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Abstract— Wireless packet scheduling schemes provide
the means to achieve service differentiation for wireless
users with diverse quality-of-service (QoS) demands. These
schemes are often designed to account for the dynamics of
the wireless channel, so that a user that islikely to expe-
rience deep fade defers his transmission until the channel
conditions improve. The vacant transmission slot is then
given to another user that is expected to experience a “clean”
channel. Channel conditions are location dependent and are
made available to the transmitter (the scheduler) after some
time delay. Therefore, at the time of packet scheduling, the
scheduler has topredict the current channel state at a given
receiver, often based on an� -state Markov model. The goal
of this paper is to assess the impact of channel predictions on
the delay and throughput performance obtained under two
popular wireless scheduling schemes. For both schemes and
under reasonble channel assumptions, we show that better
performance can be achieved by increasing� .

I. INTRODUCTION

Packet-level service differentiation is typically achieved
by means of scheduling. For wireless cellular networks,
scheduling is performed by the base station for both down-
link and uplink flows. The design of a“fair” scheduling al-
gorithm that simultaneously provides performance guaran-
tees is a challenging task because of the need to account for
the time-varying and receiver-dependent characteristicsof
the wireless medium and to reduce packet retransmissions
to conserve battery energy.

Several wireless scheduling algorithms were previously
proposed to achieve fairness and provide QoS guarantees;
examples are found in [1, 5, 6, 7, 4]. Many of these algo-
rithms use aservice compensation mechanism to achieve
fairness while providing short- and/or long-term guaran-
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tees on throughput and delay. With such a mechanism, if
a flow that is about to start a packet transmission perceives
a “bad” channel (e.g., no ACK arrives from the receiver
for the previous packet), then the transmission slot of this
flow is given to another flow that perceives a “good” chan-
nel. At a later time, the flow that gained the extra slot
relinquishes some of its service rights to other flows that
previously deferred their transmissions.

An essential part of the service compensation mecha-
nism is a channel predictor. Previously proposed schedul-
ing algorithms rely on the so-called Gilbert-Elliot (GE)
model to predict the state of the channel. The GE model
is a two-state Markov model, where in one state the chan-
nel is extremely “bad” (bit error rate� � ��) and in the
other state the channel is very “good” (BER� �). In prac-
tice, the channel state is determined by the signal-to-noise
ratio (SNR) at the receiver. This SNR takes a continuous
range of values. Discretizing the SNR into two regions that
correspond to two states is a rather crude approximation.
In [8] the authors used information theoretic arguments to
show that the GE model minimizes the channel capacity.
By employing a specific SNR partitioning approach, the
authors in [2] showed that thewireless effective bandwidth
increases dramatically as the number of states of the em-
ployed Markov model is increased. In other words, the
2-state GE model leads to a highly conservative allocation
strategy. We show in this paper how the performance of
wireless scheduling algorithms is affected by the employed
channel and prediction models.

Without loss of generality, we consider two popu-
lar wireless scheduling schemes: Wireless Fair Service
(WFS) [5] and Channel Condition Independent Packet Fair
Queueing (CIF-Q) [7]. Both schemes are known to be fair
and to provide delay and throughput guarantees. Our re-
sults are equally applicable to other scheduling schemes
that employ channel prediction. To investigate the im-
pact of the inaccuracy in channel predictions, we make a



distinction between theprediction model and thechannel
model. The former refers to the model used by the sched-
uler to predict the channel state at a given receiver, while
the latter refers to the stochastic process that drives the dy-
namics of the wireless channel. We investigate the effect of
different prediction models under a given channel model,
and vice versa.

The rest of the paper is organized as follows. In Section
2, we describe the channel and prediction models used in
our study. In the same section, we describe the approach
used to partition the SNR range and determine the param-
eters of the corresponding Markovian channel model. Our
simulation-based results are provided in Section 3. Section
4 concludes the paper.

