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Abstract—The licensed spectrum of cellular networks has
become increasingly crowded, leading to the standardization
of LTE licensed assisted access (LTE-LAA) and 5G NR-U for
deployment in unlicensed bands such as 5 GHz. To coexist har-
moniously with other unlicensed wireless technologies like WiFi,
LAA and 5G NR-U enforce listen-before-talk (LBT) protocol.
This paper proposes methods to enhance the overall spectrum
efficiency and fairness of each coexisting heterogeneous link. To
improve the overall spectrum efficiency, we propose enabling
concurrent transmissions of multiple links. Motivated by the need
for fair coexistence of heterogeneous networks with concurrent
transmissions, we formulate a variant of the multi-armed bandit
(MAB) problem that finds a probabilistic transmission strategy
to maximize the minimum link throughput. We propose the Fair
Probabilistic Explore-Then-Commit (FP-ETC) algorithm, which
achieves the expected regret of O

(
T

2
3 (K log T )

1
3

)
. We compare

FP-ETC with existing MAB algorithms via extensive simulations,
and the results show that FP-ETC significantly outperforms the
baseline algorithms.

Index Terms—Online learning, probabilistic multi-armed ban-
dit, max-min fairness, explore-then-commit.

I. INTRODUCTION

Due to the limited availability of licensed spectrum for
cellular networks, 3GPP has standardized the usage of 5 GHz
unlicensed bands for LTE-LAA [1]. Later on, the utilization
of both 5 GHz and 6 GHz unlicensed spectrum was extended
for 5G NR-U [2]. For medium access control (MAC), both
LTE-LAA and 5G NR-U adopt listen-before-talk (LBT) to
coexist harmoniously with other wireless technologies (e.g.,
WiFi) in these unlicensed bands. LBT is similar to carrier
sense multiple access with collision avoidance (CSMA/CA)
adopted in WiFi networks. LBT and CSMA/CA enforce clear
channel assessment (CCA), which utilizes energy detection
(ED) to determine if a channel is occupied or clear.

These collision avoidance-based MAC protocols have led
to inefficient spectrum utilization [3], [4]. Fairness is also an
important issue in heterogeneous network coexistence such
as LAA/WiFi. There exists an asymmetry between the ED
thresholds of LAA and WiFi links. Specifically, WiFi devices
have an ED threshold of -62 dBm [5], while LAA devices
have a lower ED threshold of -72 dBm [1]. The different ED
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thresholds, combined with other differences in contention and
transmission parameters (such as transmission durations), can
result in unfair coexistence between LAA and WiFi networks
[4].

A. Motivation
Concurrent transmissions of multiple heterogeneous links

have been proposed to improve the spectrum utilization. The
capture effect [6], multiple-input and multiple-output (MIMO)
[7], and successive interference cancellation (SIC) [8], [9] can
all be leveraged to recover the interfered signals. We use a
toy example in Fig. 1 to demonstrate the potential throughput
improvement, where the set of concurrently transmitting links
is defined as concurrent transmission set (CTS). The trans-
mission power of WiFi AP and LAA eNodeB are both set as
23 dBm [1], [5]. We simulate the normalized throughput of
both LAA and WiFi links. The capture effect [6] is considered
in LAA UE and WiFi STA. In Fig. 1(a), we observe that the
total normalized throughput of both networks under collision
avoidance is approximately 0.98 (0.58 for WiFi and 0.4 for
LAA links). In Fig. 1(b), we allow concurrent transmissions
for both links, and the total normalized throughput is increased
from 0.98 to 1.27 with concurrent transmissions, resulting in
an improved total throughput.

LAA eNodeB UE WiFi AP STA

-72 dBm

50 m

15 m

20 m

(a) Collision avoidance, thrL =
0.40, thrW = 0.58.

LAA eNodeB UE WiFi AP STA

50 m

15 m20 m

(b) Concurrent transmission,
thrL = 0.33, thrW = 0.94

Fig. 1: Toy example of two-link LAA/WiFi coexistence.

While concurrent transmissions can improve the overall
throughput, optimizing the transmission strategy for fairness
objectives, such as max-min fairness, is not straightforward.
For example, in Fig. 1(b), always transmitting both LAA and
WiFi links concurrently does not achieve optimal max-min
fairness since the minimum link throughput is only 0.33. To
improve fairness, one can propose a transmission strategy
where LAA transmits alone with a probability of 0.379,
and LAA and WiFi concurrently transmit with a probability
of 0.621. This optimized transmission strategy results in a
minimum link throughput of 0.58, an improvement from the
previous strategy.



In practice, the transmission success probabilities (and
throughput) of each link within each CTS are unknown a
priori. While offline training can be used to collect such infor-
mation, it can incur significant overhead and delay due to the
large number of CTSes [9]–[11]. Therefore, an online learning
approach is preferred, where the link success probabilities are
learned while (concurrent) transmissions happen, and optimal
transmission decisions are made on-the-fly to maximize certain
performance objective (e.g., total or minimum throughput).

