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Abstract—We are concerned with the throughput of a full-
duplex (FD) MIMO network. Unlike conventional half-duplex (HD)
MIMO, two wireless devices of a bidirectional FD-MIMO link
have freedom of selecting which antennas/RF-chains to transmit
or receive before tuning their radiation patterns to maximize the
link’s throughput. The freedom in configuring the function of
available RF-chains, resulting in various FD-MIMO transmission
modes, is referred to as FD-MIMO freedom that is shown to
significantly improve the spectral efficiency of a given link. For a
given RF-chain/antenna selection of a set of FD-MIMO links, we
end up with a non-convex throughput maximization problem of a
heterogeneous MIMO network. We design both centralized (using
the augmented Lagrange function) and distributed algorithm
(using a hierarchical game and pricing) to solve the problem for its
locally optimal solutions. Comparing the achieved throughput of
the FD-MIMO network, averaged over all obtained locally optimal
solutions, with that when FD-MIMO nodes choose to operate in
an HD mode, we find the HD mode surprisingly outperforms the
FD mode. This trend is also observed when exploring all possible
communication modes of a small size FD-MIMO network.

Index Terms—Spectral efficiency, full-duplex, MIMO, beam-
forming, Nash equilibrium, nonconvex optimization.

I. INTRODUCTION

It has been recently demonstrated that a wireless device can
transmit and receive simultaneously, i.e., perform full-duplex
(FD) communications, on the same channel [1] [2]. The result-
ing link throughput is nearly double that of a conventional half-
duplex (HD) link [3]. FD communications is enabled through
various self-interference suppression (SIS) techniques, including
antenna cancelation, RF cancelation and digital cancelation [1]
[2]. Interested readers are referred to [3] and the references
therein for the latest development on SIS. Perfect SIS, i.e.,
completely bringing self-interference to the noise floor level
(110 dB reduction), has been demonstrated in [3]. Various works
have shown significant throughput improvements of FD over
HD communications for a single link [1] [4] [3]. The spectral
efficiency can be further boosted when combining SIS with
multi-input multi-output (MIMO) technology [5]. In this article,
we study the implications of FD-MIMO in network designs.
Specifically, we are interested in answering: in a network
context, how much spectral efficiency improvement, if any, can
FD-MIMO provide compared with HD-MIMO?

An FD-MIMO transceiver with SIS capability can be ex-
ploited in two ways: FD-MIMO relaying or FD-MIMO bidi-
rectional channels. In the former, a node receives data from
another node and simultaneously transmits data to a third node.
In our work, we consider a network of bidirectional FD-MIMO
links. The first FD-MIMO design [5], MIDU, used two separate
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antenna arrays at each node to transmit and to receive, so that
MIMO is enabled in both forward and reverse directions. Note
that a FD-MIMO device that transmits and receives on the same
antenna array is not yet possible at the time of this work due
to the cross-antenna interference [3]. However, with the latest
development in SIS [3] that allows an antenna to transmit and
receive simultaneously, a FD-MIMO link now has the freedom
of selecting which antennas/RF-chains to transmit or receive on
(but not both) in the forward and reverse directions.

More specifically, consider a pair of FD-MIMO devices, each
with M antennas. For each of the M data streams between both
ends, we have freedom to choose which antenna to start from
and which antenna to terminate at. For M = 4, Figure 1(a)
illustrates a FD-MIMO link with undecided Tx/Rx antennas
that can be of various possibilities, including but not limited
to: 2 × 2 FD-MIMO (Figure 1(b)), 1 × 3 FD-MIMO (Figure
1(c)), or even 4× 4 HD-MIMO (Figure 1(d)). Here, the x× y
FD-MIMO configuration refers to x× x and y× y HD-MIMO
mode on the forward and reverse directions. Additionally, a
given FD-MIMO configuration can be realized via different
antenna selections that result in different performance (e.g.,
both Figures 1(b) and (e) realize 2× 2 FD-MIMO; Figure 1(c)
and (f) for 1 × 3 FD-MIMO). In a network context, the FD
Tx/Rx antenna selection can also be helpful in reducing network
interference (e.g., Tx antennas should be ones that induce less
network interference) as well as mitigating interference effect
(e.g., Rx antennas should be ones that are less interfered from
others), consequently improving network throughput. We refer
such freedom in configuring FD-MIMO operational modes as
FD-MIMO freedom. The first hardware radio that supports FD-
MIMO freedom has been recently demonstrated [6].

Fig. 1. Freedom in selecting different FD-MIMO configurations.

The ultimate goal of our paper is to investigate the spectral
efficiency of FD-MIMO under a network context with optimal
Tx/Rx antenna selection. Such a FD-MIMO network consists
of various FD-MIMO links, operating with different FD-MIMO
configurations (possibly including HD-MIMO mode). Note that
most existing works on FD communications investigated single-
link scenarios. Specifically, the suboptimal throughput of a sin-
gle FD-MIMO relaying and bidirectional channels was visited
in [7] and [8], respectively. The tradeoff between diversity and



multiplexing gain of a single FD-MIMO relaying channel was
explored in [9]. In [5], the authors showed that FD-MIMO
significantly improves the link throughput, compared with HD-
MIMO.

The network-throughput maximization problem of FD-
MIMO involves both binary variables of antenna selection
and continuous variables of MIMO precoding matrices which
control antenna radiation patterns. Even if we fix the antenna
selection, we still end up with a non-convex throughput max-
imization problem of a heterogeneous MIMO network. To
tackle it, we transfer the problem into a hierarchical game
in which the forward and reverse links of a bidirectional FD
link first cooperate in determining the set of transmit and
receive antennas. In the second stage, each bidirectional FD-
MIMO link participates in a noncooperative game, aiming at
maximizing its own throughput. We design a pricing policy for
each FD-MIMO node, which drives the noncooperative game to
a Nash-Equilibrium (NE). The network throughput under this
NE equals to that of a locally optimal solution of the non-convex
centralized problem.

