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Abstract—5G millimeter-wave (mmW) systems rely on elec-
tronically steerable antenna arrays to support directional com-
munications. Directionality complicates the initial access (IA)
process, whereby a base station (BS) announces itself to nearby
user equipments (UEs), giving them the opportunity to associate
with this BS. Existing approaches for IA suffer from long
discovery time and/or nonnegligable probability of missing UEs.
In this paper, we propose FastLink, an efficient IA protocol
for mmW systems, in which discovery beacons are transmit-
ted/received using the narrowest possible beams, allowing for high
beamforming gains and low misdetection rate, while maintaining
low discovery time. Fastlink executes a unique algorithm, called
3-dimensional peak finding (3DPF), to find the best beam in
logarithmic time. We formulate the beam-finding process as a
sparse problem and use compressive sensing to determine the
minimum number of measurements needed for this process. We
first study FastLink for the discovery of a single UE and then
extend our analysis to a multi-user scenario. Both simulations
and over-the-air experiments based on a custom mmW testbed
are used to evaluate FastLink. Our results verify its efficiency,
and show that it can reduce the search time by 90% compared
to the scanning approach used in 802.11ad systems.

Index Terms—Millimeter-wave, beam finding, initial access,
compressive sensing, analog beamforming.

I. INTRODUCTION

Millimeter-wave (mmW) communications have recently
attracted considerable interest as a key element of next-
generation wireless systems, e.g., 5G New Radio (NR) cellular
systems [1] and WiGig [2]. Wireless communications at mmW
frequencies are inherently challenging, due to high propaga-
tion losses and poor penetration[3], [4]. At the same time,
the smaller wavelengths allow many antenna elements to be
packed into a single device without increasing its form factor.
With proper processing of signals fed into these antennas,
transmissions can be beamed along a desired direction. The
severe signal attenuation in the mmW bands can then be
compensated for by the resulting beamforming gain [5].

Directional communications, however, comes at the cost of
more complex initial access (IA) procedure [6], the process by
which a user equipment (UE) establishes a connection with a
base station (BS). In 4G LTE systems, IA is performed in
an omnidirectional fashion, which alleviates the burden of
beam alignment. In contrast, the IA procedure in 5G NR
is done directionally (see Fig. 1) to reach more users and
support subsequent directional data transmissions. Specifically,
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Fig. 1. Directional IA as done in 5G NR. SS blocks are transmitted over
different directions to establish communications with the UEs in range.

synchronization signal blocks (SSBs), each consisting of 4
OFDM symbols, are transmitted over different directions at
different times to establish communications with the UEs in
range. This directional search incurs significant delay, which
lowers the link throughput and spectral efficiency [7].

In this paper, we propose FastLink, an efficient mmW-band
IA protocol that allows the BS and the UE to transmit/receive
using the narrowest possible beams, hence providing the
highest possible beamforming gain. At the same time, beam
sweeping is done in such a way that the discovery process
is much faster than beam scanning mechanisms used in the
802.11ad standard and 5G NR. FastLink exploits compres-
sive sensing (CS) to determine the number of measurements
(beam probes) needed to find the ‘dominant’ channel cluster1.
Based on this insight, we design a search algorithm, called
3-dimensional peak finding (3DPF), to find the best beam
in the 3D space. 3DPF divides the set of beam directions
into equally spaced subsets and then finds the beam that
achieves the maximum received power in each subset. The
number of subsets is a design parameter, determined using CS.
We first analyze a single-user scenario and then extend our
treatment into a more realistic multi-user scenario, studying
the impact of the number of users on FastLink’s performance.
A higher number of users results in more clusters from the
BS perspective. Thus, the BS should search more regions to
achieve a low probability of UE misdetection. First, we find
the distribution of the total number of clusters in the multi-
user case and then optimize the number of subsets searched
in 3DPF to fit the multi-user system model.

Main contributions of this paper can be summarized as:
• Utilizing CS methods, we determine the required number

of probed directions to identify the channel clusters with

1A cluster is a collection of paths, whose angle-of-arrivals (AoA), angle-
of-departures (AoD), and path gains are quite close to each other.
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high probability. We show that this number is logarithmi-
cally proportional to the total number of narrow beams.

• We develop a novel beam scanning method called 3DPF,
which is based on beam partitioning and gradient ascent
search. 3DPF collects the required number of beam
probes suggested by the CS analysis and allows mmW
devices to discover each other directionally, while main-
taining low discovery time and misdetection probability.

• We integrate 3DPF into the FastLink protocol and explain
the required control messages that need to be exchanged
between the BS and the UE in support of this protocol.

• We extend our single-user analysis into multiple users.
For this scenario, we compute the total number of clusters
observed by the BS and show how the discovery time
scales with the number of users.

• We verify the efficiency of 3DPF by conducting MAT-
LAB simulations as well as hardware experiments on
a custom mmW testbed. Our simulations implement a
slightly modified version of the NYU channel model
[5]. Our hardware setup is comprised of a mmW signal
generator, vector signal analyzer, and 4×4 uniform planar
arrays. We run the experiments in the 29 GHz band,
collecting received signal strength (RSS) measurements
and timing results. Our results indicate that FastLink
reduces the search time by more than 90% compared to
802.11ad-like beam search, and yet achieves almost the
same misdetection probability.

II. RELATED WORK

For mmW systems that rely on analog beamforming, several
approaches for IA have been investigated in the literature,
including exhaustive search [1], two-stage hierarchical search
[2], and context-information-based (CI-based) search [8]. Ex-
haustive search is a brute-force sequential beam searching
technique proposed for 5G NR [9]. In this technique, the
BS sequentially transmits SSBs along different directions,
allowing UEs to detect one of them [1]. This exhaustive search
comes at the cost of significant discovery time. The two-stage
scanning used in the 802.11ad standard [2] employs a hier-
archical multi-resolution beamforming codebook to expedite
IA. In the first stage, the access point (AP) sequentially trans-
mits synchronization signals over wide (quasi-omnidirectional)
sectors, aiming to determine the best coarse direction. In the
second stage (beam refinement), the AP refines its search
within the best coarse sector by switching to narrow beams
[2]. Although this approach reduces the IA delay, in the worst
case, the search time scales linearly with the number of narrow
beams. Finally, in CI-based search, the UE simply selects the
optimal beam direction using GPS information [7].