B. Related Work and Challenges

The stochastic multi-armed bandit (MAB) problem [12] is a
classic problem for sequential decision-making in an uncertain
environment. The goal of the decision-maker is to maximize
the expected cumulative reward. The MAB model has been
widely applied in practice, such as cognitive radio networks
[13] and resource allocation [14]. However, the basic MAB
model has limited efficiency in a combinatorial setting, where
there can be a large number of arms (e.g., exponential) and
multiple arms can be played simultaneously. To address these
challenges, the combinatorial multi-armed bandit (CMAB)
[15], [16] has been proposed. In CMAB, the decision-maker
plays a super arm, which consists of multiple individual arms,
in each round. The rewards of the selected individual arms are
then observed.

However, neither the basic MAB or CMAB can solve
our problem. The basic MAB model overlooks the fact that
multiple links can be simultaneously transmitted. And unlike
the CMAB model, in our problem, the reward (throughput) of
each CTS is not a linear combination of the rewards of each
individual link. Furthermore, the reward of a link in one CTS is
not related to the corresponding link’s reward in another CTS,
as they form different coexistence topologies. Thus, there does
not exist any correlation for the rewards across different link
sets/combinations.

In addition, several works have considered fairness in bandit
algorithms. For example, the FAIRBANDIT algorithm, pro-
posed in [17], plays all arms with equal probability until they
can be distinguished with a high degree of confidence. Other
works, such as [18], [19], propose fair MAB algorithms that
ensure each arm is pulled at least a pre-specified fraction
of the time. However, these values are difficult to determine
in practice, since the algorithm does not know which CTS
performs better than others in advance. Another work [20]
proposes Maxmin-UCB, which integrates max-min fairness
into the UCB algorithm. However, for our problem, using
Maxmin-UCB will lead to poor performance, as not all links
are active in each CTS in our problem, and Maxmin-UCB
does not utilize a probabilistic strategy (instead it identifies
the best arm).

C. Contributions

Our main contributions are summarized as follows:
(1) Motivated by the fair coexistence of heterogeneous net-

works with concurrent transmissions, we formulate a variant
of the multi-armed bandit problem that finds a probabilistic

transmission strategy to maximize the minimum link through-
put. We also define a novel notion of regret under this setting.

(2) We propose the Fair Probabilistic Explore-Then-Commit
(FP-ETC) algorithm to solve the above probabilistic multi-
armed bandit problem. We also obtain a sublinear regret upper
bound for the proposed algorithm.

(3) We conduct extensive simulations to evaluate the ef-
fectiveness of the proposed algorithm. We compare FP-ETC
with three baselines, namely UCB and ETC for maximizing
the total CTS throughput, and Maxmin-UCB. Simulation re-
sults show that FP-ETC significantly outperforms the baseline
algorithms. Finally, we show that our proposed algorithm is
also applicable to many other real-world applications, such as
energy harvesting [20], scheduling in wireless networks [21],
and etc.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-link LTE-LAA/WiFi coexistence model
[9], [22] in which multiple LAA and WiFi links share the
same 5 GHz unlicensed band in the same area, as depicted
in Fig. 2(a). Without loss of generality, we focus on the
downlink scenario for each link, i.e., the transmission from
the LAA BS to UE and from the WiFi AP to STA. Unlike
the state-of-the-art collision avoidance-based MAC protocols
such as CSMA/CA and LBT, we assume that the concurrent
transmissions are allowed, and all links are situated in the same
sensing domain, meaning that every transmitter can sense all
others’ transmissions. Furthermore, we assume that there are
no hidden terminals.

WiFi STA

WiFi AP

LAA BS

LAA UE

(a)

WiFi

t1 t2 t3 t
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LAA
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...
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CTS 2: WiFi
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CTS 3: LAA, WiFi

TXOP 3

(b)

Fig. 2: (a) System model; (b) Illustrative example of
contention-based MAC protocol implementation.

To model the concurrent transmissions of the coexisting
links, we define concurrent transmission set (CTS) as follows:

Definition 1 (CTS [9]). A concurrent transmission set (CTS)
is a set of links with overlapping transmissions.

Remark 1: For the scenario of N coexisting LAA/WiFi
links, there are K = 2N − 1 different combinations of non-
empty sets. Thus, there are 2N − 1 possible CTSes. For
example, for N = 2, there are three CTSes: CTS1 = {link 1},
CTS2 = {link 2}, CTS3 = {link 1, link 2}. As empirically
indicated in [9], in a collision domain, it is reasonable to have
N ≤ 5. For large N , to reduce the number of CTSes, we can
divide N links into multiple collision domains and allocate
orthogonal resources to different collision domains.