Simulations show that the network throughput under the
distributed algorithm rapidly converges to that of the centralized
one. Comparing the achieved throughput of the FD-MIMO
network with that when FD-MIMO nodes choose to operate
in HD mode with all of its antennas, the HD mode often
surprisingly outperforms the FD mode. This trend is also
observed when we explore all possible communication modes
of a small-size FD-MIMO network. The above observation is
somehow counterintuitive as for the single link case, FD-MIMO
generally performs much better than HD-MIMO. However,
it can be justified by noting that for interfering links, HD-
MIMO has three advantages that can make it preferable to
FD-MIMO. First, a link that operates in HD mode is likely
to inject less interference into the network, compared with FD-
MIMO in which both ends of a link are transmitting. Second,
when a FD-MIMO node uses all of its available antennas
to operate as a HD-MIMO transmitter, it has more freedom
to tune its radiation pattern to avoid interfering with nearby
unintended receivers. This consequently reduces the multi-user
interference and improves network throughput. Third, a network
with more links operating at HD-mode has less unintended
receivers, giving more interference-free directions for other
MIMO transmitters to beamform to their intended receivers.

Throughout the paper, we use (.)∗ to denote the conjugate of a
matrix, (.)H to denote its Hermitian transpose, tr(.) for the trace
of a matrix, |.| for the matrix determinant or a set’s cardinality,
and (.)T for the matrix transpose. diags(.) indicates the diagonal
element (s, s) of a matrix. sum(.) gives the summation of all
elements of a vector. Matrices, vectors, and sets are bold-faced.

II. NETWORK MODEL

Consider a network of N FD-MIMO links (i.e., 2N FD-
MIMO nodes), denoted by set Φ

def
= {1, . . . , N}. Each node is

equipped with M antennas, each of which can be configured to
transmit or receive, but not at the same time1. Let sfu(:) be a
1×M vector with sfu(i) = 1 if the ith antenna of the transmitter
of the forward direction of a bidirectional FD link u serves as
a transmit antenna, otherwise (i.e., sfu(i) = 0) i is a receive
antenna (for the reverse direction). Note that the forward and
reverse directions are selected arbitrarily. Vector sru(:) is defined
in a similar way for the reverse direction of link u.

Let Hf
uu (Hr

uu) denote the M ×M channel gain matrix of
the forward (reverse) direction of link u when the link operates

1Due to cross-antenna interference, the SIS technique in [3] does not enable
an antenna array to transmit and receive simultaneously [3].

in HD mode. It is clear that Hf
uu is the transpose of Hr

uu.
Each element of Hf

uu is a multiplication of a distance- and
channel-dependent attenuation term and a random term that
reflects multi-path fading (complex Gaussian variables with zero
mean and unit variance). Let Hff

uv (Hfr
uv) denote the M ×M

interfering channel gain matrix from the transmitter of forward
(reverse) direction of link v to the receiver of forward direction
of link u in HD mode.

For a given selection of Tx/Rx antennas (sru(:) and sfu(:),
∀u = 1, . . . , N ) at all FD-MIMO nodes, the resulting channel
gain matrix between any two nodes consists of a subset of
M2 elements of the corresponding HD channel gain matrix.
Specifically, let ei be a 1 ×M vector of the standard basis of
M -dimension Euclidean space of which the ith element is 1 and
all others are 0. The channel gain matrix hfuu of the forward
direction of link u is:

hfuu = LfuH
f
uuR

f
u (1)

where:

Lfu = [eTπ(1), . . . , e
T
π(t), . . . , e

T
π(|Sr|)],

with Sr
def
= {π(t)} = {1 ≤ j ≤M |sru(j) = 0}

Rf
u = [eTπ(1), . . . , e

T
π(t), . . . , e

T
π(|Tf |)]

T

with Tf def
= {π(t)} = {1 ≤ j ≤M |sfu(j) = 1}.

(2)

Similarly, the channel gain matrix hruu of the reverse direction
of link u is:

hruu = LruH
r
uuR

r
u (3)

where:

Lru = [eTπ(1), . . . , e
T
π(t), . . . , e

T
π(|Sf |)],

with Sf
def
= {π(t)} = {1 ≤ j ≤M |sfu(j) = 0}

Rr
u = [eTπ(1), . . . , e

T
π(t), . . . , e

T
π(|Tr|)]

T

with Tr def
= {π(t)} = {1 ≤ j ≤M |sru(j) = 1}.

(4)

The interfering channel gain matrices hffuv and hfruv from the
transmitters of forward and reverse directions of link v to the
receiver of the forward direction of link u are:

hffuv = LfuH
f
uvR

f
v

hfruv = LfuH
f
uvR

r
v

(5)

Other interfering channel matrices (hrfvu and hrrvu) at the
receiver of the reverse link v are found in a similar way. Note
that although matrices Hr

uu, Hf
uu, and Hff

uv have the same
size M ×M , the resulting channel gain matrices (after Tx/Rx
antenna selection) hfuu, hruu, and hffuv have different sizes.
Additionally, as we want to harvest the spatial multiplexing gain
(the minimum of the number of Tx and Rx antennas), it is not
helpful to have an unequal number of Tx and Rx antennas. In
other words, hfuu and hruu are square matrices of size sum(sfu(:
))×sum(sfu(:)) and sum(sru(:))×sum(sru(:)), respectively. hffuv
is not necessarily square and of size sum(sfu(:))× sum(sfv (:)).
Let Gf

u and Gr
u denote the precoding matrices of the forward

and reverse directions of link u, respectively. xfu denotes the
vector of information symbols being placed on the transmitter’s
antennas of the forward direction of link u. Then, the received
signal vector yfu at the receiver of the forward direction of link
u is:
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yfu =hfuuG
f
ux

f
u +

∑
v∈{Φ\u}

hfuvG
f
vx

f
v1+[sum(sfv (:))]