II. CHANNEL CHARACTERIZATION

A. Channel and Prediction Models

For the channel models, we use Jake’s simulation model
as well as� -state Markov models (� � �). Jake’s model
provides accurate characterization of the dynamics of a
downlink channel with Rayleigh fading. However, it is
specified by a large number of parameters. For Markov-
based channel models, we consider two types. In the first
type, the model parameters are obtained by partitioning the
continuous SNR range into� states using the approach in
[9] with some modifications (details are given in Section� ��). The second type is the popular 2-state GE model but
with parameter values that are obtained from Jake’s simu-
lator [3] (which gives the average packet error rate of the
channel). When Jake’s model is used to drive the channel
dynamics, we allow the value of� in the predictor model
to be arbitrarily large, whereas we restrict� to be less than
or equal to� when using a Markov-based channel model.

The prediction models that we use are� -state Markov
models, with� � �. The case� � � is of particular
interest, as it has often been employed in evaluating wire-
less scheduling schemes. Two types of 2-state Markov
models are considered: abinary-feedback model and a
SNR-based model. In the binary-feedback model, the re-
ceiver relies on the outcome of the decoding process to de-
termine whether a packet is successfully received or not.
This binary information is then fed back to the transmit-
ter, which uses it to predict the future channel state. The
binary-feedback model is employed with the GE chan-
nel model. In the 2-state SNR-based model, the received
SNR values are themselves made available to the transmit-

ter, which uses them to predict the future channel state.
This model provides more accurate predictions than the
binary-feedback model (when employed under an� -state
Markov channel model). For� � �, the prediction model
is always SNR-based. Note that the nature of the predic-
tion model has important ramifications on the adaptiveness
of the employed forward error correction (FEC) scheme.
For a 2-state model, transmission is allowed to proceed
only if the channel state at the receiver is forecasted to be
“good,” in which case FEC is applied with a fixed code
rate, i.e., the code is not adaptive. In contrast, for a higher-
order model, the FEC capability can be changed adaptively
depending on the predicted channel state (in this case, the
transmission is allowed to proceed under all channel states
except the worst one).

B. Channel State Partitioning

Markov-based channel modeling requires partitioning
the continuous SNR range into a finite set of states. Sev-
eral methods for SNR partitioning were proposed in the
literature (e.g., [2, 8, 9]). Any of these methods can, in
principle, be used in our work. Without loss of general-
ity, we consider the partitioning scheme in [9] as the basis
for our channel modeling. This scheme results in all states
having the same mean sojourn time except for the last state
(whose range extends to infinity). Let�� be the mean so-
journ time in state� (� � 	
 � � � 
 � ). Then,�� can be ex-
pressed in terms of the Doppler frequency (�� ), the packet
transmission period (� ), and the mean received SNR (�):
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Once the SNR range has been partitioned, the transition
probabilities for the underlying Markov chain can be ob-
tained, as follows [9]:
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where��� �� &
is the level crossing rate at SNR level�,

and is given by [8]:��� �	
 � � �	� �� ��� �� 	� � (3)

and�� is the steady state probability of being in state� :

�� � ��� �� ��� � � ��� �� ����� � � (4)

In addition to partitioning the SNR range, the specifica-
tion of the Markov model requires determining the average
error rate (�� ) in each state� . For BPSK modulation,�� is
given by [8]:
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where1 is the standard normal distribution function. In
[8] a simpler expression for�� was obtained:�� � 2� �2�� ��� (6)
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In the above partitioning procedure, the value of� is
not specified as an input, but is generated as an outcome
of this procedure. So it is possible to end up with an ex-
cessively large� . To control the value of� , we extend
the partitioning procedure in [9] as follows. We start with
a crude 2-state partitioning of the channel, where the only
unknown is

% E
. We select

% E
to be the maximum pos-

sible SNR value that will result in an averagepacket er-
ror rate (PER) during state 1 (the bad state) that is greater
thanF � 	��G

under the maximum allowed FEC code rate
(which we set to	H�). Then, we generate a set of statesI

using the partitioning scheme in [9] with the value of� chosen so that the previously obtained
% E

is a bound-
ary to one of the states in

I
(but not necessarily the first

state). The size of the resulting
I

is 16 and� � * �	. Then,
starting from

I
we merge neighboring states to obtain the

desired value of� . In doing so, we try to ensure that the
resulting (reduced) set of states, denoted by

IJ
, have the

same mean sojourn time. We classify the states in
IJ

into
“good” and “bad” states according to the mean PER dur-
ing each state under 1/2 code rate; if this mean is greater

than F, the corresponding state is “bad”; otherwise, it is
“good.” Packet transmission is deferred in the “bad” states,
and is allowed to proceed in the “good” states using a state-
dependent FEC code rate.

