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Abstrat. In this paper, we apture the main harateristis of WWW

traÆ in a stohasti model, whih an be used to generate syntheti

WWW traes and assess WWW ahe designs. To apture temporal and

spatial loalities, we use a modi�ed version of Riedi et al.'s multifratal

model [18℄, where we redue the omplexity of the original model from

O(N) to O(1); N being the length of the syntheti trae. Our model has

the attrativeness of being parsimonious and that it avoids the need to

apply a transformation to a self-similar model (as often done in previ-

ously proposed models [2℄), thus retaining the temporal loality of the

�tted traÆ. Furthermore, beause of the sale-dependent nature of mul-

tifratal proesses, the proposed model is more exible than monofratal

models in desribing irregularities in the traÆ. Trae-driven simulations

are used to demonstrate the goodness of the proposed model.

keywords | WWW modeling, web ahing, multifratals, stak dis-

tane, self-similarity.

1 Introdution

The ability to assess the performane of WWW ahing poliies hinges on the

availability of a representative workload that an be used in trae-driven simu-

lations [5, 13℄. Measured (\real") traes an be used for this purpose. However,

due to the diÆulty assoiated with apturing real traes, only a handful of suh

traes are available in the publi domain (see [1℄). This makes it hard to provide

simulation results with reasonable statistial redibility. A more feasible alter-

native is to rely on syntheti traes that are derived from a stohasti model.

The need for suh a model is the main motivation behind our work.

In this paper, we use a modi�ed version of the multifratal model by Riedi [18℄

to simultaneously apture the temporal and spatial loalities in WWW traÆ.

Riedi's model has the attrativeness of being able to simultaneously apture the

(lognormal) marginal distribution and the orrelation struture of a time series.
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Its main disadvantage is its omplexity, whih grows linearly with the size of the

generated trae. We modify this model, reduing its omplexity to O(1). The

resulting (modi�ed) model is parsimonious, in that it is haraterized by four

to �ve parameters, that represent the mean, variane, and orrelation struture

of the \saled stak distane" string (see below). The popularity pro�le of the

traÆ is inorporated in the model during the trae generation phase (assuming

that the popularity pro�les for all douments are given beforehand). Our model

is mainly intended for o�ine generation of the traÆ demand seen by a WWW

server. Aordingly, the popularity pro�les an be easily omputed from the

server logs.

Two datasets were used in our study. The �rst one was aptured at the

Computer Siene Department of the University of Calgary, while the seond

set was produed by ClarkNet, a ommerial Internet Provider in Baltimore,

Washington DC [1, 3℄. Details of these traes an be found in [1, 3℄. Note that

the two traes have ontrasting loads (Calgary's load is light while ClarkNet's

load is very heavy). The data provide several piees of information, inluding

the name of host that generated the URL request, the day and time the request

was reorded, the name of the requested �le, the HTTP reply ode (explained

below), and the number of transferred bytes in response to the request. Four

types of HTTP reply odes were reorded: suessful, not modi�ed, found, and

unsuessful. In our analysis, we only inluded the requests with suessful ode,

sine they are the ones that result in atual data transfer from the server. We

also exluded dynami �les (e.g., gi and pl �les).

WWW traÆ modeling has been the fous of several previous studies; exam-

ples of whih are given in [15, 2, 4, 14, 8℄. In these studies, the temporal loality

of the traÆ was represented by the marginal distribution of the stak distane

string. This distribution was found to follow a lognormal-like shape. The stak

distane string, whih is an equivalent representation of a referene string, is

obtained by transforming the referene string using the LRU stak. In [2℄ the

authors showed that spatial loality an be aptured (at least, in part) through

the autoorrelation struture (ACF) of the stak distane string. They argued

that the stak distane string exhibits long-range dependene (LRD) behavior.