+
∑

v∈{Φ\u}

hruvG
r
vx

r
v1+[sum(srv(:))] + Nsum(sfu(:))

(6)

where the first term is the intended signal, the second and third
terms represent interference from transmitters of forward and
reverse directions of link v (if their number of transmit antennas
are not zero). Nsum(sfu(:))

is an sum(sfu(:))×1 complex Gaus-
sian noise vector with identity covariance matrix Isum(sfu(:))

,
representing the floor noise. 1+(z) is an indicator function that
equals 1 if z > 0 and 0 otherwise. Note that we are assuming
perfect SIS, meaning that there is no interference between
forward and reverse directions of a given FD link. For cases
with imperfect SIS, the FD-MIMO network throughput should
be lower. Let cfu (cru) denote the throughput of the forward
(reverse) direction of link u if it is active, i.e., sum(sfu(:)) > 0
(sum(sru(:)) > 0). Throughput of FD-MIMO link u, cu, is:

cu =cfu + cru = log |Isum(sfu)
+ GfH

u hfHuu Qf
u

−1
hfuuG

f
u|

+ log |Isum(sru)
+ GrH

u hrHuuQr
u
−1hruuG

r
u|

(7)

where Qf
u is the noise-plus-interference covariance matrix at

the receiver of forward direction of link u:

Qf
u = Isum(sfu(:))

+
∑

v∈{Φ\u}

hffuvG
f
vG

fH
v hffHuv 1+[sum(sfv (:))]

+
∑

v∈{Φ\u}

hfruvG
r
vG

rH
v hfrHuv 1+[sum(srv(:))]

(8)

The network throughput of a FD-MIMO network that de-
pends on both the selection of Tx/Rx antennas and precoding
matrices at each link u is formally written as:

maximize
{Gf

u,Gr
u,s

f
u,sru,∀u}

∑
u∈Φ

(
cfu1+[sum(sfu(:))] + cru1+[sum(sru(:))]

)
s.t.
C1: sum(sfu) + sum(sru) =M, ∀u
C2: tr(Gf

uG
fH
u )≤Pmax(u), ∀u

C3: tr(Gr
uG

rH
u )≤Pmax(u), ∀u.

(9)
Note that constraint C1 also includes the possibility that a node
does not want to use some of its antennas to avoid interfering
with others. In such a case, the power allocated to these antennas
is zero and set by configuring the corresponding precoding
matrix.

Problem (9) is a mixed integer programming problem
(MIPP), involving binary variables of antenna selection and
continuous variables of MIMO precoders. This type of problem
is known to be NP-hard. Solving (9) for the optimal solution
is difficult. Even if we enumerate all Tx/Rx antenna combi-
nations (2MN cases), one still faces a non-convex throughput
maximization of a heterogeneous MIMO network with both FD
and HD links:

maximize
{Gf

u,Gr
u∀u}

∑
u∈Φ

(
cfu1+[sum(sfu(:))] + cru1+[sum(sru(:))]

)
s.t.
C2: tr(Gf

uG
fH
u )≤Pmax(u), ∀u

C3: tr(Gr
uG

rH
u )≤Pmax(u), ∀u.

(10)
Before casting (9) as a hierarchical game that is amenable to

distributed implementation, we develop a centralized algorithm

that finds locally optimal solutions of the non-convex problem
(10). This algorithm serves as a performance benchmark for
distributed algorithm and provide a truely optimal solution to
(9) when exhaustive search is applied to small size FD-MIMO
networks.

III. CENTRALIZED ALGORITHM

In this section, we use the augmented Lagrange multiplier
method to derive the centralized algorithm. For that purpose,
problem (10) can be rewritten:

minimize
{Gf

u,Gr
u∀u}

∑
u∈Φ

(
−cfu1+[sum(sfu(:))]− cru1+[sum(sru(:))]

)
s.t.
C2: qfu = tr(Gf

uG
fH
u )− Pmax(u) ≤ 0, ∀u

C3: qru = tr(Gr
uG

rH
u )− Pmax(u) ≤ 0, ∀u.

(11)

Algorithm 1 : Centralized Algorithm

1: Initialize
Gf
u ← I,Gr

u ← I,∀u
2: while true do
3: β ← .7, σ ← .1 (%used in Armijo search)
4: γfu ← 0, γru ← 0,∀u
5: p← 1
6: while ∂L(Gf

u,G
r
u, γ

f
u , γ

r
u, p) 6= 0 do

7: step← 0.1
8: D ← ∂L(Gf

u,G
r
u, γ

f
u , γ

r
u, p)

9: d← −step×D;m← 0
10: (%find Armijo step size)
11: while L(Gf

u,G
r
u, γ

f
u , γ

r
u, p) − L(Gf

u + d,Gr
u +

d, γfu , γ
r
u, p) ≤ −σβmstep∂LD do

12: step← step× β;m← m+ 1
13: d← −step×D
14: end while
15: Gf

u ← Gf
u + d; Gr

u ← Gr
u + d

16: end while
17: if max(qfu, q

r
u,∀u) ≤ 0 break

18: ∀u :
19: γfu = γfu + pqfu if γfu + pqfu ≥ 0 else γfu = 0
20: γru = γru + pqru if γru + pqru ≥ 0 else γru = 0
21: p← p× µ (%µ ≥ 1, increase cost of violation)
22: end while
23: Return Gf

u, Gr
u, ∀u

The augmented Lagrange [10] of (11) is given in (12) (next
page), where p is a positive penalty parameter (for violating the
constraints), γfu , and γru are nonnegative Lagrangian multipliers.
At a local optimal solution, (13) and (14) hold. The first, second,
and third terms in (13) are:

∂cfv

∂Gf∗
u

=

− hffHvu Qf
v

−1
hffvuGf

u + hffHvu (Qf
v + hffvuGf

vG
fH
v hffHvu )−1hffvuGf

u

∂crv

∂Gf∗
u

=

− hrfHvu Qr
v
−1hrfvuG

f
u + hrfHvu (Qr

v + hrfvuG
r
vG

rH
v hrfHvu )−1hrfvuG

f
u

∂cfu

∂Gf∗
u

= hfHuu (Q
f
u+hfuuG

f
uG

fH
u hfHuu )

−1hfuuG
f
u.

(17)

Since qfu and qru are continuously differentiable w.r.t. every
entry of Gf

u, the fourth and fifth terms in (13) are also contin-
uously differentiable [10]. Their derivatives are as follows:

∂{(max{0, γfu+pqfu})2}
∂Gf

u

=

{
0 if γfu + pqfu ≤ 0
2p(γfu + pqfu)G

f
u

3



L(Gf
u,G

r
u, γ

f
u , γ

r
u, p) = −

∑
u∈Φ

(
cfu −

p

2
{(max{0, γfu+pqfu})2−(γfu)2}

)
1+[sum(sfu(:))]

+
(
cru −

p

2
{(max{0, γru + pqru})2−(γru)2}

)
1+[sum(sru(:))]

(12)

0 =
∂L(Gf

u,G
r
u, γ

f
u , γ

r
u, p)

∂Gf∗
u

= −
∑

v∈{Φ\u}

(
∂cfv

∂Gf∗
u

1+[sum(sfv (:))]−
∂crv

∂Gf∗
u

1+[sum(srv(:))]

)
− ∂cfu

∂Gf∗
u

+
p

2

∂{(max{0, γfu+pqfu})2−(γfu)2}
∂Gf∗

u

+
p

2

∂{(max{0, γru+pqru})2−(γru)2}
∂Gf∗

u

(13)

0 =
∂L(Gf

u,G
r
u, γ

f
u , γ

r
u, p)

∂Gr∗
u

= −
∑

v∈{Φ\u}

(
∂cfv
∂Gr∗

u

1+[sum(sfv (:))]−
∂crv
∂Gr∗

u

1+[sum(srv(:))]

)
− ∂cru
∂Gr∗

u

+
p

2

∂{(max{0, γfu+pqfu})2−(γfu)2}
∂Gr∗

u

+
p

2

∂{(max{0, γru+pqru})2−(γru)2}
∂Gr∗

u

(14)

xu=
[
<[vec(Gf

u)]
T
,<[vec(Gr

u)]
T
,=[vec(Gf

u)]
T
,=[vec(Gr

u)]
T
]T

(15)

∇xL = 2

[
<[vec( ∂L

∂Gf∗
1

)]
T

, ...,<[vec( ∂L

∂Gr∗
N

)]
T

,=[vec( ∂L

∂Gf∗
1

)]
T

, ...,=[vec( ∂L

∂Gr∗
N

)]
T
]T

(16)

∂{(max{0, γru+pqru})2}
∂Gf

u

} =
{

0 if γru + pqru ≤ 0
2p(γru + pqru)G

f
u

We use the gradient search algorithm with Armijo step size
[10] to find (Gf

u,G
r
u, γ

f
u , γ

r
u, p) such that (13) and (14) hold

for forward and reverse directions of all links u. The details
of the centralized algorithm are presented in Algorithm 1.
We emphasize that the network throughput may vary from a
locally optimal point to another. To account for this, we run the
simulations with different initializations and take the average
throughput. The running time for Algorithm 1 can be high
as it involves NM2 complex variables (or 2NM2 real ones).
To implement Algorithm 1, we use the following isomorphism
mapping from a complex matrix to a vector of real variables.
The vector of variables x = [(xTu )

N
u=1]

T , with xu in (15) and
the corresponding Lagrange in (16).

IV. HIERARCHICAL GAME

We now cast (9) as a hierarchical game to design distributed
algorithms.

A. Cooperative Phase: Tx/Rx Antenna Selection
In the first stage of the game, the forward and reverse

directions of every FD-MIMO link cooperate in assigning
Tx/Rx antennas. Specifically, the Tx antennas of the forward
and reverse directions of FD-MIMO link u, vectors sfu and sru,
are solution of the following problem:

maximize
{Gf

u,Gr
u,s

f
u,sru}

cu

s.t.
C1: sum(sfu) + sum(sru) =M,
C2: tr(Gf

uG
fH
u )≤Pmax(u),

C3: tr(Gr
uG

rH
u )≤Pmax(u) .

(18)

This is a binary programming problem which is NP-hard.
Fortunately, for a moderate antenna array size, the total number

of Tx/Rx antenna combinations (
M∑
i=1

C(M, i)2) is not too large.

For example, for M = 4, the number of possible Tx/Rx
combinations is 69. Moreover, for a given Tx/Rx antenna
selection, (18) becomes a convex optimization problem which
can be solved efficiently using standard methods [11]. Hence,
it is possible to find the optimal Tx/Rx antenna selection
for link u through exhaustive search. Note that in problem
(18), both network interference (through noise-plus-interference
covariance) from nearby transmitters and the channel state
information (CSI) matrix of link u Hr

uu can be taken into
account while selecting Tx/Rx antennas.