Other IA approaches have also been proposed. The authors
in [10] used hashing functions to identify the best beam. This
reduces the search time, but it also lowers the resulting beam-
forming gain, leading to a higher misdetection probability. In
[11] and [12], the authors utilized multi-lobe beams to identify
several channel clusters for combating blockages. However,
the resulting beams suffer again from the low beamforming
gains. In [13] and [14], the authors proposed a beamforming

scheme that exploits the correlation between the sub-6 GHz
and the mmW interfaces to provide efficient beam alignment.
Their scheme hinges on the availability of a sub-6 GHz
channel and the feasibility of performing digital beamforming
on the sub-6 GHz channel. The authors in [15] proposed an
online learning based channel estimation technique to be used
during IA. Nevertheless, this scheme adds a significant training
overhead to the system. In [16], the authors studied contextual
bandits for efficient beam alignment in mmW systems, but
considered only a single channel cluster. Finally, the authors
in [17] proposed a model-driven beam-steering scheme called
OScan, which reduces the search latency. However, their de-
sign is based on mmW channel measurements obtained using
horn antennas. These antennas have significantly different
characteristics than phased-array antennas, which may result
in their algorithm returning a suboptimal beam.

The aforementioned techniques offer different tradeoffs
between discovery time (time to establish directional com-
munication between the BS and the UE) and misdetection
probability; the probability that a UE is not detected by the
BS. For instance, in its first stage, the 802.11ad scheme scans
the space using wide beams, and thus achieves a low discovery
time. However, it also has a high chance of missing users due
to the low beamforming gain. With the beam refinement in
phase 2, the 802.11ad scheme attains better coverage, but this
comes at the expense of higher discovery time.

Recently, compressive sensing has gained attention as a
means to exploit the sparsity of mmW channels [18], [19].
Essentially, CS is a signal processing technique that can
be used to efficiently reconstruct a signal by solving an
underdetermined set of linear equations. This idea was applied
in [18] for mmW channel estimation and designing analog
beamformers. Similarly, the authors in [20] described a CS-
based approach to estimate multipath channels (not necessarily
mmW) that have a sparse representation, without imposing
analog beamforming constraints. In [19], the authors utilized
CS in a multiuser MIMO system. While these analyses cor-
roborate the significance of CS for channel estimation, they
do not specify a practical way for collecting the required
measurements.

By exploiting mmW channel sparsity, CS was utilized in
[21], [22] for efficient alignment of transmit and receive
beams. In these works, probing beams are generated by
assigning random phase shifts to each antenna element, so
as to achieve incoherence between measurements. Although
the resulting beams satisfy the CS constraints, they exhibit
quasi-omnidirectional patterns and low beamforming gains.
Therefore, these beams are not likely to satisfy the link budget
when used for IA and/or data communication [7]. Adaptive CS
analysis was used in [23] and [24] to obtain a multi-resolution
hiearchical codebook to discover UEs in range. This type
of hierarchical codebook iteratively narrows down the spatial
search region, similar to divide-and-conquer algorithms, result-
ing in logarithmic time complexity [25]. However, similar to
the random sensing matrices, the wide sectors used during the
initial stages of the beam search process may not have enough
gain to satisfy the link budget [7]. Consequently, such an
approach results in a higher misdetection probability compared



3

to always using narrow beams. Finally, the authors in [26]
utilized CS to design transmit and receive beamformers, but
considered only a single-user scenario.

To obviate the above shortcomings, in this paper, we develop
a practical algorithm based on CS, which reduces the beam
searching delay while achieving a very low misdetection
probability. Our algorithm executes the IA process completely
over mmW bands. It exploits the unimodality of the received
power as a function of beam ID, similar to gradient ascent,
eventually maximizing the received power. We first consider
the case of a single-user and then extend our treatment into
multiple users.

III. BEAMFORMING IN ANTENNA ARRAYS

We first consider the IA process between a BS and a
single UE. Electronically steerable phased-array antennas are
assumed at both devices. In addition, we consider analog
beamforming for both the BS and the UE. Without loss of
generality, we let the BS be the transmitter (Tx) and UE be
the receiver (Rx). Before we invoke on the algorithmic details
of our IA design, we first explain how a phased-array antenna
can be steered towards a desired direction. In this section, we
study the beamforming on the UE side (Rx). Extension to the
BS is straightforward.

To electronically steer a beam, complex weights should be
applied to each antenna element in the array. These weights
are determined by calculating the array factors (AFs) of the
BS and UE antenna arrays. The AF is the factor by which the
element factor of an individual antenna is multiplied to get
the firing pattern of the entire array. Without loss of generality,
consider a uniform planar array (UPA) with a horizontal inter-
element distance dx and a vertical inter-element distance dy .
Denote the AF by FUPA and let R be the individual gain of
each antenna element. Suppose that the incident wave of the
received signal arrives at a polar angle θ and azimuth angle φ,
and that the antennas are placed on an M ×N grid, as shown
in Fig. 2(a). Let κ , dxm cosφ sin θ+dyn sinφ sin θ. We can
write the received signal at antenna element (m,n), sm,n as:

sm,n = R ej
2π
λ κ (1)

where λ is the wavelength of the signal, m ∈ {1, · · · ,M} and
n ∈ {1, · · · , N}. Let s be the output of the antenna array:

s =

M∑
m=1

N∑
n=1

sm,nwm,n = R

M∑
m=1

N∑
n=1

wm,ne
j 2π
λ κ = R FUPA.