Thus, to simultaneously model the marginal distribution (temporal loality) and

the orrelation struture (spatial loality) of the stak distane string, they re-

lied on the work in [12℄, whih proved the invariane of the Hurst parameter to

transformations of the marginal distribution of an LRD proess. More speif-

ially, the authors in [12℄ proved that under some mild assumptions, a point-

by-point transformation Y = F

�1

y

(F

x

(X)) of a Gaussian self-similar proess X

with Hurst parameter H results in a self-similar proess Y with the same Hurst

parameter, where F

x

and F

y

are the CDFs for X and Y , respetively. It should

be noted, however, that the proof of this result is valid asymptotially and only

for Gaussian proesses (e.g., frational ARIMA). More importantly, while this

result assures the invariane of H , it does not neessarily preserve the shape of

the ACF. As an example, onsider the transforming of the Gaussian distribution

of a F-ARIMA model into a lognormal distribution, whih adequately models



the marginal distribution of the stak distane string. The resulting ACFs are

shown in Figure 1, along with the ACF of the \real" traÆ. The �gure illus-

trates the two main drawbaks of the transformation. First, the transformation

distorts the overall shape of the ACF of the F-ARIMA proess. Seond, the

original F-ARIMA model itself is not aurate in representing the real ACF at

�nite lags.
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Fig. 1. Impat of transforming the distribution of a F-ARIMA model on the ACF.

To avoid the problems stated above, we resort to multifratal modeling to

simultaneously apture the orrelation struture and the marginal distribution

of the stak distane string. Multifratality is a generalization of self-similarity

(monofratality), whereby the Hurst parameter (the saling exponent) is not

�xed, but varies with sale. This variability makes multifratal proesses more

exible than monofratal proesses in desribing \irregularities" in the traÆ

(e.g., ontrasting short-term and long-term behaviors). The reader is referred

to [17, 11, 18, 9, 10℄ and the referenes therein for omprehensive disussions of

multifratal proesses. In [18℄ the authors used a wavelet-based onstrution

of a multifratal proess to show that the orrelation behavior of a strongly

orrelated time series an be approximately aptured by appropriately setting

the seond moments of the wavelet oeÆients at eah sale of the multifratal

generation proess. This result provides the basis for modeling the ACF of the

stak distane string. Combined with the fat that the above multifratal model

exhibits an approximately lognormal marginal distribution, they an be used to

model both the temporal and spatial loalities in WWW traÆ.

Relying on the observation that temporal loality is indued by both tempo-

ral orrelation and long-term popularity [16℄, the authors in [6℄ introdued a new

measure for temporal loality alled the saled stak distane. This measure rep-



resents the deviation of the stak distanes from their expeted values, assuming

that requests to a given doument are uniformaly distributed over the duration

of the trae. The saled stak distane aptures the impat of short-term orre-

lation, but does not apture the spatial loality. For our WWW traÆ model,

we use a similar measure with the same name, but that measures the deviation

of the stak distanes from their empirial expeted values. We model the ex-

peted stak distane as a funtion of the popularity pro�le. Equally popular

douments have the same expeted stak distane. This saled stak distane

string was found to have a lognormal-like distribution and the same orrelation

struture as the original stak distane string.

We use extensive simulations to evaluate the performane of our WWW

traÆ model and ontrast it with the self-similar model in [2℄ and the model

in [6℄, using the original (real) traes as a point of referene. Our performane

measures inlude sample statistis of the syntheti traes (e.g., mean, variane,

orrelations, perentiles) as well as the ahe and byte hit ratios for a trae-driven

LRU (least reently used) ahe. The results indiate marked improvement in

performane when using the proposed multifratal-based WWW model.

The rest of the paper is organized as follows. Setion 2 gives a brief overview

of Riedi et al.'s multifratal model and the modi�ation we make to it to render

it parsimonious. The proposed WWW traÆ generation approah is given in

Setion 3, followed by simulation studies in Setion 4. We onlude the paper in

Setion 5.

