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Abstract

In this paper, we analyze the delay performance for a Marko-

vian source transported over a wireless channel with time-

varying error characteristics. To improve the reliability of

the channel, the end points of the wireless link implement

a selective-repeat (SR) ARQ error control protocol. We

provide an approximate discrete-time analysis of the end-

to-end mean packet delay, which consists of transport and

resequencing delays. The transport delay, in turn, consists

of queueing, transmission/retransmission, and propagation

delays. In contrast to previous studies, our analysis accom-

modates the inherent autocorrelations in both the input traf-

�c and the channel state. Our approximation of the mean

transport delay is based on decoupling the dependence of the

queueing behavior from the past channel conditions. The

exact probability generating function (PGF) of the queue

length under ideal SR ARQ is obtained and is combined

with the retransmission delay to obtain the mean transport

delay. For the resequencing delay, our analysis is performed

under heavy-tra�c assumptions, hence providing an upper

bound on the actual mean resequencing delay. Numerical

results and simulations indicate that our approximate anal-

ysis is su�ciently accurate for a wide range of parameter

values.

1 Introduction

Automatic repeat request (ARQ) protocols are used to pro-

vide reliable data transfer in wireless communications [1, 9,

11]. In these protocols, the transmitter sends a packet that

consists of payload bits and error detection code. The re-

ceiver checks the integrity of the packet by decoding the

error detection code. Depending on the outcome of the

decoder, a positive acknowledgment (ACK) or a negative

acknowledgment (NACK) is sent back to the sender. The

sender retransmits the packet upon the receipt of the NACK

message, whereas it transmits a new packet if an ACK is

received. There are three major types of ARQ protocols:

�
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stop-and-wait (SW), go-back-N (GBN), and selective-repeat

(SR). In SW ARQ, after sending a packet the transmit-

ter stays idle while waiting for the ACK/NACK message

of that packet. The channel capacity is wasted if mean-

while other packets are waiting to be transmitted. In GBN

ARQ, packets are transmitted continuously without waiting

for ACKs/NACKs. If a NACK is received, the transmit-

ter retransmits the negatively acknowledged packet and all

subsequent packets regardless of their acknowledgments. In

SR ARQ, packets are transmitted continuously as in GBN

ARQ, but only negatively acknowledged packets are retrans-

mitted.

In this study, we consider a wireless link that provides

sequential delivery of packets and that uses SR ARQ for

error control. This scenario arises in various wireless trans-

port technologies, including wireless asynchronous transfer

mode (ATM), where the in-sequence delivery of cells must

be maintained to ensure seamless interface with the wire-

line ATM network [2]. In such a scenario, the transmitter

assigns each packet a unique identi�er (see Fig. 1). Packets

are transmitted according to their identi�ers. Following its

transmission, a packet is temporarily bu�ered until its ACK

arrives back at the transmitter after some feedback delay.

Once the ACK arrives, the packet is removed from the wait-

ing bu�er and a new packet is transmitted. If instead a

NACK arrives, the packet is retransmitted. Although the

transmitter sends packets in the proper order, the order of

correctly received packets at the receiver may be out of se-

quence due to the random occurrence of packet transmission

errors. Thus, correctly received packets with higher identi-

�ers must wait in a bu�er (called resequencing bu�er) until

other packets with lower identi�ers are correctly received.
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Figure 1: Packet transmission over a wireless link.

Fig. 2 shows the various delay components that a packet

undergoes when transported over a wireless link. The end-

to-end delay consists of transport and resequencing delays.

The transport delay is again subdivided into queueing and



retransmission delays. The queueing delay is de�ned as the

time taken by a packet from its arrival at the transmitter

bu�er until its �rst transmission attempt. The retransmis-

sion delay is de�ned as the time from a packet's �rst trans-

mission until its successful arrival at the receiver. The rese-

quencing delay is de�ned as the waiting time of the packet

in the resequencing bu�er.
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Figure 2: Time diagram for packet transmission process.

Most previous studies of the delay performance under

SR ARQ error control were based on renewal tra�c mod-

els (e.g., Poisson, Bernoulli) [4, 5, 10]. Such models do not

capture the bursty and highly autocorrelated nature of ac-

tual network tra�c, and can lead to inaccurate performance

predictions. In addition to tra�c correlations, accurate eval-

uation of the performance over a wireless link also requires

capturing the time-varying nature of the wireless link and

its highly correlated error behavior.