Next, we describe the setup of our problem. For the scenario
of N coexisting LAA/WiFi links, let N = {1, 2, · · · , N} be
the link set, there are K = 2N−1 CTSes. Denote each CTS as
an arm. We illustrate the online decision-making process for
CTS selection in Alg. 1. Note that K can be any arbitrary pos-
itive integer, depending on real-world applications. Therefore,
Alg. 1 is generic and can be applied to other applications. In
t = 1, 2, · · · , T , a decision maker picks CTS a to transmit. It
then receives reward r(a, l, t) for any link l ∈ Ca, where Ca

is the link set of CTS a, r(a, l, t) is randomly sampled from
an unknown distribution Da,l. We assume that the reward for
each CTS is i.i.d. over time.

Algorithm 1 Online decision-making for CTS selection

1: Parameters: K = 2N−1 CTSes and T transmission peri-
ods (both are known); reward distribution Da,l (unknown),
l ∈ Ca, a ∈ [K].

2: for t = 1 to T do
3: A decision maker picks CTS a to transmit.
4: Observe reward r(a, l, t) ∼ Da,l for any link l ∈ Ca.
5: end for

To facilitate the optimization of fairness objectives, we
define the transmission strategy as a probabilistic selection of
CTSes (instead of a fixed choice) as follows:

Definition 2 (CTS Selection Vector). CTS selection vector is
denoted as p = (p1, . . . , pK), where K = 2N −1, pi(1 ≤ i ≤
K) represents the probability of CTSi being selected in each
transmission period.

In this paper, we aim to find the optimal p considering the
fairness objective of maximizing the minimum link through-
put. Denote g(a, l) as the true mean of successful decoding
probability of link l ∈ Ca. ∀a ∈ [K], l ∈ Ca, if g(a, l) is
known, one can obtain the optimal p by solving the following
max-min optimization problem:

Opt-min :max
p

f(p)

s.t. 0 ≤ pa ≤ 1, a ∈ [K],∑
a,a∈[K]

pa = 1,

(1)

where f(p) = minl∈N {
∑

a∈[K]

(
pa×g(a, l)

)
}, pa is the a-th

element of p. For an objective comparison, we also present
Opt-total, which aims at maximizing the total throughput:

Opt-total :max
p

f2(p)

s.t. same constraint with Opt-min,
(2)

where f2(p) =
∑

a∈[K] pa
∑

l∈Ca
g(a, l).

However, ∀a ∈ [K], l ∈ Ca, g(a, l) is unknown to the deci-
sion maker in advance. Hence, it needs to explore all CTSes
and learns to obtain an accurate estimation of g(a, l), l ∈
Ca, a ∈ [K]. Denote ĝ(a, l, t) as the empirical mean of
successful decoding probability of link l ∈ Ca until time t.
We present how to obtain ĝ(a, l, t) as follows. For CTS a, if

the transmission of link l ∈ Ca is successful, i.e., an ACK is
observed at time t, r(a, l, t) = 1, otherwise r(a, l, t) = 0. For
any link l′ /∈ Ca, namely, link l′ does not transmit in CTS a,
we let r(a, l′, t) = 0 for generalization purpose. Denote nt(a)
as the number of times that CTS a has been transmitted until
t, which can be represented as nt(a) =

∑t
τ=1 1{aτ = a},

where aτ is the CTS index transmitted in transmission round
τ . Then, ĝ(a, l, t) can be presented as follows:

ĝ(a, l, t) =
1

nt(a)

t∑
τ=1

1{aτ = a}r(a, l, τ). (3)

As previously mentioned, the decision maker explores all
CTSes to learn a more accurate ĝ(a, l, t), while also exploiting
the currently-known information to make the best action. Both
exploration and exploitation incur a loss compared to the best
action. We call this loss regret, which measures how much the
decision maker regrets not knowing the best action in advance.
The goal of the decision maker is to minimize the incurred
regret. However, unlike classic maximization problems, Opt-
min is a max-min optimization problem, which requires a re-
definition of the regret. Inspired by the definition of regret
(i.e., Equation (1.1) of [23]), the regret of opt-min is defined
as:

RT = min
l∈N

T∑
t=1

r(bt, l, t)−min
l∈N

T∑
t=1

r(at, l, t), (4)

where b1, . . . , bT is a sequence of CTSes drawn i.i.d. from
p∗, and a1, . . . , aT is the sequence of CTSes chosen by the
decision maker. Accordingly, define the expected regret to be

E[RT ] = E

min
l∈N

T∑
t=1

r(bt, l, t)

− E

min
l∈N

T∑
t=1

r(at, l, t)

 , (5)

where the expectation is with respect to (1) the choices of
b1, . . . , bT ; (2) the random rewards drawn from the environ-
ment; (3) the random choices of a1, . . . , aT selected by the
decision maker.