2 Multifratal Analysis of WWW TraÆ

As indiated earlier, multifratality is a generalization of monofratality (self-

similarity), where the �xed (sale independent) H parameter of a self-similar

proess is now sale dependent. Certain multifratal proesses, inluding the one

onsidered in this paper, inherently exhibit lognormal-like marginals, in line with

the shape of the marginal distribution of typial WWW traes. This onvenient

feature allows us to skip the risky step of transforming the marginal distribution,

leaving us with the task of �tting the ACF. In this setion, we �rst briey

desribe Riedi et al.'s multifratal model [18℄. This model uses a wavelet-based

onstrution to approximately apture the orrelation behavior of a given time

series by appropriately setting the seond moments of the wavelet oeÆients at

eah sale. We then desribe how we modify this model to redue its omplexity

from O(N) to O(1). We then apply the modi�ed model in haraterizing the

temporal and spatial loalities of WWW traÆ.

2.1 Riedi et al.'s Multifratal Model

Riedi et al.'s model relies heavily on the disrete wavelet transform. The idea

behind the wavelet transform is to express a signal (time funtion) X(t) by an

approximated (smoothed) version and a detail. The approximation proess is

repeated at various levels (sales) by expressing the approximated signal at a



given level j, say X

j

, by a oarser approximation at level j � 1, say X

j�1

, and

a detail D

j�1

. At eah sale, the approximation is performed through a saling

funtion �(t), while the detail is obtained through a wavelet funtion  (t). More

formally, a wavelet expansion of the signal X(t) is given by:

X(t) =

X

k

U

J;k

�

J;k

(t) +

1

X

j=J

X

k

W

j;k

 

j;k

(t) (1)

where

W

j;k

def

=

Z

1

�1

X(t) 

j;k

(t)dt (2)

U

j;k

def

=

Z

1

�1

X(t)�

j;k

(t)dt (3)

and  

j;k

and �

j;k

, j; k = 0; 1; 2; : : : ; are shifted and translated versions of the

wavelet and saling funtions  (t) and �(t), respetively, and are given by:

 

j;k

(t)

def

= 2

�j=2

 (2

�j

t� k) (4)

�

j;k

(t)

def

= 2

�j=2

�(2

�j

t� k): (5)

In (1), the index J indiates the oarsest sale (the lowest in detail). The

oeÆients W

j;k

and U

j;k

are alled the wavelet and sale oeÆients at sale j

and time 2

j

k. Together, they de�ne the disrete wavelet transform of the signal

X(t) (assuming that �(t) and  (t) are spei�ed).

Several wavelet and sale funtions have been used in the literature, giving

rise to di�erent wavelet transforms. One popular (and simple) transform is the

Haar wavelet transform. This transform, whih is spei�ed by the oeÆients

W

j;k

and U

j;k

for all j and k, an be obtained reursively as follows (we adopt

the same onvention of [18℄, in whih the higher the value of j, the better the

approximation of the original signal):

U

j;k

=

U

j+1;2k

+ U

j+1;2k+1

p

2

(6)

W

j;k

=

U

j+1;2k

� U

j+1;2k+1

p

2

(7)

To initialize the reursion, the values of U

j;k

, k = 0; 1; : : : ; 2

j

� 1, at the highest

value of j are taken as the empirial trae to be modeled.

In order to generate syntheti traes with a given autoorrelation struture,

the Haar transform is reversed by rewriting (6) and (7) as:

U

j+1;2k

=

U

j;k

+W

j;k

p

2

(8)

U

j+1;2k+1

=

U

j;k

�W

j;k

p

2

(9)



Now to generate nonnegative data, whih in our ase represent the stak

distane string, we need to have jW

j;k

j � U

j;k

. To satisfy this onstraint, the

wavelet oeÆients an be de�ned as:

W

j;k

= A

j;k

U

j;k

(10)

where A

j;k

is a random variable (rv) de�ned on the interval (�1; 1). Using (8),

(9), and (10), the following reursion an be obtained for synthesizing the sale

oeÆients:

U

j+1;2k

= (

1 +A

j;k

p

2

)U

j;k

(11)

U

j+1;2k+1

= (

1�A

j;k

p

2

)U

j;k

(12)

The rvs A

j;k

must also satisfy the following additional onstraints [18℄:

1. A

j;k

; k = 0; 1; ::::; 2

j

� 1 are i.i.d.