(2)

The signal power at the UPA can then be maximized by
maximizing |R FUPA|. Assuming the same signal amplitude
at each antenna, |FUPA| is maximized when wm,n is selected in
a way to ensure that the received signals are in phase, i.e., by
setting wnx,ny = e−j

2π
λ κ. This way, the beam can be steered

along the direction (θ, φ), as shown in Fig. 2(b).

IV. CS-BASED BEAM FINDING

Considering the limited scattering of a mmW channel, in
this section, we formulate the problem of finding the best beam
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Fig. 2. (a) Illustration of analog Rx beamforming on a UPA (angle of the
Rx signal is (θ, φ)), (b) normalized 3D directivity pattern of a 16× 16 UPA,
where θ = 45◦ and φ = 15◦ (UPA placed on the Y-Z plane).

as a sparse problem, in line with previous works [5], [18]. We
use the notation x × y to denote a matrix of x rows and y
columns. Let the total number of antennas at the BS and the
UE be ABS = MBSNBS and AUE = MUENUE, respectively. Here,
Mi and Ni, i ∈ {BS,UE}, refer to the number of rows and
columns in the UPA. Then, the sparse channel between the
BS and the UE can be denoted by the AUE ×ABS matrix H.

To express the received signal, BS and UE beamforming
should be applied to channel H. In general, beamforming
vectors are computed offline for a set of directions (as shown
in Section III) and stored in the codebooks at the BS and UE
[9]. Note that in addition to phase control, it is also possible to
adjust the amplitude of a signal arriving at an antenna element
of a phased array [27], and the codebook-based beamforming
explained here can also be used with simultaneous amplitude-
and phase-controlled antennas. This codebook-based beam-
forming is employed both in 5G NR [1] and WiGig [2]
standards, as it is much faster than designing coherent precoder
and combiner vectors on-the-fly based on channel measure-
ments. Let Q = {q1,q2, · · · ,qDUE} denote the codebook of
the UE beamformer and F = {f1, f2, · · · , fDBS} denote the
codebook of the BS beamformer, where DUE and DBS are the
maximum number of narrow beams that can be generated at
the UE and BS, respectively2. During IA, if the BS uses a
transmit beamforming vector fi ∈ F and UE uses a receive
beamforming vector qj ∈ Q, the received signal yij can be
expressed as:

yij = q∗jHfix+ q∗jn (3)

where x is the transmitted signal and n ∈ CAUE×1 is a
matrix whose entries are complex circularly symmetric white
Gaussian noise.

For UE beam training, we fix the BS beamformer and define
the precoded channel vector gi , Hfi, where gi ∈ CAUE×1.
Then, the problem of finding the optimal UE beamformer
given the precoded channel vector can be expressed as:

argmax
j

|q∗jgi|2

s.t. qj ∈ Q.
(4)

A brute-force solution to (4) can be found by first forming an
exhaustive dictionary matrix Q whose jth column is given by

2DUE and DBS depend on the resolution of the phase shifters of the UPAs.
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qj , j = 1, · · · , DUE. Then, DUE measurements corresponding
to different Rx beamformers can be collected as v = Q∗gi,
where v is a vector of length DUE, containing the channel
measurement results [23]. Note that these results are collected
in DUE successive time slots, i.e., the resulting v is found by
concatenating DUE successive results. Our aim here is to exploit
channel sparsity and find a solution to (4) that is faster than
a brute-force search. For notational convenience, we omit the
subscript from DUE for the rest of the paper.

After transmit and receive beamforming, v will contain
mostly zero entries. Specifically, assuming that the channel
H has P clusters, when Q is applied to the precoded channel
gi, the results display at most P peak values. That is, v is P -
sparse. In general, the notion of P -sparsity is used for vectors
with at most P nonzero entries. As shown in [28], CS can
be used to reconstruct noisy vectors with P peaks. Therefore,
for notational convenience, we refer to vectors exhibiting at
most P peaks as P -sparse. Insights from the CS theory can
thus be used to identify the largest entry of v by taking only
r measurements from gi, such that D > r ≥ P .

Define Θ as the AUE × r compressed measurement matrix
and Φ as the r × D dimensionality reduction matrix. Then,
the output Ψ of the compressed measurement process can be
represented as:

Ψ = Φv = ΦQ∗gi = Θ∗gi. (5)

Note that Ψ is a column vector of length r. The problem
is then reduced to designing a stable measurement matrix Θ
such that the key information in any P -sparse compressible
channel is not lost through the dimensionality reduction. In
other words, we would like to identify the highest peak of v
by using the available measurement results Ψ and the known
dimensionality reduction matrix Φ. A necessary and sufficient
condition to find a solution to our problem for the P -sparse
v is the restricted isometry property (RIP), which is satisfied
by a given matrix Φ if:

(1− ε) ≤ ‖Φz‖22
‖z‖22

≤ (1 + ε) (6)

holds for any arbitrary P -sparse z and for some isometry
constant ε > 0 [29]. Specifically, the matrix Φ must preserve
the length of an arbitrary P -sparse z. RIP can be achieved with
high probability simply by selecting Φ as a random matrix
[30]. That is, when the entries of Φ are drawn independently
from a N (0, 1/r) distribution, Φ can satisfy RIP with a
probability close to 1 if r ≥ cP log(D/P ), where c is a small
constant that depends on the desired probability of success.
This result is summarized in the following theorem [31]:

Theorem 1: Let r ≥ cP log(D/P ). Construct Φ by draw-
ing its entries independently from a Gaussian distribution
N (0, 1/r). Then, there exists a c′ > 0 that depends on c such
that with probability greater than 1 − e−c′r, it is possible to
reconstruct every P -sparse signal v of length D using Ψ.