Remark 2: There are two ways to implement the overlap-
ping transmissions of CTS in each transmission period. The
simplest way is to implement it as a slotted MAC protocol,
such as time division multiple access (TDMA) or duty-cycle
MAC protocols [24]. More practically, it can be implemented
as a contention-based MAC protocol, such as CSMA/CA,
LBT. Regardless of the implementation, the decision maker
makes decision and learns p̂ in each transmission period. For
the slotted MAC protocol implementation, the decision maker
conducts Alg. 1 in a centralized manner. For the contention-
based MAC protocol implementation, each link can make
distributed decision using Alg. 1. For such a case, we provide
an illustrative example of concurrent transmission protocol
under LAA/WiFi coexistence in Fig. 2(b). In this example,
time is divided into multiple transmission opportunities (TX-
OPs), with DIFS and backoff (BO) between different TXOPs.
In each TXOP, each link conducts contentions to access the
shared channel. Based on the learned p̂, other links will



calculate a probability to determine whether they should access
the channel with the ongoing transmissions. For instance,
assume p̂ = (p1, p2, p3), and the LAA link wins contention
and transmit at t1. The WiFi link obtains the probability of
concurrently transmitting with the LAA link as p3

p3+p1
.

III. FAIR PROBABILISTIC EXPLORE-THEN-COMMIT
ALGORITHM

In this section, we introduce the Fair Probabilistic Explore-
Then-Commit (FP-ETC) algorithm for the proposed proba-
bilistic MAB setting. After that, we analyze its regret under
Opt-min 1.

The procedure of FP-ETC algorithm is outlined in Alg. 2,
where the input m is a fixed positive integer, K is the number
of CTSes. If t ≤ mK, the algorithm is in the exploration phase
(i.e., seeking better options) as shown from Step 3 to Step 6.
Specifically, the FP-ETC algorithm first transmits each CTS in
a round robin fashion m times, it then updates the empirical
mean of successful decoding probability of all links under the
corresponding CTS. Once t > mK, the algorithm enters the
exploitation phase (i.e., staying with the currently-known best
option) starting from Step 8. In Step 8, the minimum link
throughput is maximized to obtain the estimated p̂. After that,
FP-ETC sticks to the currently-known best option (i.e., p̂) and
sample out a CTS at based on categorical distribution of p̂ as
shown in Step 9. The sampled CTS is transmitted in Step 10.

Note that Alg. 2 is utilized to determine the transmission
policy of CTS in each transmission period and it interacts with
line 3 of Alg. 1.

Algorithm 2 Fair Probabilistic Explore-Then-Commit (FP-
ETC)

1: Input : Positive integers m, K.
2: for t = 1 to T do
3: if t ≤ mK then
4: at = t mod K + 1.
5: Transmit CTSat

in transmission period t
6: Update ĝ(at, l, t), l ∈ Cat .
7: else
8: p̂ = argmaxp minl∈N {

∑
a∈[K]

(
paĝ(a, l,mK)

)
}

9: Sample out a CTS at based on categorical distribu-
tion of p̂.

10: Transmit CTSat
in transmission period t

11: end if
12: end for

Remark 3: If we treat our problem as a MAB problem with
each CTS as an arm and the reward of each arm defined as
the summation of rewards for all links in the corresponding
arm. Directly applying the standard ETC algorithm [12] cannot
address Opt-min as the standard ETC algorithm was designed
without considering fairness for each link. The reason why
FP-ETC can address the fairness requirement is that it adds a

1The FP-ETC algorithm under Opt-total is reduced to traditional ETC
algorithm, for space limitation, we omit the analysis in this paper.

new layer (i.e., p) on top of CTSes, treating p̂ as a virtual arm.
The action space for FP-ETC is continuous, which presents the
first challenge in analyzing the algorithm. To bridge the gap
between p̂ and CTSes, we first present a CTS-level concen-
tration bound (Lemma 1) using the Hoeffding inequality. We
then obtain a corresponding concentration bound with respect
to any p (Lemma 2).

A. Concentration Bounds

Lemma 1. ∀ CTS a, l ∈ Ca, define event Ea,l :∣∣ĝ(a, l,mK)− g(a, l)
∣∣ ≤ √

2 log(T )
m , where m is the number

of rounds that each CTS is transmitted in the exploration
phase, K is the number of CTSes, T is the total number of
transmission rounds. Then Pr(Ea,l) ≥ 1− 2

T 4 .

Lemma 1 is a direct application of the Hoeffding inequality
(Theorem A.1 of [12] by setting α = 2, β = 1), given
r(a, l, t) ∈ [0, 1]. It shows that the estimated ĝ(a, l,mK)
concentrates around its true mean g(a, l) after the exploration
phase.

As previously mentioned, p̂ is viewed as an arm in FP-
ETC. Obtaining CTS-level concentration bound is insufficient
to derive the regret bound of FP-ETC; to address this, we
present the concentration bound for any p as follows.

Lemma 2 (Concentration Bound for Any p). Define function
f(p) = minl∈N {

∑
a∈[K]

(
pa × g(a, l)

)
}, where pa is the a-

th element of p. Under FP-ETC, ∀ p, P r
(∣∣∣f̂(p)− f(p)

∣∣∣ ≤√
2 log(T )

m

)
≥ 1− 2NK

T 4 , where N is the number of coexisting

links, f̂(p) = minl∈N {
∑

a∈[K]

(
pa × ĝ(a, l,mK)

)
}.