1) CSI-based Antenna Selection: Without interference (e.g.,
the protocol model or one active link in a collision domain),
the matrices Qf

u and Qr
u in (18) reduce to identity matrices

Isum(sfu(:))
and Isum(sru(:))

. Intuitively, the Tx/Rx antennas of
FD link u are selected so that the HD channel gain matrix
MIMO link u are “decomposed” into two “orthogonal” (for-
ward and reverse) channels that have highest gains for each
MIMO substream. For instance, consider the HD 4× 4 channel
gain matrix in (19). With SIS capability, the optimal Tx/Rx
assignment are sfu = [1010]T and sru = [0101]T , meaning that
the forward direction uses antennas 1st, 3rd to transmit and the
reverse direction uses antennas 2nd, 4th to transmit. This forms
two 2× 2 MIMO channels on both directions.

For a single FD link with power budget of 50mW and
bandwidth of 1Mhz, Figure 2(a) shows the throughput of FD-
MIMO mode with/without optimal Tx/Rx antenna selection,
compared with HD-MIMO mode. For FD-MIMO mode with
fixed Tx/Rx antennas, we select, for example, the first antenna
of both ends to acts as the Tx and Rx antennas for the forward
direction while other antennas are used on the reverse direction.
As can be seen, without Tx/Rx antenna selection, FD-MIMO
mode does not offer significant throughput improvement over
HD-MIMO mode. This observation agrees with findings in [5].
However, the FD-MIMO mode with optimal Tx/Rx antenna
selection attains about 37% throughput higher than that of HD-
MIMO mode.
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Hf
11 =


0.4416 + 0.0016i −0.1510− 0.2037i 0.0064 + 0.1185i 0.0414− 0.1225i
−0.0084 + 0.0390i −0.1071− 0.0857i −0.0468 + 0.2139i 0.2318 + 0.0158i
0.1581 + 0.2587i 0.2252− 0.2657i −0.2748− 0.0920i −0.0294 + 0.1495i
−0.4114 + 0.0715i 0.2227 + 0.2623i −0.0021− 0.2105i 0.0150 + 0.1718i

 (19)

L(Gf
u,G

r
u, α

f
u, α

r
u) =

∑
u∈Φ

[
(cfu − αfu(tr(Gf

uG
fH
u )− Pmax(u)))1+[sum(sfu(:))] + (cru − αru(tr(Gr

uG
rH
u )− Pmax(u)))1+[sum(sru(:))]

]
(20)

Lu(G
f
u,G

r
u, α

f
u, α

r
u)=(cfu−αfu(tr(Gf

uG
fH
u )−Pmax(u)))+(cru−αru(tr(Gr

uG
rH
u )−Pmax(u)))−tr

(
GfH
u Af

uG
f
u

)
−tr

(
GrH
u Ar

uG
r
u

)
(21)

Af
u =

∑
v∈{Φ\u}

(
hffHvu Qf

v

−1
hfvv[(G

f
vG

fH
v )−1 + hfHvv Qf

v

−1
hfvv]

−1hfHvv Qf
v

−1
hffvu1+[sum(sfv (:))]

+ hrfHvu Qr
v
−1hrvv[(G

r
vG

rH
v )−1 + hrHvv Qr

v
−1hrvv]

−1hrHvv Qr
v
−1hrfvu1+[sum(srv(:))]

)
Ar
u =

∑
v∈{Φ\u}

(
hfrHvu Qf

v

−1
hfvv[(G

f
vG

fH
v )−1 + hfHvv Qf

v

−1
hfvv]

−1hfHvv Qf
v

−1
hfrvu1+[sum(sfv (:))]

+ hrrHvu Qr
v
−1hrvv[(G

r
vG

rH
v )−1 + hrHvv Qr

v
−1hrvv]

−1hrHvv Qr
v
−1hrrvu1+[sum(srv(:))]

)
.

(22)

2) CSI and Network Interference- based Antenna Selection:
By accounting for interference from nearby transmitters, re-
ceivers of both directions can select antennas that are less inter-
fered to be Rx antennas. However, since interference changes
from this iteration to another due to the updates of MIMO
precoding matrices, one needs to change its Rx (as well as Tx)
antenna selection to adapt with the change in interference. The
dynamic of Tx/Rx antennas over iterations makes it difficult
to establish the existence of a NE as the per-link optimization
problem with binary variables sfu and sru is not convex [12].

We propose a sequential antenna-alignment process in which
links sequentially solve problem (18) to determine their Tx/Rx
assignment. Specifically, the first link selects its Tx/Rx antennas
using only its HD CSI Hr

uu (or Hf
uu). Upon perceiving inter-

ference from transmitters of both forward and reverse directions
of the first link, the second link assigns its Tx/Rx antennas (by
solving (18)), so on and so forth. After the last FD link finishes
its Tx/Rx antenna selection, the Tx/Rx antenna assignment of all
nodes are then fixed (i.e., only precoding matrices are updated)
during the following iterations of the noncoopeartive phase.
Note that the precoders obtained during the cooperative phase
are used as the input/initializations in the noncooperative phase.

Figure 2(b) depicts network throughput (obtained using Al-
gorithm 1) of FD-MIMO links in a square of 1000m ×
1000m. As can be seen, taking network interference into the
antenna-alignment process results in higher network throughput,
compared with CSI-based antenna selection. Unlike the case of
a single link in Figure 2(a), we observe that operating in FD-
mode does not always lead to the highest throughput for a link
under a network context. Instead, operating in HD-mode is the
optimal choice for some links whose all antennas of a node are
heavily interfered, hence should all operate in Tx mode.