2. For eah j, the probability density funtion of the rvsA

j;k

; k = 0; 1; : : : ; 2

j

�1,

is symmetri with zero mean.

3. A

j

is independent of A

l

for l > j and is also independent of U

0;0

.

The wavelet energy at a given sale is de�ned as the variane of the wavelet

oeÆients at that sale. It has been shown that the orrelation struture of the

signal an be approximately aptured by ontrolling the wavelet energy deay

aross sales. The ratio of the energy at sale j � 1 to the one at sale j (j is

�ner than j � 1) was found to be [18℄:

�

j

=

E[W

2

j�1

℄

E[W

2

j

℄

= 2

E[A

2

j�1

℄

E[A

2

j

℄(1�E[A

2

j�1

℄)

(13)

Assuming that E[W

2

j

℄ is given for all j, Equation (13) an be used to solve

for E[A

2

j

℄, j = 1; 2; : : :. The reursion an be initialized using E[A

2

0

℄ =

E[W

2

0

℄

E[U

2

0

℄

,

where W

0

and U

0

are the wavelet and sale oeÆients at the oarsest sale.

In [18℄, the authors suggested two di�erent distributions for A

j

. One of them

is a symmetri beta distribution that has the following pdf:

f

A

j

(x) =

(1 + x)

�

j

�1

(1� x)

�

j

�1

�(�

j

; �

j

)2

2�

j

�1

(14)

where �

j

is the parameter of the rv and �(:; :) is the beta funtion. The variane

of this random variable is given by:

var[A

j

℄ =

1

2�

j

+ 1

: (15)

The other distribution is a point-mass distribution de�ned as:



Pr[A

j

= 

j

℄ = Pr[A

j

= �

j

℄ = r

j

Pr[A

j

= 0℄ = 1� 2r

j

In the ase of a beta distributed A

j

, the parameter �

j

at eah sale an be

found by solving (13) and (15), resulting in:

�

j

=

�

j

2

(�

j�1

+ 1)� 1=2 (16)

This, however, assumes that E[W

2

j

℄ is given for j = 1; 2; 3; : : :. Sine �

j

,

j = 1; 2; : : :, annot be obtained using a parametri model, it would be omputed

from the empirial data, whih makes the number of �tted parameters in the

model in the order of N ; N being the trae length.

On the other hand, if A

j

has a point-mass distribution, then (13) by itself

is not suÆient to ompute both parameters of A

j

(

j

and r

j

). An alternative

approah to omputing these parameters is to rely on the following expression

for the moments of the saling oeÆients at di�erent sales [18℄:

E[U

q

j

℄

E[U

q

j�1

℄

= 2

�q=2

E[(1 +A

j�1

)

q

℄; q = 1; 2; : : : (17)

However, to apply (17) one needs to have two moments (i.e., two values for q)

for eah sale j. Again, unless we an ompute these values using a parametri

model, we need to rely on the empirial data to do so, whih makes the model

more omplex than if a beta distributed A

j

were to be used.

It was shown in [18℄ that the above model (with either distribution of A

j

)

generates positive-valued autoorrelated data with an approximately lognormal

marginal distribution.

2.2 Reduing the Number of Parameters

As shown in the previous setion, whether A

j

has a beta distribution or a point-

mass distribution, one needs to provide the seond moments of the wavelet o-

eÆients or two moments of the sale oeÆients at eah sale in order to om-

pletely determine A

j

, j = 1; 2; : : :. This signi�antly inreases the omplexity

of the model, as the number of parameters to be omputed a priori is in the

order of the trae length (unless we have a parameterized model to ompute

these values). Moreover, the point-mass rv is not rih enough and has only three

possible values.

To redue the omplexity of the model, we let A

j

be a triangular rv in the

range [�; ℄. This distribution is riher than the point-mass distribution and

has only one parameter. It allows us to �t the seond moment of the sale

oeÆients for all sales using (17), provided that we an ompute the seond

moments analytially knowing the mean � and the variane � of the modeled

data, as will be shown later in this setion.