In this study, we investigate the mean end-to-end delay

for a general Markovian source that is transported over a

wireless link with SR ARQ error control. To capture the

time-varying and correlated nature of the radio channel, we

model it using Gilbert-Elliot's model. We divide the end-to-

end delay into queueing, retransmission, and resequencing

delays (see Fig. 2). For the queueing delay, we simplify

the analysis by eliminating the dependence of the queueing

process on the past packet transmission process. That is, we

assume that the feedback message for a packet transmitted

in the past is treated (statistically) as the one for the packet

at the head-of-line (HOL) of the queue. This simplifying

assumption becomes exact as the feedback delay approaches

zero. Fantacci in [5] refers to this scenario as the ideal SR

ARQ. We derive the exact probability generating function

(PGF) for the ideal SR ARQ and obtain the mean delay

using Little's law. The mean retransmission delay is easily

obtained since it only depends on the channel parameters

and the round-trip delay. Finally, we derive an expression for

the mean resequencing delay under heavy-tra�c conditions,

i.e., packets are always supplied to the system. This gives

an upper bound on the actual mean resequencing delay. The

adequacy of our analytical results are veri�ed by contrasting

them against more realistic simulation results.

An extensive amount of literature exists on analyzing the

performance of SR ARQ protocol in terms of throughput,

mean queue length, and mean delay. In order to analyze

other measures of performance such as bu�er distribution

and packet delay, Konheim used the system state vector

considering a feedback delay [7]. Anagnostou and Protono-

tarios proposed an alternative approximate approach that

reduces the computational complexity of the analytical re-

sults [1]. One problem with these approaches is that their

computational complexity increases dramatically with the

feedback delay. Furthermore, many of them rely on renewal

tra�c models and/or overly simpli�ed channel models (e.g.,

i.i.d. bit errors). Fantacci used a 2-state Markovian radio

channel, yet employing a Bernoulli process for packet ar-

rivals [5]. Rosberg and Shacham analyzed the resequencing

delay and the bu�er occupancy at the resequencing bu�er as-

suming heavy-tra�c conditions and static radio channel [9].

Rosberg and Sidi analyzed the joint distribution of bu�er

occupancy at the transmitter and receiver [10]. In addi-

tion, they derived the mean transmission and resequencing

delays. However, they assumed a renewal arrival process

and independent packet errors. Schachum and Towsley in-

vestigated the bu�er occupancy and resequencing delay for

the situation in which a single transmitter and multiple re-

ceivers communicate, assuming heavy-tra�c conditions and

independent packet errors [11].

The rest of the paper is organized as follows. In Sec-

tion 2 we present the queueing model for a general Marko-

vian source transmitted over a radio channel. The mean

resequencing delay is studied in Section 3. Numerical re-

sults and simulations are reported in Section 4, followed by

concluding remarks in Section 5.

2 Queueing and Retransmission Delays

Consider the queueing system at the transmitter side of a

wireless link. Our queueing model is based on an embedded

Markov chain in which the number of packets in the queue

is observed at the beginning of each time slot, just before

the arrival of a new packet or of an ACK/NACK message.

A time slot corresponds to a packet transmission time. We

assume that ACK/NACK messages are always error free.

The arrival process is N -state Markovian that is governed

by a transition probability matrix P , where at each state

i, i = 0; � � � ; N , i packets are generated in one time slot.

The wireless channel is modeled by Gilbert-Elliot's model, in

which the channel alternates between Good and Bad states,

with corresponding bit error probabilities P

eg

and P

eb

, re-

spectively. It is assumed that state transitions occur at the

end of time slots. Since the packet transmission time is very

short compared to the sojourn time of a channel state, the

inaccuracy due to this assumption is negligible. The packet

error probability when the channel state is in state j is de-

noted by e

j

, j = 0; 1. The packet error probability in Good

(j = 0) and Bad (j = 1) channel states are given by:

e

0

= 1� (1� P

eg

)

L

(1)

e

1

= 1� (1� P

eb

)

L

(2)

for a packet size of L bits.