Proof outline: we first rewrite f(p) = minl∈N hl(p) and
bound

∣∣∣hl(p)− ĥl(p)
∣∣∣ for a given link l ∈ N . After that, we

prove that
∣∣∣f̂(p)− f(p)

∣∣∣ can be bounded by utilizing Lemma
3. The detailed proof of Lemma 2 and Lemma 3 are shown
in Section VII-A of Appendix.

B. Upper Bound on Regret

After obtaining the concentration bound with regard to any
p. We are ready to upper bound the regret of FP-ETC. We
state the results in Theorem 1.

Theorem 1. Under FP-ETC, the average regret E[RT ] defined
in Eq. (5) is upper bounded by O

(
T

2
3 (K log T )

1
3

)
.

Proof outline: We first utilize Lemma 2 to upper bound
Rf

T =
∑T

t=1[f(p
∗) − f(pt)], where pt is the p vector at

transmission round t. However, there is still a gap between
Rf

T and RT of Eq. (4). To bridge the gap, we make use of
Hoeffding inequality, union bound, and Lemma 4. The detailed
proof of Theorem 1 is shown in Section VII-B of Appendix.
Lemma 4 is presented in Section VII-C of Appendix.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the PF-
ETC algorithm via simulations under LAA/WiFi coexistence



scenarios, where SIC is enabled in each receiver to can-
cel possible interference and the successful decoding SINR
threshold is set to 10 dB. Rayleigh channel is considered
for each link. Due to space limitation, we only present the
results for N = 2 and N = 3 coexisting links, as other
scenarios have similar observations. There are 3 CTSes and
7 CTSes for the scenario of N = 2 and N = 3, respectively.
We use the average regret defined in Eq. (5), minimum link
throughput, Jain fairness index (JFI) [25] as the performance
metrics to measure our proposed algorithm and baselines.
Specifically, the throughput is normalized and represents the
effective channel utilization. Let xi be the throughput of link
i ∈ N , JFI(x1, · · · , xN ) =

(
∑N

i=1 xi)
2

N×
∑N

i=1 x2
i

, which ranges from
1
N (worst case) to 1 (best case), it is maximum when all
links have the same throughput. We simulate 500 randomized
LAA/WiFi coexistence topology, where all nodes in each
topology are uniformly distributed in a 100× 100 m2 area.

First, we show the average regret of FP-ETC for different
choices of m and compare FP-ETC with the Maxmin UCB
algorithm [20]. These results are presented in Fig. 3. We
observe that the average regret of Maxmin UCB increases
linearly with t, which is due to their algorithm selecting
CTSat

in transmission round t according to the following
rule: at = argmaxa∈[K] [minl∈N ĝ(a, l, t − 1) +

√
2 log T
nt−1(a)

].
The Maxmin UCB algorithm aims to identify one best CTS
instead of a probabilistic CTS selection strategy. On the other
hand, FP-ETC can select a combination of different CTSes
to maximize the reward and satisfy the max-min fairness at
the same time, which is not achievable in Maxmin UCB. As a
result, FP-ETC has much lower regret than Maxmin UCB. The
probabilistic MAB algorithm is actually a generalized version
of the corresponding basic MAB algorithm. It is also expected
that higher m generally results in higher average regret as FP-
ETC incurs significant regret during the exploration phase.
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Fig. 3: Average regret vs the number of rounds t.

Next, we compare FP-ETC with three baselines: UCB for
Opt-total, ETC for Opt-total, and Maxmin UCB [20], where
Opt-total is defined in Eq. (2). The UCB for Opt-total selects
CTSat

in transmission round t according to the following rule:
at = argmaxa∈[K] [

∑
l∈Ca

ĝ(a, l, t − 1) + |Ca|
√

2 log T
nt−1(a)

],
|Ca| is the number of links in CTS a. m is set to 100 in ETC
algorithms. The minimum link throughput and Jain fairness
index (JFI) are compared for these algorithms.

The cumulative distribution functions (CDFs) of the mini-
mum link throughput for the four aforementioned algorithms
are presented in Fig. 4. The simulation is based on 500
randomized LAA/WiFi coexistence topologies with T = 5000.
As we can see, FP-ETC achieves the highest minimum link
throughput among the four algorithms. This is attributed to the
additional CTS selection vector p in FP-ETC, which allows
for tuning the selection probability of each CTS to satisfy the
max-min fairness requirement.
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Fig. 4: CDF of minimum link throughput.

Fig. 5 shows the CDFs of JFI for the four aforementioned
algorithms. It is clear that FP-ETC has the highest JFI com-
pared to the other algorithms. It is worth noting that FP-ETC
almost guarantees the same throughput for all links under all
LAA/WiFi coexisting topologies, which is demonstrated by the
fact that all JFI values of FP-ETC are close to 1. This result
confirms that FP-ETC is an effective solution to achieve the
max-min fairness requirement.