For a disrete time series X = fX

i

: i = 1; 2; : : :g, we de�ne X

(m)

= fX

(m)

i

:

i = 1; 2; : : :g to be the aggregated time series of X at level m:

X

(m)

n

=

nm

X

i=nm�m+1

X

i

; n = 1; 2; 3; : : : ; N=m (18)

where m = 1; 2; 4; 8; :::N ; N is the length of X . Note that if the aggregation

level m orresponds to sale j, then the aggregation level 2m orresponds to

sale j � 1. From the de�nition of the Haar wavelet transform, the following

holds:

E[(X

(m)

)

q

℄

E[(X

(2m)

)

q

℄

= 2

�q=2

E[U

q

j

℄

E[U

q

j�1

℄

; for q = 1; 2; : : : (19)

From (19) and (17) we get:

E[(X

(m)

)

q

℄

E[(X

(2m)

)

q

℄

= 2

�q

E[(1 +A

(2m)

)

q

℄ (20)

where A

(2m)

= A

j�1

. Let 

(2m)

be the parameter of the rv A

j�1

at aggregation

level 2m. From (20) and the de�nition of the triangular random variable, we

obtain the following expression for 

(2m)

:



(2m)

=

s

6(4

E[(X

(m)

)

2

℄

E[(X

(2m)

)

2

℄

� 1) (21)

To redue the number of parameters in the multifratal model, we analyti-

ally obtain the seond moments of the saling oeÆients, as shown next. The

variane at a given level of aggregation, var[X

(m)

℄ = V

(m)

, an be omputed

analytially as a funtion of the autoorrelation funtion of the signal [7℄:

V

(m)

= mv + 2v

m

X

k=1

(m� k)�

k

(22)

The mean, E[(X

(m)

)℄ = �

(m)

, is given by:

�

(m)

= m� (23)

where � and v are the mean and the variane of the original signal, respetively.

The seond moment of X

(m)

is then given by:

E[(X

(m)

)

2

℄ = mv + 2v

m

X

k=1

(m� k)�

k

+m

2

�

2

(24)

From Equations (21) and (24), the parameter of the rv A

j

an be omputed

for all sales j = 1; 2; : : :, given �, v, and the orrelation struture of the time

series being modeled. For WWW traÆ stak distane strings, we found that



the form �

k

= e

��

n

p

g(k)

; k = 0; 1; : : : ; �ts the orrelation struture very well,

where g is a funtion of the lag k. For the ClarkNet trae, g(k) = k produed

a good �t to the empirial ACF, while for the Calgary trae, g(k) = log(k + 1)

was found appropriate.

In summary, to use the multifratal model for modeling the saled stak

distane string, we only need four parameters:

{ Mean of the stak distane string (�).

{ Variane of the stak distane string (v).

{ Autoorrelation struture (parameterized by �, n, and g).

Using these parameters, along with (24) and (21), one an ompute the param-

eter 

(m)

at eah aggregation level (sale).

The synthesis proess starts from the highest level of aggregation. At this

level we an start with l data points that are normally distributed with mean

m

h

� (the mean at aggregation level m

h

) and variane of var[X

(m

h

)

℄, where m

h

is the highest aggregation level, whih is the length of the trae that needs to be

generated. After that, the proess an be arried out using Equations (11) and

(12).

3 Modeling WWW TraÆ

In this setion, we desribe our approah for modeling the stream of �le objets

generated by a WWW server. Let U be the number of unique �les (or objets)

at the server and let fr

i

be the fration of times that the ith �le, i = 1; 2; :::; U ,

appears in the referene string (fr

i

is the popularity pro�le of �le i). The model-

ing approah proeeds in three steps. First, we extrat the stak distane string

from the URL referene string. Then, we apply some form of saling to apture

both soures of temporal loality (temporal orrelation and long-term popular-

ity). The modi�ed multifratal model desribed in the previous setion is then

applied to model the saled stak distane string after omputing its mean and

variane and after �tting its orrelation struture. Finally, we inorporate the

popularity pro�le of the traÆ during the proess of generating syntheti refer-

ene strings. These main steps are desribed next.