Proof: Follows from [31, Thm. 5.2].
Accordingly, the highest peak of the P -sparse v can be
identified from only r ≥ cP log(D/P ) random measurements.
However, if the entries of Φ are selected randomly, the
resulting measurement matrix Θ consists of random phase

shifts. Therefore, the beam patterns used in the channel mea-
surements will have low beamforming gains, which will likely
not satisfy the link budget [21]. On the other hand, by selecting
the columns of Θ from the codebook Q, the beamforming
gains can be maximized for a specified set of directions. This
corresponds to constructing Φ as a row selection matrix, which
consists of a single 1 at each row (total of r rows) and each
column (total of D columns). The remaining entries of the
matrix consist of 0s and the column indices of 1s indicate
the rows to be selected from Q∗. Fortunately, this is possible,
given that different UE beamformers are spatially orthogonal.
As long as Θ is constructed based on a subset of measurement
vectors that are selected from an orthogonal basis (Q), RIP
is still satisfied [32]. Note that the orthogonality of the UE
beamformers require sufficient beam separation.

Using the above insights, we next describe three algorithms
that aim at determining the best beams for the BS and UE. The
algorithms aim at collecting cP log(D/P ) measurements in an
intelligent way, so as to ensure a low misdetection probability.
Because the measurements are taken sequentially, the proposed
algorithms use the measurement results from previous steps
when deciding on the next UE beam.

V. PEAK-FINDING ALGORITHMS

The algorithms proposed in this section seek to identify the
Rx beam j that yields the largest Rx power for the given
precoded channel. In Section V-A, we design an algorithm
to find the best beam in the case of a single channel cluster.
We extend this design to multiple clusters in Section V-B.
In Section V-C, we modify both algorithms to work in a 3D
environment. Finally, in Section V-D, we discuss how to select
the optimal design parameter K (number of angular regions).

A. Single-peak Finding (SPF) Algorithm

For now, we assume that the Tx is pointing towards a fixed,
arbitrarily chosen direction using its beam i and beamformer
fi. Rx tries to find the optimal beam w.r.t the given Tx
direction. Extension to finding the optimal beam on the Tx
side will be explained in Section VI. While pointing along
a given direction i, the Tx sends synchronization signals (see
Section VI) and Rx measures the received power by steering its
receive beam. For brevity, in this section, we omit the subscript
i from gi. For now, we consider a fixed elevation angle for
both Tx and the Rx, and aim at finding the best azimuthal
angle for the Rx.

Due to the channel clustering phenomenon, a typical plot
of beam ID vs. SNR displays multiple peaks. For now, we
consider a single-peak scenario; see Fig. 3. Note that the
graph in this figure cannot be perfectly reconstructed without
measuring the SNR for each Rx beam. However, our aim is to
find the peak by using only a subset of Rx beams, exploiting
the previously presented CS analysis. Specifically, we aim at
taking r measurements (r < D) such that the optimal Rx
beamformer for a given Tx beamformer can be found with
high probability (see Thm. 1).

Our proposed algorithm, called SPF, is similar to a gradient
ascent search. First, the precoded channel g is measured using
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Algorithm 1 Single-peak Finding (SPF) Algorithm
1: procedure SINGLE PEAK(Q, g)
2: Initialize:
3: i← D/2
4: vi ← q∗i g, vi−1 ← q∗i−1g, vi+1 ← q∗i+1g
5: Recursion:
6: if |vi|2 > |vi−1|2 and |vi|2 > |vi+1|2 then
7: return |vi|2
8: else
9: if |vi+1|2 − |vi|2 > |vi−1|2 − |vi|2 then

10: return SINGLE PEAK(Q{i+ 1 : D},g)
11: else
12: return SINGLE PEAK(Q{1 : i− 1},g)
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Fig. 3. Received power vs. beam ID (single peak). Numbers below the dots
represent the order by which the beams are scanned. Red squares correspond
to intermediate beams and the green star corresponds to the target peak.

an Rx beamformer qi that generates a starting beam i in the
middle of the Rx field-of-view (FoV). From qi, we obtain vi =
q∗i g. Then, i’s left and right adjacent beams in the azimuth
domain, i − 1 and i + 1, are scanned and vi−1 = q∗i−1g and
vi+1 = q∗i+1g are obtained. If |vi|2 > |vi−1|2 and |vi|2 >
|vi+1|2, where | · | indicates the modulus of a complex number,
then vi is the peak. Otherwise, v is “rising” towards the left
or the right of beam i. Thus, the directions that v is not rising
towards no longer need to be scanned. If both directions are
rising, the steepest ascent direction is selected. This leaves us
with the subset of the codebook Q′ , where Q′ = Q{1, · · · , i−
1} or Q′ = Q{i + 1, · · · , D}, eliminating the need to probe
the directions in Q/{Q′ ∪{i}}. The procedure is repeated for
the remaining directions in Q′ until the peak is reached (see
Algorithm 1). An example is given in Fig. 3.

If v exhibits a single peak, the SPF algorithm finds it in
O(logD) time. However, if v has multiple peaks, SPF finds
only one of the peaks, which is not necessarily the optimal
one. To cope with that, we next propose the multiple-peak
finding (MPF) algorithm.

B. Multiple-peak Finding (MPF) Algorithm

To reduce the chances of getting stuck at a local maximum,
in the MPF algorithm, the codebook Q is divided into K equal-
size subsets, each representing an angular region. Here, K is
selected in a way that each region is likely to contain at most
one peak. Then, the SPF algorithm is executed within each
region. Finally, the local maxima that are found at different
regions are compared, and the largest of them is selected (see

Algorithm 2 Multi-peak Finding (MPF) Algorithm
1: procedure MULTI PEAK(Q, g, K)
2: Divide Regions:
3: Divide Q into K equal regions Ri
4: Finding Peaks:
5: Candidates Ω← { }
6: for Each Ri, i ∈ {1, · · ·K} do
7: localMax ← SINGLE PEAK(Ri,g)
8: Ω← Ω∪ localMax

return max(Ω)

Algorithm 2). The complexity is O(K log D
K ), as the SPF

algorithm is executed in K regions, each of size D
K . Clearly, as

K approaches D, the MPF algorithm converges to exhaustive
search and the complexity approaches O(D). On the other
hand, if K is very small (e.g., 1), the complexity is O(logD),
but there is a high chance that the global maximum will
be missed. If the beam direction returned by the algorithm
returns cannot support the link budget, a misdetection is
declared; otherwise the beam is declared “suboptimal”, since
communications along that beam can still be established. With
proper selection of K, we can increase the chances of having
at most one peak in each region, which the algorithm is
guaranteed to find.