Our analytical approach is based on the approximation

in [1, 5], where the transport delay is divided into two parts:

queueing and retransmission delays (see Fig. 2). In order to

obtain the queueing delay, the authors in [1, 5] approximate

the behavior of a real SR ARQ by ignoring the dependence

of ACK/NACK arrivals on the system's past history. The

packet at the HOL of the transmitter bu�er will be trans-

mitted only if an ACK message arrives. At a given time t,

the feedback message that arrives at the transmitter corre-

sponds to a packet that was transmitted at time t�s, where

s is the feedback delay. However, for simplicity, we assume

that this feedback message has the same probabilistic nature

as the feedback message that is associated with the packet

to be transmitted at time t, i.e., as if the feedback delay is

zero. This simpli�cation is referred to as the ideal SR ARQ

case [5]. Note that this assumption does not mean the feed-

back delay is ignored, but that its impact on the queueing

process is not incorporated. In the following, we derive the



PGF for the queue length in the ideal SR ARQ case. We as-

sume that packets are served on a FCFS basis and that the

bu�er capacity is in�nite. Key notations are summarized as

follows:

a(k) : Number of new arrivals during the kth slot.

r(k) : Channel state at the beginning of the kth slot.

q(kji; j) : Queue length at the beginning of the kth slot

when the source is in state i and the channel

is in state j.

P : Transition probability matrix for the arrival

process at the transmitter bu�er.

R : Transition probability matrix for the process

that describes the state of the radio channel:

The transition probabilities for the arrival process are

de�ned as P = [p

i;j

], where

p

i;j

4

= Pr[a(k + 1) = j j a(k) = i]; 0 � i; j � N: (3)

Also, the transition probabilities for the channel process are

de�ned as R = [r

i;j

], where

r

i;j

4

= Pr[r(k + 1) = j j r(k) = i]; i; j 2 f0; 1g (4)

where states 0 and 1 denote Good and Bad channel states,

respectively.

The size of the queue at the beginning of slot k is a func-

tion of its size in the previous slot, the number of packets

that arrive during slot k, and the state of the feedback mes-

sage. Thus, the queue size at the beginning of the (k+1)th

slot is obtained as follows: If q(kj�; �) + a(k) > 0, then

q(k + 1jl; j) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

q(kji; j) + i� 1;

with probability p

i;l

� (1� e

j

) � r

j;j

q(kji; j) + i;

with probability p

i;l

� e

j

� r

j;j

q(kji; 1� j) + i� 1;

with probability p

i;l

� (1� e

1�j

) � r

1�j;j

q(kji; 1� j) + i;

with probability p

i;l

� e

1�j

� r

1�j;j

(5)

and if q(kj�; �) + a(k) = 0, then

q(k + 1jl; j) = 0; with probability p

i;l

� (r

j;j

+ r

1�j;j

) (6)

where 0 � i; l � N and 0 � j � 1. In (5), the last two

cases correspond to the state of the radio channel going from

1 � j to j, whereas no transition occurs in the other two

cases. Furthermore, the �rst and third cases correspond

to a successful packet transmission, whereas in the other

cases, the transmitted packet is in error. The steady state

probability q

i;j

(n) is de�ned as:

q

i;j

(n)

4

= lim

k!1

Pr[q(kji; j) = n]: (7)

From (5) and (6), the state balance equation is obtained as

follows:

If n > 0,

q

i;j

(n) =

min(N;n+1)

X

l=0

(r

j;j

�e

j

p

l;i

q

l;j

(n� l+ 1)

+r

�

j;j

�e

�

j

p

l;i

q

l;

�

j

(n� l+ 1)) +

min(N;n)

X

l=0

(r

j;j

e

j

p

l;i

q

l;j

(n� l)

+r

�

j;j

e

�

j

p

l;i

q

l;

�

j

(n� l)) (8)

where �x denotes 1� x.

And, if n = 0

q

i;j

(n) =

min(N;n+1)

X

l=0

(r

j;j

�e

j

p

l;i

q

l;j

(n� l+ 1) + r

�

j;j

�e

�

j

p

l;i

�q

l;

�

j

(n� l+ 1)) + p

0;i

(r

j;j

q

0;j

(0) + r

�

j;j

q

0;

�

j

(0)): (9)

Let Q

i;j

(z) denote the PGF of the queue length:

Q

i;j

(z)

4

=

1

X

n=0

q

i;j

(n)z

n

:

From (8) and (9), we can obtain Q

i;j

(z):

Q

i;j

(z) =

1

X

n=1

min(N;n+1)

X

l=0

(r

j;j

�e

j

p

l;i

q

l;j

(n � l + 1)

+r

�

j;j

�e

�

j

p

l;i

q

l;

�

j

(n� l + 1))z

n

+

1

X

n=1

min(N;n)

X

l=0

(r

j;j

e

j

p

l;i

q

l;j

(n� l) + r

�

j;j

e

�

j

p

l;i

q

l;

�

j

(n� l))z

n

+

1

X

l=0

(r

j;j

�e

j

p

l;i

q

l;j

(1� l) + r

�

j;j

�e

�

j

p

l;i

q

l;