B. Noncooperative Phase: Distributed Algorithm
As aforementioned, for a given Tx/Rx antenna selection

found in the cooperative stage, we end up with the non-convex
throughput maximization of a heterogeneous MIMO network
with both FD and HD links (10). This non-convex problem
is difficult to solve, even in a centralized manner. Centralized
optimization solvers require exponential time w.r.t. the number
of variables in the worst case. To design distributed algorithms
that solve the network-wide problem (10), we reformulate (10)
as a noncooperative game whose players are FD-MIMO links
u. These players aim at maximizing their utilities, defined as

(a) Optimal vs. fixed antenna se-
lection and HD-MIMO (one link).

(b) Optimal CSI-based vs. CSI and
interference-based (a network).

Fig. 2. Throughput of FD-MIMO with optimal Tx/Rx antenna selection.

links’ throughput. The game’s strategic space is the union of
the strategic spaces of all players, shaped by constraints C2, C3
in (10). Each player/link u competes against others by selecting
his strategic action of forward and reverse precoders Gf

u, Gr
u.

The payoff of player u, given below, is a function of its
action Gf

u, Gr
u as well as other players, defined as Gf

−u, Gr
−u

(captured by the forward and reverse noise-plus-interference
covariance matrices Qf

u and Qr
u in cu):

Uu(G
f
u,G

r
u,G

f
−u,G

r
−u)

def
= cu. (23)

The transmitters of forward and reverse directions assign
transmission power for each of selected Tx antennas and
configure their radiation patterns to maximize the FD link’s
throughput. Formally, each FD link u solves the following
problem for its optimal precoders:

maximize
{Gf

u,Gr
u}

Uu

s.t.
C2: tr(Gf

uG
fH
u )≤Pmax(u),

C3: tr(Gr
uG

rH
u )≤Pmax(u), .

(24)

To encourage MIMO transmitters of both directions steer
their beam away from nearby receivers, the utility function of
link u needs to account for interference that link u induces
on nearby unintended receivers. We propose a pricing function
that captures interference caused by transmitters of link u at
unintended receivers. Intuitively, the higher the interference that
link u causes, the more discount is applied to its utility function.
For that purpose, new utility function of link u is written as:
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U ′u(G
f
u,G

r
u,G

f
−u,G

r
−u) = cu − Fu(Gf

u,G
r
u) (25)

with the pricing function Fu(Gf
u,G

r
u) for link u:

Fu(G
f
u,G

r
u) = tr

(
GfH
u Af

uG
f
u

)
+ tr

(
GrH
u Ar

uG
r
u

)
(26)

where Af
u is an sum(sfu(:))×sum(sfu(:)) positive-semidefinite

matrix, referred to as the pricing-factor submatrix of the forward
direction of link u. Similarly, the sum(sru(:)) × sum(sru(:))
positive-semidefinite matrix Ar

u is referred to as the pricing-
factor submatrix of the reverse direction of link u.

The noncooperative game among FD links with pricing is:

maximize
{Gf

u,Gr
u}

cu − Fu(Gf
u,G

r
u)

s.t.
C2: tr(Gf

uG
fH
u )≤Pmax(u),

C3: tr(Gr
uG

rH
u )≤Pmax(u), .

(27)

The following theorem guarantees the existence of a NE of
the game (27).

Theorem 1: The noncooperative game (27) admits at least
one NE.
Proof: It is easy to verify that:

1) The action space of each player is convex and compact.
2) The utility function U ′u(G

f
u,G

r
u,G

f
−u,G

r
−u) is concave

w.r.t. Gf
u,G

r
u.

The NE existence follows [12]. �
We now derive a user-dependent pricing function that ensures

at the resulting NE, the network throughput is at least as good
as that of a locally optimal solution to the network optimization
problem (10).

Theorem 2: If the pricing-factor matrices Af
u and Ar

u are
set as in (22). Then, the network throughput at a NE of the
game (27) equals to that of a locally optimal solution of the
network-wide problem (10).
Proof: The Lagrange function of the network throughput max-
imization (10) is in (20). The Lagrange function of the per-
link optimization problem (27) of link u is in (21). Using
similar steps in [13], the following equations force the K.K.T.
conditions of the per-user optimization problem (27) to meet
the K.K.T. conditions of the network-wide problem (10):

−Af
uG

f
u=

∑
v∈{Φ\u}

( ∂cfv

∂Gf∗
u

1+[sum(sfv (:))]+
∂crv

∂Gf∗
u

1+[sum(srv(:))]
)

−Ar
uG

r
u=

∑
v∈{Φ\u}

( ∂cfv
∂Gr∗

u

1+[sum(sfv (:))]+
∂crv
∂Gr∗

u

1+[sum(srv(:))]
)
.

(28)

Using equations in (17), we get (22). �
We now solve problem (27) for the optimal precoders of link

u, i.e., best response. Observe that with perfect SIS, there is
no leaked interference between both directions of the link. This
fact is conveyed in the objective function of (27) which can be
decomposed into two subproblems:

maximize
{Gf

u}
cfu − tr

(
GfH
u Af

uG
f
u

)
s.t.
C2: tr(Gf

uG
fH
u )≤Pmax(u),

(29)

and
maximize
{Gr

u}
cru − tr

(
GrH
u Ar

uG
r
u

)
s.t.
C3: tr(Gr

uG
rH
u )≤Pmax(u),

(30)

As the two problems have a similar structure and to save
space, we briefly discuss the solution for the forward direction.
Problem (29) is convex, hence can be solved efficiently (e.g., the
interior-point method). Alternatively, one can rely on Hadamard
inequality [14] and strong duality of convex optimization as in
[15]. Specifically, the Lagrange function of (29) is:

Lfu(G
f
u, β

f
u) = log |Isum(sfu)