C. 3DPF Algorithm

We now describe how the MPF algorithm can be extended to
3D beam search. In the 3D case, each time beam direction i is
scanned, four adjacent beams are also scanned: up and down in
the elevation domain, and left and right in the azimuth domain.
The main difference between MPF and 3DPF is that when
finding the rising directions in 3D, we take measurements
from these four neighbors of beam i and determine the rising
quadrant (instead of the rising half of the array). Afterwards,
the algorithm is run recursively in that quadrant. Similar to
MPF, in 3DPF the space is divided into K angular regions to
account for multiple peaks. Specifically, the horizontal domain
is divided into Kx and the vertical domain is divided into Ky

regions, where K = KxKy . As the algorithm still runs in
logarithmic time within each region, the complexity is still
O(K log D

K ).
A pseudocode of 3DPF is given in Algorithm 3. In Section

IV, q, f and v were taken as vectors. In reality, when UPAs are
used, these quantities are flattened matrices. For consistency,
we keep using the same notation to refer to these matrices.
We use vi,up, to refer to the measurement result obtained from
i’s upper neighboring beam in the elevation domain. Similar
definitions apply to vi,left, vi,right, and vi,down. The notation
for qi is extended the same way to account for four different
neighboring beam directions.

D. Selecting the Optimal Number of Regions

Here, we aim at identifying the value of K to be used by
3DPF so as to achieve a low misdetection probability. Recall
from Theorem 1 that the peaks of the P -sparse measurement
vector v can be found with high probability by scanning r ≥
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Algorithm 3 3DPF Algorithm
1: procedure 3D SPF(Q, g)
2: Initialize:
3: i← middle beam of Q
4: vi ← q∗i g
5: vi,left ← q∗i,leftg, vi,right ← q∗i,rightg
6: vi,up ← q∗i,upg, vi,down ← q∗i,downg
7: Recursion:
8: if |vi|2 > |vi,up|2 and |vi|2 > |vi,down|2 and |vi|2 >
|vi,left|2 and |vi|2 > |vi,right|2 then

9: return |vi|2
10: else if |vi,down|2 − |vi|2 < |vi,up|2 − |vi|2 and
|vi,left|2 − |vi|2 < |vi,right|2 − |vi|2 then

11: return 3D SPF(Q{upper-right quadrant},g)
12: else if |vi,down|2 − |vi|2 < |vi,up|2 − |vi|2 and
|vi,right|2 − |vi|2 < |vi,left|2 − |vi|2 then

13: return 3D SPF(Q{upper-left quadrant},g)
14: else if |vi,up|2 − |vi|2 < |vi,down|2 − |vi|2 and
|vi,left|2 − |vi|2 < |vi,right|2 − |vi|2 then

15: return 3D SPF(Q{lower-right quadrant},g)
16: else
17: return 3D SPF(Q{lower-left quadrant},g)
18: procedure 3DPF(Q, g, Kx , Ky )
19: Divide Regions:
20: Divide Q into K (K = KxKy) equal regions Ri
21: Finding Peaks:
22: Candidates Ω← { }
23: for Each Ri, i ∈ {1, · · ·K} do
24: localMax ← 3D SPF(Ri,g)
25: Ω← Ω∪ localMax

return max(Ω)

cP log(DP ) directions. Setting K = P in the 3DPF algorithm
yields r = 5P log D

P measurements, including the neighbors
of a selected beam. Therefore, by letting K = P , the 3DPF
algorithm achieves an arbitrarily low misdetection probability.

Unfortunately, there is no way to know in advance how
many clusters a given environment exhibits at a specific operat-
ing frequency. However, there exists several works addressing
the distribution of the number of clusters in various mmW
bands (e.g., [5], [2]). In this paper, we aim at accounting for
a relatively large number of clusters to lower the chances of
misdetection. Suppose that P is a discrete random variable
and let P ∗ be the 95th-percentile of P . In [5], P is randomly
distributed with pmf max{Poisson(µ), 1}, where µ = 1.8, for
the 28 GHz band. Solving numerically, P ∗ ≈ 3.72 when the
operating frequency is 28 GHz. We can then select K = dP ∗e,
where d.e is the ceiling function. Note that in [5], P is modeled
for a 2D space. In our experiments, we observed that for 2D
beam searching, selecting K = 4 achieves good performance
both in terms of discovery time and misdetection probability.
For 3DPF, we report the results for several K values, as
discussed in Section VIII.

VI. FASTLINK PROTOCOL

In this section, we present our FastLink protocol for IA
in mmW systems. FastLink integrates the 3DPF algorithm as

part of the message exchange between the BS and the UE.
To find a suitable directional link, recent 5G specifications
require that the BS covers the whole spatial area with a pre-
configured number of beams, using periodically transmitted
SSBs [1]. These SSBs carry a primary synchronization signal
(PSS), a secondary synchronization signal (SSS), and physical
broadcast channel (PBCH) information. PSS is mainly used
for initial symbol boundary synchronization to the NR cell
and the SSS is used for detection of cell and beam IDs.
When the UE enters the coverage area of a BS, it listens
to an SS burst (consisting of multiple SSBs) and measures
the signal quality of different beams. It then determines the
beam for which the received power is maximum (and above
a predefined threshold). This beam is chosen for subsequent
transmissions/receptions. After determining the best BS beam,
the UE has to wait for the BS to schedule the random access
channel (RACH) opportunity for the beam direction that the
UE has selected. For each SSB, the BS specifies one or more
RACH opportunities to occur in certain times, frequencies, and
directions, so that the UE knows when to transmit the RACH
preamble [9]. During a RACH opportunity, UE performs
random access, implicitly informing the BS of its selected
beam direction. Note that current 5G NR standards do not
specify how beam sweeping will be performed at the UE.

