function of generators in equation (17) as:

V (G(x;ωd)) =2 · JSD(P d
data∥P d

model)− log 4− λ{V̂ }

(21a)

=2 · JSD(P d
data∥P d

model)

− λ · JSDπ1,π2,...,πM
(PG1

d
, PG2

d
, ..., PGM

d
)

− λ
M∑

m=1

πm log πm − log 4. (21b)

Ignoring the last two constant terms, we can finally
get the objective function of generators in equation (6).
Therefore, optimizing the generators is equivalent to min-
imizing the JD divergence between P d

data and P d
model while

maximizing the differences among those generators. This
concludes our proof.

APPENDIX C
PROOF OF THEOREM 1

Proof: In order to further simplify the objective func-
tion of generators in Proposition 2, we firstly recast equation
of V̂ in (19):

V̂ =
M∑

m=1

πmEx∼PGm
d
[log

πmPGm
d
(x)∑M

i=1 πiPGi
d
(x)

]. (22)

It can be observed that V̂ ≤ 0 and the equality occurs

only if
πmPGm

d
(x)∑M

i=1 πiPGi
d
(x)

= 1. Therefore, we have PGm
d
(x) ̸=

0 →
∑

i ̸=m πiPGi
d
(x) = 0 → ∀i ̸= m, PGi

d
(x) = 0.

In this case, different generators are well-separated without
overlapping. Further, we can rewrite the objective function
of generators in Proposition 2 under V̂ = 0:

Gd
∗(x;ωd) = argmin

G
2 · JSD(P d

data∥P d
model). (23)

This is a much simpler formulation and we can get its
optimal solution directly, that is: P d

data = P d
model. When

Assumption 1 holds, which constraints the real data dis-
tribution to be a mixture of M components pmd (x),m =
1, 2, ...,M , we can easily get the results in (8b) and (8c), that
is:

P ∗
Gm

d
(x) = pmd (x), ∀m = 1, 2, ...,M, (24a)

P d
model(x) =

M∑
m=1

πmP ∗
Gm

d
(x) = P d

data(x). (24b)

Up to now, we have proved that at the equilibrium point
of the multi-player zero-sum game, generators can synthe-
size a mixture of traffic types, with the same distirbution as
real in a local dataset. In order to evaluate the performance
of the classifier, we substitute the well-separated optimal
solution PGm

d
into Proposition 1. It can be seen that Cm

d
∗

equals to 1 when x is drawn from PGm
d
(x); otherwise,

Cm
d

∗ is 0. Therefore, the optimal classifier can differentiate
all the samples produced by different generators correctly.
Formally, we have:

Cm
d

∗(x) =

{
1, x ∼ PGw

d
, w = m

0, x ∼ PGw
d
, w ̸= m

∀m = 1, 2, . . . ,M,

(25)
Besides, when P d

data = P d
model, meaning generators are

synthesizing high-quality samples, the classifier will also
be able to classify real samples from the local dataset, e.g.,
labeling different local services. This concludes our proof.