+ GfH
u hfHuu Qf

u

−1
hfuuG

f
u|

− αfu(tr(Gf
uG

fH
u )− Pmax(u))− tr

(
GfH
u Af

uG
f
u

)
= log |Isum(sfu)

+ GfH
u hfHuu Qf

u

−1
hfuuG

f
u|

− tr
(
GfH
u

(
Af
u + βfuIsum(sfu)

)
Gf
u

)
+ βfuPmax(u)

= log |Isum(sfu)
+ GfH

u hfHuu Qf
u

−1
hfuuG

f
u|

− tr
(
GfH
u Ef

uE
fH
u Gf

u

)
+ βfuPmax(u)

= log |Isum(sfu)
+ G̃fH

u Ef
u

−1
hfHuu Qf

u

−1
hfuuE

fH
u

−1
G̃f
u|

− tr
(
G̃fH
u G̃f

u

)
+ βfuPmax(u)

(31)

where Cholesky decomposition of
(
Af
u + βfuIsum(sfu)

)
=

Ef
uE

fH
u and G̃fH

u = GfH
u Ef

u.
Besides its convexity, it is easy to verify that the Slater

conditions hold for problem (29), i.e., strong duality holds for
(29). Hence, its solution also maximizes its Lagrange. Using
Hadamard inequality [14], we have (32). The inequality be-
comes an equality if we select Gf

u such that G̃f
u is orthonormal

and diagonalizes Ef
u
−1

hfHuu Qf
u
−1

hfuuE
fH
u
−1, equivalently:

G̃fH
u G̃f

u = I

G̃fH
u Ef

u

−1
hfHuu Qf

u

−1
hfuuE

fH
u

−1
G̃f
u = Λf

u

(33)

where Λf
u is a sum(sfv (:))× sum(sfv (:)) diagonal matrix.

By recalling G̃fH
u = GfH

u Ef
u and the Cholesky decomposi-

tion, we have:

hfHuu Qf
u

−1
hfuuG

f
u = [Af

u + βfuIsum(sfv(:))
]G

(k)
i Λ

(k)
i

or Gf
u is the generalized eigen matrix of hfHuu Qf

u
−1

hfuu and
[Af

u + βfuIsum(sfv(:))
] [16].

Note that if the unit-norm column matrix Ḡf
u is a generalized

eigen matrix of hfHuu Qf
u
−1

hfuu and [Af
u + βfuIsum(sfv(:))

], so

does any Gf
u of the form Gf

u = Ḡf
uP

f
u
1/2 [16] where P f

u is a
non-negative diagonal matrix. The complex matrix Ḡf

u specifies
the optimal directions of the radiation pattern of the forward
transmitter of link u. Each non-negative element P f

u (s) on di-
agonal of P f

u specifies the optimal power allocated on antenna s
of the forward direction of link u. As Ḡf

u is a generalized eigen
matrix of matrices hfHuu Qf

u
−1

hfuu and [Af
u+β

f
uIsum(sfv(:))

], Ḡf
u

should diagonalize each of the two matrices [16]:

ḠfH
u [hfHuu Qf

u

−1
hfuu]Ḡ

f
u = Πf

u and

ḠfH
u [Af

u + βfuIsum(sfv(:))
]Ḡf

u = Ωf
u

(34)

where Πf
u and Ωf

u are sum(sfv (:))× sum(sfv (:)) diagonal.
The Lagrange of (29) becomes:

Lfu(G
f
u, β

f
u) =

sum(sfv(:))∑
s=1

(
log
(
1+P fu (s)diags(Π

f
u)
)
−P fu (s)diags(Ω

f
u)
)
+βfuPmax(u)

(35)
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Lfu ≤ βfuPmax(u)− tr
(
G̃fH
u G̃f

u

)
+

sum(sfv(:))∑
s=1

log(1+diags{G̃fH
u Ef

u

−1
hfHuu Qf

u

−1
hfuuE

fH
u

−1
G̃f
u}) (32)

The optimal power allocation P fu (s) should satisfy:

∂Lfu(G
f
u, β

f
u)

∂P fu (s)
=

diags(Π
f
u)

1 + P fu (s)diags(Π
f
u)
− diags(Ω

f
u) = 0

(36)

Thus,

P fu (s) = max

(
0,

diags(Π
f
u)− diags(Ω

f
u)

diags(Π
f
u)diags(Ω

f
u)

)
. (37)

and the Lagrange multiplier βfu is selected to meet the power
budget of the transmitter on the forward direction.

Following the routine in [17], we can prove that the game (10)
converges to its NE under sequential update by constructing
a non-decreasing and upper-bounded Lyapunov function of
precoding matrices (we omit the proof due to space limitation).

Theorem 3: Under the sequential (Gauss-Seidel) iterations,
the game (10) converges to its NE.

V. SIMULATION RESULTS

In this section, using Matlab, we numerically evaluate the
performance of the above centralized and distributed algorithms.
The simulation results are averaged over 20 runs. The number
of antennas per node is 4. Transmit power Pmax = 200 mW for
all nodes. Channel bandwidth is 4 MHz. Noise floor over the
whole bandwidth is set as −94dBm. The channel fading is flat
with a free-space attenuation factor of 2. The spreading angles
of the signal at the receive antennas are from −π/5 to π/5.
The close-in distance is 1 m.

A. Two Interfering FD-MIMO Links

Fig. 3. Throughput of FD-MIMO (with and without Tx/Rx antenna selection)
vs. HD-MIMO in exhaustive search case.