Our 3DPF algorithm can be directly applied at the UE
without changing the default 5G IA process. This reduces
the search time at the UE side, but the BS still sweeps its
beams exhaustively. With some small changes in the 5G IA
structure, 3DPF can be employed at both the BS and the
UE. In FastLink, the BS and the UE both sequentially scan
a small subset of their beam directions. Specifically, the BS
steers its beam towards a direction and sequentially transmits
multiple copies of the same SS block. During this time, the UE
constantly measures the received power, steering its receive
beam according to the 3DPF algorithm. At the end of its
transmission, the BS switches to Rx mode, and listens to a
REPLY message from the UE along the same beam direction.
UE sends its REPLY along the best beam direction it found
for the given BS beam. After measuring the Rx power of the
REPLY message, for the next SS block, the BS steers its beam
towards another direction suggested by 3DPF, and the UE runs
a new search for the new BS beam. Power measurements of
REPLY messages are stored in a table at the BS. In the last
stage of 3DPF, BS selects the beam with the highest power.

For a time division duplex (TDD) system, the BS and UE
operate on the same frequency, and so the number of clusters
they experience are the same. Thus, the optimal K for the BS
and the UE are the same, i.e., KBS = KUE = dP ∗e, as discussed
in Section V-D. This allows the BS to know how long each
SS block should last for (for UE to run 3DPF), without prior
communication with the UE.

The transmission block structure for FastLink is shown in
Fig. 4. BS sends PSS, SSS and PBCH for τUE consecutive mini-
slots through a selected beam i, where τUE is the maximum re-
quired number of mini-slots for the UE to run 3DPF algorithm
with the pre-selected K. Specifically, τUE = 5dP ∗e log DUE

dP∗e ,
where DUE is the maximum number of narrow beams at the
UE. Then, the UE determines the best receive beam for BS
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Fig. 4. Proposed transmission block structure for FastLink.

transmit beam i and sends a REPLY message to the BS.
However, the received power of the REPLY signal at the BS
can be lower than its sensitivity. If the BS does not receive a
REPLY message from the UE after τUE mini-slots, it stores a
minimum power value, ζ, in its table for beam i. Then, the
BS continues executing 3DPF, selecting the next transmit beam
suggested by the algorithm according to the received power
value. In total, BS needs to scan at most τBS = 5dP ∗e log DBS

dP∗e
beams, where DBS is the maximum number of narrow beams
at the BS. After collecting all REPLY messages from the
UE for the selected beams, the BS finally selects the best
transmit beam from the table and the UE selects the best
receive beam for the given transmit beam. This way, the
number of slots required to establish a directional link can
be reduced from DBSDUE to τBSτUE (τBS � DBS and τUE � DUE).
To account for the transmission delay of the REPLY messages,
we introduce a parameter δ, which represents the time required
for the BS and UE to switch from Rx to Tx mode, as
well as the time spent over-the-air. Accordingly, the time to
establish a directional link using FastLink can be written as
τBSτUE + δτBS = τBS(τUE + δ). Since δ is typically less than 10
µs [33], [34], the feedback delay is rather small compared to
the overall duration of the IA.

VII. EXTENSION TO MULTIPLE UES

In this section, we analyze the effect of multiple UEs on the
network discovery time. Note that in 5G IA, discovery time
scales with DBSDUE, regardless of the number of users, as the
parties perform an exhaustive beam sweep. Specifically, each
UE sweeps through its set of beams for each BS beam, and
finds the BS beam through which it experienced the highest
receive power. Then, the UE waits for the BS to schedule
the RACH opportunity for the beam direction that it selected.
Eventually, multiple UEs can be discovered by the BS with
a single exhaustive sweep. In contrast, in FastLink, as the
channel between the BS and each user is different, the BS
needs to probe a different set of beams for each user. Thus, in
the worst case, the discovery time scales with DBSτUE, as the
BS performs an exhaustive scan to discover all users within a
single scan cycle. We analyze the effect of the number of users
on the network discovery time. Note that the time for a UE
to find the best Rx beam for the given BS beam remains the
same in the multi-user case, as the UE still aims at discovering
a single BS.

Assume that the network consists of U UEs and a single
BS, and denote the set of users as U . Let pi denote the number
of clusters between the BS and UE i, and let P be the total
number of clusters;

∑U
i=1 pi = P . Here, we use the statistical

0 100 200 300
Number of Users
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100
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300

400
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600

P
*

P*

y = 2x line

Fig. 5. Optimum K vs. the number of users. The dashed line corresponds to
y = 2x function, which is shown here as a baseline.

channel model in [5], where pi ∼ max{Poisson(µ), 1},∀i ∈
U , with µ = 1.8 for the 28 GHz band. For each i ∈ U , let
χ1,i, χ2,i, · · · , χU,i be Poisson random variables with means
µ, 2µ,Uµ, respectively. Then, pi = max{χ1,i, 1},∀i ∈ U .
Define E0 as the event of having χ1,i < 1, ∀i ∈ U , E1 as the
event of having one user with χ1,i ≥ 1 and other users with
χ1,j < 1, and so on. In general, Ek is defined as the event of
having k users with χ1,i ≥ 1 and U − k users with χ1,j < 1.
We can then express P by the function:

P =



U, if E0 occurs
χ1,i + U − 1, if E1 occurs
χ2,i + U − 2, if E2 occurs

...
χU,i, if EU occurs.