0.5 0.6 0.7 0.8 0.9 1

Jain Fairness Index

0

0.2

0.4

0.6

0.8

1

C
D

F

ETC for Opt-total

UCB for Opt-total

FP-ETC

Maxmin UCB

(a) N = 2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jain Fairness Index

0

0.2

0.4

0.6

0.8

1

C
D

F

EPT for Opt-total

UCB for Opt-total

FP-ETC

Maxmin UCB

(b) N = 3

Fig. 5: CDF of Jain fairness index (JFI).

V. OTHER APPLICATIONS

In this section, we discuss other practical applications of
our proposed probabilistic MAB approach. Abstractly, the
proposed framework is applicable to scenarios with two fea-
tures: (1) a non-additive set consisting of multiple individual
elements is explored in each round; (2) the decision maker’s
goal is to optimize the fairness of the individual elements. In
this section, we present two more applications as examples:
energy harvesting in wireless networks [20], [26], scheduling
in wireless networks [21].

A. Energy Harvesting in Wireless Networks

Consider the scenario depicted in Fig. 6(a), where an
energy source wirelessly charges 5 nodes. The energy source



divides its available bandwidth for energy transmission into 3
channels. At each time slot, the energy source can transmit at
most a fixed amount of power on one of the channels. The
amount of energy harvested by any node is stochastic and
independent in each channel. The goal of the energy source is
to select a channel to maximize the minimum average energy
harvested by any node. However, the harvested energy for
different nodes in one channel is not additive and cannot be
exploited by other channels since difference channels exhibit
different propagation characteristics even for the same energy
harvesting node. Let sij be the indicator of allocating channel
i to energy harvesting node j, j ∈ J , where J is defined as
the set of all energy harvesting nodes. To apply the proposed
framework to this problem, we can map Si = {sij |∀j ∈ J }
to one CTS in Alg. 1, and the energy source makes a decision
in each round.

Energy source

Energy 

harvesting node

(a)

Flow 4 Flow 3

N2

(b)

Fig. 6: (a) Example of energy harvesting [20]; (b) Example of
wireless scheduling [21]

B. Scheduling in Wireless Networks

Consider the following example of scheduling in wireless
networks shown in Fig. 6(b). There are four flows, and each
flow can be either a single hop link or a set of multi-hop
links. Flows that share common nodes with other flows are
considered as contending flows, which means they cannot
transmit packets simultaneously. For instance, flows 3 and 4
are contending flows as they share a common node N2. The
goal of the scheduler is to maximize the minimum average
throughput of each node. To apply the proposed framework
to this problem, we can map a set of non-contending flows
to one CTS in Alg. 1, and the scheduler makes a decision in
each round.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we study the design of online learning (MAB)
algorithms with max-min fairness. As a motivating application,
we aim at maximizing the minimum link throughput for
concurrent transmissions of heterogeneous links. To solve
this problem, we propose a novel probabilistic MAB frame-
work, where we learn a probabilistic CTS selection strat-
egy. We develop a Fair Probabilistic Explore-Then-Commit
(FP-ETC) algorithm, which achieves the average regret of
O
(
T

2
3 (K log T )

1
3

)
. Simulation results show that FP-ETC can

effectively achieve max-min fairness, compared with existing
MAB algorithms.

As future work, we plan to develop a more efficient
probabilistic MAB algorithm that can achieve a lower regret.

Additionally, we will consider other fairness metrics such as
proportional fairness or treat fairness as a constraint.

VII. APPENDIX

A. Proof of Lemma 2

Proof. First, we define event E = ∩a∈[K],l∈NEa,l, where Ea,l

is defined in Lemma 1. Using the property of union bound,
Pr(E) ≥ 1 −

∑
∀a,l Pr(Ēa,l) ≥ 1 −

∑
a∈[K]

∑
l∈Ca

2
T 4 =

1−
∑

a∈[K] |Ca| 2
T 4 ≥ 1−

∑
a∈[K] N

2
T 4 = 1− 2NK

T 4 . For the
remainder of the proof, we condition on event E happening.

For any p, given f(p) = minl∈N {
∑

a∈[K]

(
pa × g(a, l)

)
},

the estimation of f(p) at the end of exploration phase (i.e.,
t = mK) is f̂(p) = minl∈N {

∑
a∈[K]

(
pa × ĝ(a, l,mK)

)
}.