�

j

(1� l))

+p

0;i

(r

j;j

q

0;j

(0) + r

�

j;j

q

0;

�

j

(0)): (10)

In order to simplify the previous equation, we use the fol-

lowing relations:

1

X

n=1

min(N;n)

X

l=0

p

l;i

q

l;j

(n� l)z

n

=

N

X

l=0

1

X

n=l

p

l;i

q

l;j

(n� l)z

n

� p

0;i

q

0;j

(0) (11)

and

1

X

n=1

min(N;n+1)

X

l=0

p

l;i

q

l;j

(n� l+ 1)z

n

=

N

X

l=2

1

X

n=l�1

p

l;i

q

l;j

(n� l+ 1)z

n

+

1

X

l=0

1

X

n=1

p

l;i

q

l;j

(n� l+ 1)z

n

: (12)

Using (11) and (12), we obtain:

Q

i;j

(z) = r

j;j

�e

j

p

0;i

q

0;j

(0) + r

�

j;j

�e

�

j

p

0;i

q

0;

�

j

(0)

+r

j;j

�e

j

N

X

l=2

p

l;i

z

l�1

Q

l;j

(z) + r

j;j

�e

j

(z

�1

p

0;i

(Q

0;j

(z)

�q

0;j

(0)) + p

1;i

Q

1;j

(z)) + r

�

j;j

�e

�

j

N

X

l=2

p

l;i

z

l�1

Q

l;

�

j

(z)

+r

�

j;j

�e

�

j

(z

�1

p

0;i

(Q

0;

�

j

(z)� q

0;

�

j

(0)) + p

1;i

Q

1;

�

j

(z))

+r

j;j

e

j

N

X

l=0

p

l;i

z

l

Q

l;j

(z) + r

�

j;j

e

�

j

N

X

l=0

p

l;i

z

l

Q

l;

�

j

(z) (13)



Arranging the previous equation, we obtain:

Q

i;j

(z)� r

j;j

�

j

(z)

N

X

l=0

p

l;i

z

l

Q

l;j

(z)

�r

�

j;j

�

�

j

(z)

N

X

l=0

p

l;i

z

l

Q

l;

�

j

(z) = r

j;j

(1� �

j

(z))p

0;i

q

0;j

(0)

+r

�

j;j

(1� �

�

j

(z))p

0;i

q

0;

�

j

(0) (14)

where �

j

(z) = e

j

+ �e

j

z

�1

and �

�

j

(z) = e

�

j

+ �e

�

j

z

�1

. In the

previous equation,

N

X

l=0

p

l;i

z

l

(r

j;j

�

j

(z)Q

l;j

(z)� r

�

j;j

�

�

j

(z)Q

l;

�

j

(z))

=

N

X

l=0

p

l;i

z

l

[R

T

E(z)]

(j)

Q

l

= [P

T

diag[z

i

]
R

T

E(z)]

(2i+j)

Q (15)

where [A]

(i)

denotes the (i)th row of A and

Q

l

(z)

4

= [Q

l;0

(z) Q

l;1

(z)]

T

E(z)

4

= diag[�

0

(z); �

1

(z)]

diag[z

i

]

4

= diag[1; z; z

2

; � � � ; z

N

]

Q(z)

4

= [Q

0;0

(z); Q

0;1

(z); Q

1;0

(z); Q

1;1

(z);

� � � ; Q

N;0

(z); Q

N;1

(z)]

T

:

Using (15), we can arrange (14) in the following matrix form:

[I � P

T

diag[z

i

]
R

T

E(z)]Q(z) =

[P

T

diag[z

i

]
R

T

[I �E(z)]]Q

0

(16)

where Q

0

= [q

0;0

(0); q

0;1

(0); 0; � � � ; 0]

T

.

With some algebraic manipulation of (16), we obtain:

Q(z) = [I � P

T

diag[z

i

]
R

T

E(z)]

�1

[P

T

diag[z

i

]


R

T

[I �E(z)]]Q

0

=

1

X

l=0

[P

T

diag[z

i

]
R

T

E(z)]

l+1

[I 
 [E(z)

�1

� I]]Q

0

: (17)

In (17), Q

0

contains the unknown terms q

0;0

(0) and q

0;1

(0).