(7)

Now, let x0, x1, · · · , xU denote the probabilities of the oc-
curance of events E0, E1, · · · , EU , respectively. Naturally,∑U
k=0 xk = 1. These probabilities can simply be written as:

xk =

(
U

k

)
Pr(χ1,i = 0)U−k(1− Pr(χ1,i = 0))k. (8)

To numerically find an optimal K value, we follow a similar
approach to that in SectionV-D. Let P ∗ be the 95th-percentile
of P . Then:

Pr(P > P ∗) =

U∑
k=0

xk Pr(P > P ∗|Ek occurs) = 0.05 (9)

As the system consists of U users, each of which having at
least one cluster, P ∗ ≥ U . Then, the terms in (9) can be
simplified as follows:

Pr(P > P ∗|E0 occurs) = Pr(P ∗ = U)

Pr(P > P ∗|E1 occurs) = Pr(χ1,i > P ∗ + 1− U)

Pr(P > P ∗|E2 occurs) = Pr(χ2,i > P ∗ + 2− U)...
Pr(P > P ∗|EU occurs) = Pr(χU,i > P ∗)

(10)

where the probabilities in the right hand side can be computed
easily as χ1,i, χ2,i, · · · , χU,i have generic Poisson distributions
∀i ∈ {1, · · · , U}. Note that because P ∗ and U are both
constants, Pr(P ∗ = U) is either 1 or 0. There is no closed-
form solution for the P ∗. However, for a given U , one can
calculate P ∗ using (8), (9) and (10) (see Fig. 5).
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Fig. 6. Test setup with 4 × 4 UPAs at the Tx and the Rx, signal generator
and vector signal analyzer (operating on the 29 GHz band).

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of 3DPF
through over-the-air hardware experiments and computer sim-
ulations. We compare 3DPF with the 802.11ad beam search
approach, in which the worst-case search time scales linearly
with D. Note that current 5G NR beam search also scales
linearly with D, attaining similar results to 802.11ad.

A. Experimental Results

We first conduct extensive experiments to verify the effi-
ciency of 3DPF. 4 × 4 UPAs are used in our experiments
with dx = 0.5λ and dy = 0.6λ. The number of antenna
elements and their spacing determine the beamwidth of the
patterns generated by the UPAs. However, the beam steering
resolution and the maximum number of narrow beams that can
be generated (i.e., the codebook size) depend on the resolution
of the phase shifters used in the antenna chip. The UPAs used
in our experiments are based on 6-bit phase shifters, which
allow us to sweep the beam with up to 1◦ resolution. In
this case, neighboring beams overlap, since the beamwidth
of the broadside pattern generated by our antennas is 26.5◦.
For the sake of taking RSS measurements, a continuous wave
(CW) signal with 5 dBm amplitude is transmitted over the
29 GHz band, one of the candidate band for 5G NR. To
generate the CW signal, Keysight E8257D-ATO-8384 PSG
signal generator is used. At the Rx side, the array is connected
to Keysight PXA-550-MY55002004 vector signal analyzer
(VSA). The PSG and the VSA are connected to a host PC,
and the RSS results are obtained via a TCP connection. To
steer the transmit/receive beams to desired directions, antenna
arrays are connected to microcontrollers, which are interfaced
with the host PC through the serial port. The test setup with
the Tx, Rx, PSG, and the VSA is shown in Fig. 6.

In our experiments, Tx direction is fixed and the best Rx
direction for that fixed Tx direction is determined using either
802.11ad beam scan or the 3DPF algorithm. We test several
LOS and NLOS scenarios with a Tx-Rx separation of 3 m,
where the NLOS path is created by a 1.2 m × 1.2 m metal
reflector. The effective beam scanning range of the single-
panel UPAs in our experiments is ±60◦ from broadside in
both azimuth and elevation. This region can be considered
as one quasi-omni beam for the sector-level scanning phase
of 802.11ad. Thus, in the beam refinement phase, 802.11ad
protocol exhaustively scans all narrow beams in this region.
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Fig. 7. Rx powers for different beam directions at 29 GHz frequency and a
Tx-Rx separation of 3 m. Measured noise power is −95 dBm. (a) Flattened,
(b) 3D representation.

To obtain the AoA profile, we exhaustively scanned the 3D
space under different scenarios. Using the above setup, we col-
lected RSS measurements within the effective beam scanning
range of the UPAs (see Fig. 7). In addition to the exhaustive
search, we also implemented our 3DPF algorithm on the Rx
side. Next, we compare 3DPF with 802.11ad/exhaustive beam
search approach and plot the percentage of the scanned beams.
We varied K to study its effect on the search time overhead.
In Fig. 8(a), we show the results for an angular step size of
5◦ (D = 625). Fig. 8(b) depicts the results for a larger step
size of 15◦ (D = 81). Note that in Fig. 8(a), the search space
is large, so the relative overhead of scanning the neighbors
(upper, lower, left and right neighboring beams) under 3DPF
is negligible. Overall, 3DPF scans less than 30% of all the
beams, even when K is as high as 25. However, when the
search space is smaller, the overhead is more pronounced.
Nevertheless, 3DPF scans only 57% of the space, as shown in
Fig. 8(a), for K = 9. Beyond this K value, the performance
of 3DPF converges to the exhaustive search.

As explained in Section V-B, if the beam that 3DPF returns
cannot support the link budget, a misdetection is declared;
otherwise, if the beam does not yield the highest Rx power
but it can support communications, the beam is declared
“suboptimal”. Due to short Tx-Rx separation, no misdetection
was observed in any of our experiments. However, the channel
between the Tx and the Rx changes slightly between different
runs of the same scenario. We assumed that deviations that are
within 5◦ from the optimal beam do not cause a suboptimal
selection. However, larger deviations are declared as subop-
timal. The probability of finding a suboptimal beam vs. Kx

(= Ky =
√
K) is shown in Fig. 8(c).