We first simulate a small-size network of 2 links while
performing exhaustive search for the optimal FD-MIMO op-
erational mode. To change the level of interference between
the transmitter and receivers between two links, we vary the
distance between two links. Using the centralized algorithm,
Figure 3 depicts the network-throughput of the distributed
algorithm using hierarchical game (namely FD-MIMO with
optimal Tx/Rx antennas); network-throughput averaged over all
possible FD-MIMO operational modes of the two links (namely
FD-MIMO without Tx/Rx antennas); and network-throughput
when two links operate in HD-MIMO mode (namely HD-
MIMO). When the distances between two links are small, HD-
MIMO mode surprisingly outperforms all FD-MIMO modes.
This is because when the interference between nodes is severe
(closer distance between the two links), it is more helpful to

use all of available antennas to tune radiation patterns to avoid
interfering unintended receivers. When the distance between
two links increases, i.e, less interference, the FD-MIMO mode
yields the higher throughput than HD-MIMO. For all considered
distances between the two links, FD-MIMO with optimized
Tx/Rx antenna has higher throughput than other FD-MIMO
configurations.

(a) FD-MIMO radiation
patterns

(b) HD-MIMO radiation
patterns

Fig. 4. Antenna radiation patterns of FD-and HD-MIMO transmitters.

A snapshot of the radiation patterns of FD-MIMO and HD-
MIMO using the above distributed algorithm is shown in Figure
4. As can be seen, by splitting the available antennas, links
can afford to operate in FD-MIMO mode (with less number
of antennas per transmitter) at the expense of incurring higher
network interference (more interference beams visually pointing
to unintended receivers). However, in HD-MIMO with a higher
number of Tx antennas, HD-MIMO transmitter can configure
its radiation patterns so as to cause less network interference.

Table I records the transmit power of FD-MIMO (with
optimal Tx/Rx antenna selection), HD-MIMO with and without
the developed pricing policy. Without the pricing policy, each
FD-MIMO node uses all of its power budget Pmax to transmit.
The pricing policy discourages both FD- and HD-MIMO trans-
mitters from injecting interference into the network. This makes
them not willing to use all of their power budget. When pricing
is used, we can see that HD-MIMO mode uses higher transmit
power than FD-MIMO. This is because HD-MIMO node with
higher number of antennas is more capable in controlling its
beams to reduce the price (i.e., interference), allowing them to
transmit with higher power than FD-MIMO transmitters.

TABLE I
TRANSMIT POWER PER NODE OF HD-MIMO AND FD-MIMO (IN MW).

Node FD-MIMO FD-MIMO HD-MIMO
with pricing without pricing with pricing

1 122.48 200 152.89
2 93 200 0
3 2.2 200 0
4 108.2 200 196.33

Total (mW) 325.88 800 349.232

B. Network of Interfering FD-MIMO Links
We now simulate a FD-MIMO network of 6 links in a square

field of 1000 m × 1000 m. Snapshots of the network with
its radiation patterns under distributed and centralized FD-/HD-
MIMO with and without the pricing policy are shown in Figure
5. We can observe that HD-MIMO transmitters are doing a
better job than FD-MIMO nodes in steering their beams from
neighboring unintended receivers.

The network-throughput vs. iterations is plotted in Figure 6.
As can be seen, the network throughput under the distributed
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(a) FD-MIMO without pricing (b) FD-MIMO with pricing (c) Centralized FD-MIMO (d) Centralized HD-MIMO

Fig. 5. Antenna radiation patterns of FD- and HD-MIMO.

algorithm with pricing converges to that obtained with the
centralized algorithm for both FD- and HD-MIMO. Averaging
over all obtained locally optimal points, HD-MIMO operational
mode significantly outperforms FD-MIMO mode. Even with-
out the pricing policy, (greedy cases) HD-MIMO is also to
preferable to FD-MIMO. This is because in greedy cases, all
12 FD-MIMO transmitters inject 12×200 = 2400 mW into the
network, compared with 6× 200 = 1200 mW of 6 HD-MIMO
transmitters. In other words, receivers under FD-MIMO are
likely to be more interfered than those in HD-MIMO networks.

Fig. 6. Throughput of FD-MIMO and HD-MIMO vs. iterations.

To improve network throughput, antennas which induce too
much interference should be switched off (i.e., allocated zero
or very small power). To investigate how efficient antennas
are used under FD- and HD-MIMO modes, Table II records
the average number of unused antennas (those are allocated
less than 10−7 mW). Without pricing, i.e., acting in a greedy
manner, no antenna is turned off. When pricing is used to
penalize transmitters with high interference, more antennas are
switched off for FD-MIMO, compared with HD-MIMO. This
is because HD-MIMO with higher number of antennas are
better in managing network interference. For the smaller field
100×100 with severer network interference, more antennas are
switched off, compared with the case of larger field 1000×1000.

TABLE II
NUMBER OF UNUSED ANTENNAS OF FD-MIMO AND HD-MIMO.

Network Centralized Greedy Distributed Centralized
Scenario FD FD FD HD
100× 100 18.6 0 17.3 7.9

1000× 1000 16.2 0 15.7 4.1

VI. CONCLUSIONS

We have shown that Tx/Rx antenna selection has great poten-
tial in improving throughput of a single FD-MIMO link. Using
game theory, pricing, and optimization theory, we designed both

centralized and distributed algorithms that maximize throughput
of a FD-MIMO network. Interestingly, under interfering sce-
narios, FD-MIMO does not always result in higher spectral
efficiency than HD-MIMO. Instead, when links are strongly
interfering, for the same number of RF-chains/antennas, HD-
MIMO is preferable thanks to its better capability in controlling
radiation beams. We believe this work is just the very first step
in understanding how to properly exploit the latest advances of
FD-MIMO in a network context. An interesting future work is
to study whether the above observations hold if a device can
transmit and receive simultaneously on the same MIMO antenna
array.
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