Since for a stable system Q(z) is analytic in a closed unit

disk, these unknown terms can be obtained by �nding all

the poles of Q(z) in the closed unit disk [8]. Finding these

poles is facilitated by the following diagonalization of the

matrix P

T

diag[z

i

]
R

T

E(z):

P

T

diag[z

i

]
R

T

E(z) = G(z)�(z)G

�1

(z) (18)

where �(z) is a diagonal matrix given by:

�(z) = diag[�

0

(z); �

1

(z); � � � ; �

2N+1

(z)]:

For each �

l

(z), l = 0; 1; � � � ; 2N+1, let g

l

(z) and h

l

(z) denote

the respective left-column and right-row eigenvectors of (18)

given by:

G(z) = [g

0

(z); g

1

(z); � � � ; g

2N+1

(z)] (19)

and

G

�1

(z) = [h

0

(z); h

1

(z); � � � ; h

2N+1

(z)]

T

: (20)

By spectral decomposition, we obtain:

P

T

diag[z

i

]
R

T

E(z) =

2N+1

X

l=0

�

l

(z)g

l

(z)h

l

(z): (21)

Each eigenvalue and eigenvector in the RHS of the previous

equation can be obtained by using properties of Kronecker

products. Based on the previous equation, we can simplify

(17) into:

Q(z) =

1

X

l=0

[P

T

diag[z

i

]
R

T

E(z)]

l+1

[I 
E(z)

�1

� I]Q

0

=

1

X

l=0

2N+1

X

i=0

�

l+1

i

(z)g

i

(z)h

i

(z)[I 
E(z)

�1

� I]Q

0

=

2N+1

X

i=0

�

i

(z)

1� �

i

(z)

g

i

(z)h

i

(z)[I 
E(z)

�1

� I]Q

0

: (22)

Substituting Q

0

into the previous equation, we obtain:

Q(z) =

2N+1

X

i=0

�

i

(z)

1� �

i

(z)

2N+1

X

l=0

g

li

(z)

�

h

i0

(z)

1� �

0

(z)

�

0

(z)

q

0;0

+ h

i1

(z)

1� �

1

(z)

�

1

(z)

q

0;1

�

: (23)

Let �(z) denote the characteristic function of the system:

�(z)

4

=

2N+1

Y

i=0

(1� �

i

(z)): (24)

The poles of (23) are equal to the roots of this characteris-

tic function. We need to determine two unknown variables

q

0;0

and q

0;1

using two conditions. First, since Q(z) is ana-

lytic for each root z

i

, jz

i

j < 1, we can set up the following

boundary condition:

h

i0

(z

i

)

1� �

0

(z

i

)

�

0

(z

i

)

q

0;0

+ h

i1

(z

i

)

1� �

1

(z

i

)

�

1

(z

i

)

q

0;1

= 0 (25)

Secondly, we use the relation:

lim

z!1

Q(z) = 1: (26)

Solving (25) and (26), we can determine the values of the

unknown variables q

0;0

and q

0;1

. Thus, the mean queue

length �q is given by

�q = Q

0

(1): (27)

Also, using Little's law, we obtain the mean packet delay

�

d

given by

�

d =

�q

�

s

(28)

where �

s

is the mean arrival rate. Recall that we approxi-

mate the queueing delay under SR ARQ error control by

�

d



in (28), which is the mean queueing delay under an ideal SR

ARQ system with zero feedback delay.

To obtain the retransmission delay for a real SR ARQ, we

use the results in [6], where the mean number of transmission

attempts per correctly received packet �n was given by

�n = 1 +U

r

(I � S)

�1

V (29)

where U

r

= [1 1] and

S =

�

r

(s)

0;0

e

0

r

(s)

1;0

e

0

r

(s)

0;1

e

1

r

(s)

1;1

e

1

�

(30)

V =

�

�

r;0

e

0

�

r;1

e

1

�

(31)

where r

(s)

i;j

corresponds to the (i; j)th element of s-step tran-

sition matrixR, and �

r;0

and �

r;1

are the steady-state prob-

abilities that the channel is in Good and Bad states, respec-

tively.

Combining the queueing delay in (28) and the retrans-

mission delay in (29), we obtain the normalized mean trans-

mission delay T :

T =

�

d+ s�n�

s

2

: (32)

In the previous equation,

�

d and s�n �

s

2

correspond to the

mean queueing and retransmission delays, respectively. The

term

s

2

is subtracted because the time to deliver an ACK to

the transmitter does not contribute to the transport delay.