For the convenience of the proof, for every l ∈ N , we define
hl(p) =

∑
a∈[K]

(
pa × g(a, l)

)
and ĥl(p) =

∑
a∈[K]

(
pa ×

ĝ(a, l,mK)
)
, then we can easily obtain the relationship of

f(p) and hl(p), f̂(p) and ĥl(p), respectively, which are
f(p) = minl∈N hl(p) and f̂(p) = minl∈N ĥl(p). We first
bound

∣∣∣hl(p)− ĥl(p)
∣∣∣ for every l ∈ N :

∣∣∣hl(p)− ĥl(p)
∣∣∣ =

∣∣∣∣∣∣
∑

a∈[K]

(
pa × g(a, l)

)
−

∑
a∈[K]

(
pa × ĝ(a, l,mK)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

a∈[K]

pa
(
g(a, l)− ĝ(a, l,mK)

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

a∈[K]

pa

√
2 log(T )

m

∣∣∣∣∣∣ (if event E happens)

=

√
2 log(T )

m
(since

∑
a∈[K]

pa = 1),

(6)

Eq. (6) shows that for every l ∈ N ,
∣∣∣hl(p)− ĥl(p)

∣∣∣ is

upper-bounded by
√

2 log(T )
m if event E happens.

Next, we utilize Eq. (6) to further bound
∣∣∣f̂(p)− f(p)

∣∣∣ for
any p. To do so, we need another Lemma, which is presented
as follows.

Lemma 3. Denote a sequence A =
(
a(l)

)
l∈N and a sequence

B =
(
b(l)

)
l∈N , if ∀l, a(l) ≤ b(l), then minl∈N a(l) ≤

minl∈N b(l).

The proof of Lemma 3 is straightforward. Let
argminl∈N b(l) = l∗. We have minl∈N b(l) = b(l∗) ≥
a(l∗) ≥ minl∈N a(l). This completes the proof of Lemma 3.

Given Lemma 3, we can take a(l) = ĥl(p)−
√

2 log(T )
m , l ∈

N and b(l) = hl(p), l ∈ N . According to Eq. (6), for every
l ∈ N , a(l) ≤ b(l). Therefore,

min
l∈N

{ĥl(p)−
√

2 log(T )

m
} ≤ min

l∈N
hl(p). (7)



Similarly, taking a(l) = hl(p), l ∈ N and b(l) = ĥl(p) +√
2 log(T )

m , l ∈ N . According to Eq. (6), for every l ∈ N ,
a(l) ≤ b(l). Therefore,

min
l∈N

hl(p) ≤ min
l∈N

{ĥl(p) +

√
2 log(T )

m
}. (8)

Combine Eq. (7) and Eq. (8), we can obtain

min
l∈N

hl(p)−
√

2 log(T )

m
≤ min

l∈N
ĥl(p) ≤ min

l∈N
hl(p) +

√
2 log(T )

m
,

(9)
which is equivalently∣∣∣f̂(p)− f(p)

∣∣∣ ≤ √
2 log(T )

m
. (10)

B. Proof of Theorem 1

Proof. Firstly, we define a clean event ξ :=

{∀p,
∣∣∣f̂(p)− f(p)

∣∣∣ ≤
√

2 log(T )
m }, where f̂(p) and

f(p) are defined in Lemma 2. According to the Lemma 2,
Pr(ξ) ≥ 1− 2NK

T 4 . We also define a bad event ξ̄, which is the
complement of ξ. Denote the optimal p∗ = argmaxp f(p).

We analyze the regret under event ξ and ξ̄, respectively.
We first analyze event ξ. If FP-ETC chooses p, where p ̸=

p∗. Under event ξ, we have f(p) +
√

2 log(T )
m > f̂(p) >

f̂(p∗) ≥ f(p∗)−
√

2 log(T )
m . Re-arranging the terms, it follows

that

f(p∗)− f(p) ≤ 2

√
2 log(T )

m
. (11)

Therefore, under event ξ, each round in the exploitation phase

of FP-ETC contributes at most 2
√

2 log(T )
m regret. In each

round of the exploration phase, FP-ETC trivially contributes
at most regret of 1 for each link. Thus, under event ξ,

Rf
T =

T∑
t=1

[f(p∗)− f(pt)] ≤ mK + (T −mK)2

√
2 log(T )

m

≤ mK + 2T

√
2 log(T )

m
,

(12)
where pt is the p vector at round t. When t ≤ mK, pt

is a standard basis vector, with element 1 indicating that the
corresponding CTS is selected in the exploration phase. The
total regret in the exploration phase of FP-ETC is mK as there
are K CTSes and each CTS is played m times.

Until now, we have upper bounded Rf
T under event ξ

happens. However, there is still a gap between Rf
T and

RT of Eq. (4). Observe that the first term in Eq. (4) is
minl∈N

∑T
t=1 r(bt, l, t). Applying the Hoeffding inequality,

we can easily know that ∀l ∈ N , at least with probability
1− δ,∣∣∣∣∣∣

T∑
t=1

r(bt, l, t)− T
∑

a∈[K]

p∗ag(a, l)

∣∣∣∣∣∣ ≤
√

T

2
log(

2

δ
). (13)

Without loss of generality, we set δ = T−2. Therefore,∣∣∣∣∣∣min
l∈N

T∑
t=1

r(bt, l, t)− T min
l∈N

∑
a∈[K]

p∗ag(a, l)

∣∣∣∣∣∣ ≤ √
T log(2T ). (14)

Note that pt does not change when t > mK. Applying
the Hoeffding inequality, we know that ∀l ∈ N , at least with
probability 1− 1

T 2 ,∣∣∣∣∣∣
T∑

t=mK+1

r(at, l, t)−
T∑

t=mK+1

∑
a∈[K]

pt,ag(a, l)

∣∣∣∣∣∣
≤

√
(T −mK) log(2T ).