3.1 Extrating the Empirial Saled Stak String

In our model, we use the onept of stak distane to model the temporal and the

spatial loalities in WWW traÆ. The authors in [4℄ extrat the stak distanes

from the original trae assuming an arbitrary initial ordering of the stak. When-

ever an objet is requested, its depth (stak distane) in the stak is reorded

and the objet is pushed to the top of the stak. In our model we avoid making

any assumptions on the initial ordering of the stak, whih we have found to af-

fet the marginal distribution and the orrelation struture of the stak distane

string. We start with an empty stak and proess the empirial referene string



in the reverse diretion, starting from the last referene. If a �le is referened for

the �rst time (in the reverse diretion), it is pushed to the top of the stak but

no stak distane is reorded. Otherwise, if the �le has already been referened

before (hene, it is already in the stak), then it is pushed from its previous

loation in the stak to the top of the stak and its depth is reorded as a stak

distane. Finally, the resulting trae of stak distanes is reversed to get the or-

ret stak distane string. The following example illustrates the idea. Consider

the referene string [a d  b  d d a b℄, where eah letter indiates the name of a

�le. If we proess this string starting from the end, the �rst referene is to �le b.

Sine this is the �rst time �le b is being referened, we push it to the top of the

stak without reording any distane. The same proedure is performed for the

next two referenes (for �les a and d). The fourth referene (from the end) is for

�le d. Sine this �le has been referened before, it gets pushed to the top of the

stak and its stak depth is reorded (in this ase, the stak depth for �le d is

one). The proedure ontinues until all referenes are proessed (see Figure 2).

The end result of this proess is the stak distane stream [4 3 2 4 1℄.
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Fig. 2. Example showing our approah for extrating the stak distanes from a real

trae.

Temporal loality is attributed to both short-term orrelations and long-term

popularity [16℄. Douments that have long-term popularity pro�les tend to have

small stak distanes. Some douments are not popular but have short-term

orrelation pro�les, whih make these douments appear often within a short

interval of time. As a result, these douments have small stak distanes (i.e.,

they exhibit strong short-term popularity). In general, unpopular douments

tend to have longer stak distanes. The authors in [6℄ tried to model these

trends by modeling the deviation of a stak distane from its expeted value;

assuming that the douments are uniformally distributed over the whole trae.

Instead, we model the deviation of a stak distane from its empirial expeted

value (the saled stak distane), as we found that the approah in [6℄ a�ets

the orrelation struture. We model the expeted stak distane as a funtion of

the popularity pro�le. Equally popular douments have the same expeted stak

distane. Figure 3 shows the relationship between the number of requests a �le



gets (its popularity pro�le) and the empirial expeted stak distane. In both

traes, it is observed that the expeted stak distane drops exponentially with

respet to the popularity pro�le.

The saled stak distane string is obtained by normalizing eah stak dis-

tane by its expeted value. This string was found to have an approximately

lognormal marginal distribution and a slowly deaying orrelation struture that

is almost idential to the orrelation struture of the stak distane string.
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Fig. 3. Number of requests versus the expeted stak distane for the two traes.

3.2 Modeling the Saled Stak Distane String

To model the saled stak distane string, we need to determine �, v, �, and

n. One the values of these parameters are determined, the multifratal model

desribed in Setion 2 is used to apture the marginal distribution (temporal lo-

ality) and the orrelation struture (spatial loality) of the saled stak distane

string.