Using Little's law, the mean number of packets in the queue

at the transmitter for a real SR ARQ is given by:

E[q] = �q + s�n�

s

: (33)

3 Resequencing Delay

In this section, we derive an upper bound on the mean re-

sequencing delay obtained under a heavy-tra�c scenario,

i.e., packets are always supplied. Given a feedback delay

of s slots, the feedback message from the receiver is deliv-

ered to the transmitter s slots after the packet is transmit-

ted. We adapt the analytical approach in [9], which assumes

i.i.d. packet error probabilities, to the underlying case where

packet errors are correlated in a Markovian manner. Let

X(t)

4

= (X

1

(t); X

2

(t); � � � ; X

s

(t)) denote the set of identi-

�ers of the packets which are transmitted during window

t. We assume that packet identi�ers are numbered in an

increasing order. This assumption a�ects the accuracy of

this analytical approach since the packet error probability

is dependent on the location of a slot. However, the error

caused by this assumption is acceptable in most practical

situations except when the sojourn time of a channel state

is small relative to the window size (or the feedback delay).

The process fX(t); t = 1; 2; � � �g governs the evolution

of the occupancy of the resequencing bu�er. Let D

i

(t) and

W

k

(t) be de�ned as follows:

D

i

(t)

4

= X

i+1

(t)�X

i

(t); i = 1; 2; � � � ; s (34)

W

j

(t)

4

=

s

X

i=j

D

i

(t); j = 1; 2; � � � ; s (35)

withD

s

(t)

4

= 1. As an example, letX(1) = (1; 2; 3; 4; 5; 6; 7; 8)

and s = 8. If transmissions of packets 2; 4; 5, and 6 fail,

X(2) = (2; 4; 5; 6; 9; 10; 11; 12). Again, if transmission of

packets 4; 5; 9; 10, and 12 fail,X(3) = (4; 5; 9; 10; 12; 13; 14; 15).

In this example, the corresponding D

i

(t) andW

i

(t) are given

in Table 1. The size of the resequencing bu�er at windows

Slots

X(1) 1 2 3 4 5 6 7 8

D(1) 1 1 1 1 1 1 1 1

W (1) 8 7 6 5 4 3 2 1

X(2) 2 4 5 6 9 10 11 12

D(2) 2 1 1 3 1 1 1 1

W (2) 11 9 8 7 4 3 2 1

X(3) 4 5 9 10 12 13 14 15

D(3) 1 4 1 2 1 1 1 1

W (3) 12 11 7 6 4 3 2 1

Table 1: An example of the evolution of the occupancy of

the resequencing bu�er.

1; 2, and 3 is 0, 3, and 4, respectively. Rosberg and Shacham

[9] observed that the bu�er occupancy at window t, B(t), is

given by:

B(t) =W

1

(t)� s: (36)

Furthermore, they observed that the system state W

s�i

(t),

t � 1, 1 � i < s� 1 is governed by the following:

� If there were fewer than s� i NACK's during window

t, then W

s�i

(t+ 1) = i+ 1

� If there were s � i + l NACK's, 0 � l � i, and if the

(s� i)th NACK was for the packet X

k

(t), s� i � k �

s� l, then W

s�i

(t+ 1) =W

k

(t) + (i� l).

In the following, we extend the previous analysis to the case

of Gilbert-Elliot's channel. First, let W

i

(tjg) and W

i

(tjb)

denote the value de�ned in (35) given that the state of the

radio channel before the beginning of window t� 1 is Good

(g) and Bad (b), respectively. The distribution of W

s�i

(t+

1jg) is given by:

W

s�i

(t+ 1jg) =

8

>

<

>

:

i+ 1;

with probability

P

s�i�1

m=0

p(s;mjg)

W

k

(t) + (i� l);

with probabilityP

t;g

(i; k; l)

(37)

where

P

t;g

=

s�l

X

k=s�i

(p(k � 1; s� i� 1; gjg)(r

0;0

e

0

p(s� k; ljg)

+r

0;1

e

1

p(s� k; ljb)) + p(k � 1; s� i� 1; bjg)

(r

1;0

e

0

p(s� k; ljg) + r

1;1

e

1

p(s� k; ljb)):

In the previous equation, p(n; kjr

1

) denotes the probability

of k unsuccessful transmissions in n consecutive slots given

that the radio state at the beginning of a window is r

1

.