(15)

When t ≤ mK, the reward for each link is upper bounded
by 1. Combine t ≤ mK and t > mK together, we obtain that
∀l ∈ N , at least with probability 1− 1

T 2 ,∣∣∣∣∣∣
T∑

t=1

r(at, l, t)−
T∑

t=1

∑
a∈[K]

pt,ag(a, l)

∣∣∣∣∣∣
≤ mK +

∣∣∣∣∣∣
T∑

t=mK+1

r(at, l, t)−
T∑

t=mK+1

∑
a∈[K]

pt,ag(a, l)

∣∣∣∣∣∣
≤ mK +

√
(T −mK) log(2T ),

(16)

Therefore,∣∣∣∣∣∣min
l∈N

T∑
t=1

r(at, l, t)−min
l∈N

T∑
t=1

∑
a∈[K]

pt,ag(a, l)

∣∣∣∣∣∣
≤ mK +

√
(T −mK) log(2T ).

(17)

Define event η := {∀l ∈ N ,Eq. (13) and Eq. (16) hold}.
Event η̄ is the complement of η. Using union bound, we can
know that event η happens at least with probability 1− 2N

T 2 .
Combining Eq.(14) and Eq (17) together, when event ξ ∩ η

happens, RT of Eq. (4) can be upper bounded, which is

RT = min
l∈N

T∑
t=1

r(bt, l, t)−min
l∈N

T∑
t=1

r(at, l, t)

≤ T min
l∈N

∑
a∈[K]

p∗ag(a, l)−min
l∈N

T∑
t=1

∑
a∈[K]

pt,ag(a, l)

+
√

T log(2T ) +mK +
√

(T −mK) log(2T )

≤ Tf(p∗)− f(
T∑

t=1

pt) +mK + 2
√

T log(2T )

(c)

≤ Tf(p∗)−
T∑

t=1

f(pt) +mK + 2
√

T log(2T )

= Rf
T +mK + 2

√
T log(2T )

≤ 2mK + 2T

√
2 log(T )

m
+ 2

√
T log(2T ),

(18)

where (c) is because of Lemma 4 of Section VII-C.
Recall that m was given in advance in FP-ETC algorithm.

Therefore, we can choose m to minimize the right-hand
side of Eq. (18). Since the first two terms (i.e., 2mK and

2T
√

2 log(T )
m ) are monotonically increasing and monotonically



decreasing with respect to m. We can set m so that the
two terms are approximately equal. By solving it, we obtain
m = O

(
( T
K )

2
3 (log T )

1
3

)
. Plug it into Eq. (18), we have RT ≤

O
(
T

2
3 (K log T )

1
3

)
, where O

(
T

1
2 (log T )

1
2

)
is neglected as it

has a lower order than O
(
T

2
3 (K log T )

1
3

)
.

Using union bound, Pr(ξ∩η) ≥ 1− 2N
T 2 − 2NK

T 4 , averaging
all the events, then E[RT ] of Eq. (5) is

E [RT ] ≤E
[
RT I(ξ ∩ η)

]
+ E

[
RT I(ξ ∩ η)

]
≤ O

(
T

2
3 (K log T )

1
3

)
+ E

[
T · I(ξ ∩ η)

]
≤ O

(
T

2
3 (K log T )

1
3

)
+ T · (2N

T 2
+

2NK

T 4
)

≤ O
(
T

2
3 (K log T )

1
3

)
,

(19)

where the last term T · ( 2NT 2 + 2NK
T 4 ) is neglected since it is

the order of T−1.

C. Lemma 4 and Its Proof

Lemma 4. Given f(p) = minl∈N {
∑

a∈[K]

(
pa × g(a, l)

)
},

f(
∑T

t=1 pt) ≥
∑T

t=1 f(pt).

Proof. Denote l∗ = argminl∈N
∑

a∈[K]

(∑T
t=1 pt,a ×

g(a, l)
)
, where pt,a is the a-th element of pt, we have

f(

T∑
t=1

pt) = min
l∈N

{
∑

a∈[K]

( T∑
t=1

pt,a × g(a, l)
)
}

=
∑

a∈[K]

( T∑
t=1

pt,a × g(a, l∗)
)

=

T∑
t=1

∑
a∈[K]

(
pt,a × g(a, l∗)

)
≥

T∑
t=1

min
l∈N

{
∑

a∈[K]

(
pt,a × g(a, l)

)
}

=

T∑
t=1

f(pt).

(20)
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