III. S IMULATION RESULTS

In the following simulations, we demonstrate the effect
of employing various prediction and channel models at
medium mobility (i.e.,�� � �� Hz). We consider three
mobile users and a base station. The throughput (normal-
ized with respect to the traffic load) and the average packet
delay are obtained for various utilization levels (K ), de-
fined as the ratio of the information rate (before FEC cod-
ing) and the channel bit rate. Throughout the simulations,
we keep the size of the packet payload constant. The to-
tal size of a packet varies according to the number of FEC
bits.

Figures 1 and 2 show the effect of employing differ-
ent prediction models on the throughput and delay per-
formance for the WFS scheduling algorithm, using Jake’s
simulator as the channel model. In the figures, we also
provide the performance measures under the GE channel
model. As shown in the figure, increasing� from 2 to 4
results in a good improvement in the throughput and, si-
multaneously, a reduction in the average packet delay. The
difference in throughput between the cases� � � and� � L increases withK . Increasing� beyond 4 seems
to result in a negligible improvement in performance. We
observed that for� � L, most of the additional states are
essentially obtained by sub-partitioning the best state in
the 4-state model. Thus, the modeling accuracy achieved
by increasing the number of states beyond four is negli-
gible. However, at smaller values of�, the channel will
spend more time in the “bad” region, resulting in a finer
partitioning of this region, i.e., for� � L many of the
additional states beyond the first four lie in the low SNR
region. In this case, the performance gain resulting from
increasing� beyond four is more noticeable. We observe
similar results for the CIF-Q scheduling algorithm in Fig-
ures 3 and 4. Interestingly, the throughput of WFS under
the GE model lies between the throughputs that are ob-
tained under� � � and� � L, i.e., the GE model is more
accurate than a 2-state partition-based model. This is not
the case for CIF-Q, where the GE model is observed to be
less accurate than a partition-based 2-state model (the case� � �). These results suggest that the accuracy of the GE
model depends highly on how the scheduling algorithm



makes use of the channel information. As the channel
conditions deteriorate (� becomes smaller), the difference
between the GE model and the SNR-based Markov mod-
els becomes more pronounced. Therefore, if the schedul-
ing algorithm is designed solely based on GE models, the
observed performance can significantly deviate from the
forecasted performance.

Figures 5 through 8 depict the performance obtained un-
der different channel models and a 2-state SNR-based pre-
diction model. The purpose of this figure is to demon-
strate that the results obtained using 2-state predictionand
channel models are biased towards the 2-state prediction
model. In other words, the 2-state prediction model gives
good performance only when the actual channel dynamics
follow a 2-state Markov model. In reality, however, chan-
nel dynamics are more complex than that, and are more
accurately captured by a higher-order Markov model.
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Fig. 1. Impact of prediction model on throughput for WFS.
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Fig. 2. Impact of prediction model on delay for WFS.
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Fig. 3. Impact of prediction model on throughput for CIF-Q.
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Fig. 4. Impact of prediction model on delay for CIF-Q.

IV. CONCLUSIONS

In this paper, we investigated the impact of channel-state
prediction on the achievable throughput and delay perfor-
mance of two popular wireless scheduling schemes. We
observed that when the channel fluctuates according to
Jake’s model (which is a good approximation of the fad-
ing dynamics at the mobile receiver of a cellular system),
the throughput improves and the mean delay decreases as� (the number of states in the Markovian predictor) in-
creases. The improvement in throughput is most notice-
able when� goes from 2 to 4. In the case of WFS, a
2-state GE model whose parameters are obtained based on
Jake’s simulator is better than a 2-state model whose pa-
rameters are obtained through SNR partitioning. The op-
posite was observed for CIF-Q. For an SNR-based 2-state
prediction model and� -state Markov channel models, the
performance degrades with� ; i.e., the performance be-
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Fig. 5. Impact of channel model on throughput for WFS.
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Fig. 6. Impact of channel model on delay for WFS.

comes overly optimistic as� decreases. This says that
the results obtained in previous wireless scheduling stud-
ies under a 2-state predictor and a 2-state channel are opti-
mistic.
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