And p(n; k; r

2

jr

1

) denotes the probability of k unsuccessful

transmissions in n consecutive slots and the state of the

radio channel of the last slot is r

2

given that a radio state

before the beginning of a window is r

1

. In a similar way, the

distribution of W

s�i

(t+ 1jb) is given by:

W

s�i

(t+ 1jb) =

8

>

<

>

:

i+ 1;

with probability

P

s�i�1

m=0

p(s;mjb)

W

k

(t) + (i� l);

with probabilityP

t;b

(i; k; l)

(38)



where

P

t;b

(i; k; l) =

s�l

X

k=s�i

(p(k� 1; s� i� 1; gjb)

(r

0;0

e

0

p(s� k; ljg) + r

0;1

e

1

p(s� k; ljb))

+p(k � 1; s� i� 1; bjb)(r

1;0

e

0

p(s� k; ljg)

+r

1;1

e

1

p(s� k; ljb)):

Taking the z-transform, we have

W

s�i

(zjg) =

i

X

l=0

s�l

X

k=s�i

(p(k� 1; s� i� 1; gjg)

�(r

0;0

e

0

p(s� k; ljg) + r

0;1

e

1

p(s� k; ljb))

+p(k � 1; s� i� 1; bjg)(r

1;0

e

0

p(s� k; ljg)

+r

1;1

e

1

p(s� k; ljb)))W

k

(z)z

i�l

+

s�i�1

X

m=0

p(s;mjg)z

i+1

: (39)

Similarly, for (38) we have

W

s�i

(zjb) =

i

X

l=0

s�l

X

k=s�i

(p(k� 1; s� i� 1; gjb)

�(r

0;0

e

0

p(s� k; ljg) + r

0;1

e

1

p(s� k; ljb))

+p(k � 1; s� i� 1; bjb)(r

1;0

e

0

p(s� k; ljg)

+r

1;1

e

1

p(s� k; ljb)))W

k

(z)z

i�l

+

s�i�1

X

m=0

p(s;mjb)z

i+1

: (40)

Multiplying (39) and (40) by �

r;0

and �

r;1

, respectively,

and summing each, we obtain the following equation:

W

s�i

(z) =

s�i�1

X

m=0

�P[s;m]Uz

i+1

+

i

X

l=0

s�l

X

k=s�i

�

�P[k � 1; s� i� 1]REP[s� k; l]UW

k

(z)z

i�l

: (41)

where � is the steady-state probability vector of the radio

state, i.e., � = [�

r;0

; �

r;1

], E = diag[e

0

; e

1

], and

P[n; k]

4

=

�

p(n; k; gjg) p(n; k; bjg)

p(n; k; gjb) p(n; k; bjb)

�

:

Exploiting the recursive structure, we obtain the following

di�erence equation:

P[n; k] = R

�

EP[n� 1; k] +REP[n� 1; k � 1] (42)

with the boundary conditions

P[0; 0] = I

P[n; k] = O; if n < k or n; k < 0:

where

�

E = diag[�e

0

; �e

1

]. The solution to the above di�erence

equation is obtained numerically. To obtain the mean bu�er

size, we di�erentiate (41) with respect to z and evaluate at

z = 1. Let �

s�i

be de�ned as:

�

s�i

4

=

dW

s�i

(z)

dz

j

z=1

: (43)

Thus, we have

�

s�i

= (i+ 1)f

1

(i)

+

i

X

l=0

s�l

X

k=s�i

((i� l)f

2

(i; k; l) + f

2

(i; k; l)�

k

) (44)

where

f

1

(i) =

s�i�1

X

m=0

�P[s;m]U

f

2

(i; k; l) = �P[k � 1; s� i� 1]REP[s� k; l]U :

Arranging the previous equation, we obtain for 1 � i �

s� 1:

�

s�i

= ((i+ 1)f

1

(i) +

i

X

l=0

s�l

X

k=s�i+1

f

2

(i; k; l)(i� l + �

k

)+

i

X

l=0

f

2

(i; s� i; l)(i� l))(1�

i

X

l=0

f

2

(i; s� i; l))

�1

(45)

and �

s

= 1. The mean bu�er occupancy is �

1

� s. Using

Little's law, we obtain the mean resequencing delay T

r

:

T

r

=

�

1

� s

�

r;0

�e

0

+ �

r;1

�e

1

: (46)

4 Numerical Results

We now give numerical examples based on the previously

presented analysis and contrast them against more realis-

tic simulation results. We consider a single discrete-time

on-o� source in which one packet is generated in a time

slot during the on periods. Transitions between on and

o� states are governed by the transition probability matrix

P = [p

i;j

]; 0 � i; j � 1. The characteristics of the on-o�

source are represented by the mean arrival rate (�

s

) and the

mean length of the on periods (T

on

). We also de�ne three

parameters for the Gilbert-Elliot's radio channel: the aver-

age packet error rate (�), the duty cycle of the Bad period

(�

r

), and the ratio of the mean packet error rate during a

Bad state to the mean packet error rate during a Good state:

�

4

=

r

0;1

e

1

+ r

1;0

e

0

r

0;1

+ r

1;0

(47)

�

r

4

=

r

0;1

r

0;1

+ r

1;0

(48)

�

4

=

e

1

e

0

(49)

Table 2 gives the values of the various parameters used in

our experiments. When varying the value of one parameter,

the other parameters are set to their default values.