3.3 Modeling Popularity and Generating Syntheti Referene

Strings

To generate a syntheti WWW referene string, we �rst need to generate a

syntheti saled stak distane string, as shown in the previous setion. The

proess of generating a syntheti WWW referene string starts by arranging the

unique douments of the WWW server in an LRU stak. This is done by sampling

from a probability distribution that is weighted by the popularity pro�les of the

various douments (i.e., the more popular a doument is, the more likely it will

be plaed loser to the top of the stak). To generate a referene string of length

N , we �rst ompute the number of referenes a doument an get aording to

its popularity pro�le. Then the top doument at the LRU stak is onsidered as

the next referened doument in the syntheti referene string. If the required



number of referenes for this doument is reahed, then this doument is ushed

out of the stak. Otherwise, it is pushed down the stak aording to the next

value in the saled stak distane string. This is done after saling bak the saled

stak distane by multiplying it by the orresponding expeted stak distane

for the objet in hand (objets with the same popularity pro�le have the same

expeted stak distane). This proess ontinues until the popularity pro�les of

all objets are satis�ed (no douments are left in the LRU stak).

4 Experimental Results

In this setion, we evaluate the performane of the proposed multifratal model

and ontrasting it with two other models. The �rst model is a self-similar

(monofratal) model [2, 4℄, whih haraterizes the temporal and spatial loali-

ties in WWW traÆ. This model involves transforming the Gaussian marginal

distribution of a frational ARIMA proess into a more appropriate distribution

(e.g., lognormal). We simply refer to this model as the LRD model. The se-

ond model was proposed by Cherkasova et al. [6℄, whih was disussed in the

introdution. The three investigated models were mainly designed for o�ine op-

eration, with the primary purpose of generating syntheti traes for use in ahe

design studies. Aordingly, we ompare these models in terms of the �le and

byte miss ratios seen at an LRU ahe that is drived by syntheti traes from

these models. The omparison is made with referene to the ahe performane

seen under the real traÆ (the two studied traes). The results are shown in

Figures 4, 5, 6, and 7.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Cache size as a percentage of the working set size

F
ile

 m
is

s
 r

a
ti
o

Real data         
Multifractal model
Cherkasova model  
LRD model         

Fig. 4. File miss ratio versus ahe size

(CALGARY trae).
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Fig. 5. Byte miss ratio versus ahe size

(CALGARY trae).

It is lear that of the three models, the proposed multifratal model produes

the most aurate performane, espeially for small ahe sizes. The performane

improvement is greater in the ase of the CALGARY data. Consider, for exam-

ple, the CALGARY data with a normalized ahe size of 0.3. The perentage
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Fig. 6. File miss ratio versus ahe size

(CLARKNET trae).
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Fig. 7. Byte miss ratio versus ahe size

(CLARKNET trae).

inauraies in the �le miss rate for the multifratal model, the LRD model, and

Cherkasova et al.'s model are given by 0.5%, 53%, and 111%, respetively. In the

ase of the byte miss rate, the orresponding values are 4.9%, 65%, and 109%.

The overall improvement in the auray of the �le and byte miss rates due to

the use of the multifratal model is signi�ant.

5 Conlusions

In this work, we demonstrated the potential of multifratal proesses as a viable

approah for WWW traÆ modeling. We started with the multifratal model of

Riedi et al., whih is apable of generating approximately lognormal variates with

any desired autoorrelation struture. However, to apply this model in traÆ

�tting and trae generation, one needs to math as many parameters of the model

as the length of the trae to be generated. To make the model parsimonious, we

modi�ed it by using a di�erent distribution for the multiplier A

j

(whih relates

the wavelet and sale oeÆients) and by analytially expressing the parameter

of A

j

; j = 1; 2; : : :, in terms of the mean, variane, and ACF of the modeled

data. As a result, the modi�ed multifratal model is spei�ed by �ve parameters

only. We �tted this model to the saled stak distane strings of two WWW

traÆ traes. The proposed model aptures the spatial and temporal loalities

of the real traÆ as well as the popularity pro�le. Trae-drive simulations of the

LRU ahe poliy indiates that our model gives muh more aurate ahe miss

rates than two previously proposed WWW traÆ models. Our future researh

will fous on designing new ahe replaement and prefething poliies that

exploit the harateristis of the traÆ and that rely on model preditions in

making �le replaement and prefething deisions.
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