Fig. 3 shows the mean queue length as a function of the

load �

s

for three values of feedback delay, s = 10; 50; 100.

Note that the queue length also includes already transmit-

ted packets that are waiting for acknowledgments. A good

agreement is observed between simulation and analysis.

Fig. 4 shows the mean transport delay as a function of

�

s

for s = 10; 50; 100 (time is in slot units). As shown in

the �gure, the mean transport delay is less sensitive to the

input load. Since one packet is generated per slot, no queue-

ing delay is occurred unless a NACK is returned. Since we



Parameter Symbol Range of values (default value)

Mean arrival rate �

s

0:3� 0:7(0:5)

Mean on period T

on

10� 300(100)

Mean packet error rate � 0:01� 0:3(e

1

= 0:9; e

0

= 0:001)

Duty cycle of Bad period �

r

0:05� 0:2(0:1)

Transition probability from

Good to Bad r

0;1

0:005 � 0:1(0:03)

Ratio of mean packet error rate

of Bad state over Good state � variable

Table 2: Parameters used in the numerical results.

�x the average duration of the Bad period at 10% of the av-

erage duration of the Good period, it is hard to notice any

signi�cant queueing delay up to medium input load. As �

s

increases, it is more likely that the on state and Bad state

occur simultaneously which may cause a higher queueing de-

lay. In this �gure, the analytical results tend to overestimate

the simulations by less than 10%.
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Figure 3: Mean queue length versus input load.
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Figure 4: Mean transport delay versus input load.

Fig. 5 shows the mean transport delay as a function of

the transition probability from on to o� states (p

1;0

) for s =

10; 50 (�

s

= 0:5). As p

1;0

decreases (on period increases),

the mean transport delay increases abruptly. For p

1;0

> 0:03

the performance is almost insensitive to the average duration

of the on periods.
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Figure 5: Mean transport delay versus the transition prob-

ability from on to o�.

Fig. 6 shows the mean resequencing delay as a function of

the mean packet error rate (�) for s = 50; 100. As discussed

earlier, our analysis of the resequencing delay is appropriate

only under heavy tra�c, i.e., packets are always supplied.

For comparison purposes, the �gure also includes the curves

for the on-o� source with �

s

= 0:3 and 0:7 along with the

heavy tra�c results. As expected, both analytical and sim-

ulation results match well as �

s

increases. It is observed

that the gap between the analytical and simulation results

increases as the feedback delay and mean packet error rate

increase. Interestingly, the shape of the curves is concave.
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Figure 6: Mean resequencing delay versus �.

Fig. 7 and 8 show the mean end-to-end delay as a func-



tion of � for s = 50 and s = 100, respectively. When s = 50

the transmission delay is always greater than the resequenc-

ing delay, whereas a crossing point is observed in the case

of s = 100. In particular, the resequencing delay becomes

more signi�cant as the mean packet error rate increases.
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Figure 7: Mean end-to-end delay versus � (s = 50).
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Figure 8: Mean end-to-end delay versus � (s = 100).

5 Conclusions

In this paper, we investigated the mean end-to-end delay

for a general Markovian source transported over a wireless

channel with time-varying error characteristics. An SRARQ

error control protocol was assumed between the transmitter

and the receiver. The state of the channel was represented

using a two-state Gilbert-Elliot's model. We obtained an

approximation for each component of the total mean delay,

which consists of queueing, transmission/retransmission, prop-

agation, and resequencing delays. For the queueing delay,

our approximation is based on decoupling the dependence

of the queueing process at the transmitter from the past

history of the channel state. Such approximation becomes

exact in the case of \ideal" SR ARQ with zero feedback de-

lay. We obtained the exact probability generating function

(PGF) of the queue length under ideal SR ARQ and com-

bined it with the retransmission delay to obtain the mean

transport delay. For the resequencing delay, our analysis

was performed under heavy-tra�c assumptions, hence pro-

viding an upper bound on the actual mean resequencing

delay. Numerical examples based on the analysis indicate

good agreement with simulation results obtained under less

stringent assumptions. It was observed that the mean re-

sequencing delay becomes a more signi�cant portion of the

total mean delay as the channel conditions deteriorate.
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