B. Simulation Results

We use simulations to study the impact of Tx-Rx distance.
In addition, implementing a hierarchical codebook in our
experiments was not possible using our antenna controllers.
We have, however, simulated the hierarchical codebook of [23]
and compared its performance with our proposed approach.
In our simulations, Tx power is set to PTx = 30 dBm and
ABS = AUE = 16. We run the simulations for the 28 GHz band
with UPAs (dx = dy = λ/2) using [5] to model large-scale
effects. For small-scale effects, we place random scatterers
on an ellipsoid between the Tx and the Rx. The Tx beam is
kept the same, and the Rx sweeps its beam in 5◦ steps to
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Fig. 8. Experimental comparison of the 3DPF algorithm and 802.11ad/exhaustive beam scan. (a) Percentage of scanned beams for 5◦ resolution, (b) percentage
of scanned beams for 15◦ resolution, (c) suboptimal probability vs Kx.
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Fig. 9. Simulation-based comparison between 3DPF, 802.11ad, and the hiearchical search in [23]. (a) Directions scanned vs. distance, (b) misdetection
probability vs. distance, (c) suboptimal probability vs. distance.

find the best receive direction for the given Tx beam. The
beam scanning range is kept the same as in the hardware
experiments. The Tx-Rx separation varies between 10 m and
250 m and the results are averaged over 1000 runs.

As shown in Fig. 9(a), for all the considered values of
K, the number of scanned directions in 3DPF is significantly
smaller than that of 802.11ad. Even when K is as large as 25,
3DPF scans less than 35% of the directions scanned by the
exhaustive approach. In Fig. 9(b), we depict the misdetection
probability vs. Tx-Rx distance. Except when K = 1, the
difference in the misdetection probability between 3DPF and
802.11ad is negligible. Note that the discovery time of the
hiearchical search scheme in [23] is slightly higher than 3DPF
with K = 4. However, the misdetection proability of the 3DPF
is also about 10% lower than the scheme in [23] for distances
between 75 m and 175 m. Therefore, 3DPF can discover
UEs more accurately than the hierarchical search approach,
especially near the cell edge. Finally in 9(c), suboptimal
probability is plotted vs. the distance. Although 3DPF exhibits
a high suboptimal probability when K is small, this probability
decreases significantly when K ≥ 9, as a result of the
misdetection probability becoming more dominant.

We also implemented the FastLink protocol in our simu-
lation environment. Because FastLink executes 3DPF at both
the BS and the UE, its benefit in terms of discovery time are
even more pronounced. Specifically, the values observed in
Fig. 10(a) are simply the squares of the values in Fig. 9(a) for
the corresponding K. In Fig. 10(b), we depict the misdetection
and suboptimal probabilities, both of which decrease with
increasing K. As K increases, the search space is divided into

more sub-regions, meaning that it is less likely to miss one or
more peaks. In Fig. 10(c), the average Rx power difference
between FastLink and the 802.11ad search scheme is shown
for the cases when FastLink returns a suboptimal peak. For
all K values, this difference is less than 4 dBm, and the gap
decays exponentially fast as K increases.

Next, we compare 802.11ad and 3DPF under multiple UEs
and depict the results in Fig. 11. The misdetection probabilities
(not shown) are independent of the number of users and remain
almost the same. Fig. 11(a) shows the percentage of scanned
directions, which increases slowly with the number of users,
eventually hitting 100% as the number of users reaches 30.
The rate of increase is indicative of the scalability of the beam
searching algorithm, and is an important design factor [35].
For 3DPF, even when 20 users are simultaneously trying to
connect to a BS within the same IA cycle, the algorithm still
offers 30% reduction in search time compared to exhaustive
search. Note that in several 5G NR and WiGig use cases
(e.g., indoor and outdoor hotspots), coverage radius in tens of
meters [36]. Thus, the number of users simultaneously trying
to connect to a BS within the same IA cycle is typically small
[37]. When multiple UEs are to be found, the performance of
hierarchical beam search also approaches that of the exhaustive
search. This is due to the fact that multiple quasi-omni sectors
that receive relatively strong signals in the first stage need to
be scanned with narrow beams in the second stage. Fig. 11(b)
shows the suboptimal probability which decays exponentially
fast as the number of users increase, since the more directions
scanned the less likely it is to miss the global maximum.
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Fig. 10. Simulations of FastLink and 802.11ad search. (a) Directions scanned vs. distance, (b) misdetection and suboptimal probabilities vs. Kx(= Ky), (c)
average Rx power difference between FastLink and 802.11ad.
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Fig. 11. Simulation-based comparison between 3DPF and 802.11ad search
in the multi-user case. (a) directions scanned vs. the number of users, (b)
suboptimal probability vs. the number of users.

IX. DISCUSSION

In this section, we discuss some applications of the 3DPF
to other beamforming architectures and network scenarios.
Specifically, we explain how we can exploit the availability
of multiple RF chains (e.g., hybrid beamforming). We also
examine how a multi-BS network such as coordinated multi-
point (CoMP) can benefit from the 3DPF algorithm.

The main objective of hybrid beamforming is to properly
partition the signal processing between the RF and digital
domains so as to attain similar performance to fully digital
beamforming. FastLink does not require the availability of
multiple RF chains. However, if the Rx has multiple RF chains,
3DPF can simultaneously take measurements from multiple
directions. Specifically, if the Rx contains B RF chains, it
can simultaneously run the SPF algorithm in parallel in B
mutually-exclusive regions, achieving a B-fold decrease in
the search time. 3DPF can also be applied to a network that
utilizes CoMP, one of the promising concepts to improve cell
edge user data rate and spectral efficiency. The basic idea is
that transmissions from one or more geographically separated
BSs to a single UE are dynamically coordinated in a way to
improve average and cell edge throughput. 3GPP defines two
different categories of downlink CoMP: coordinated schedul-
ing/beamforming and joint processing CoMP [38]. A joint
processing CoMP architecture is very similar to the system
model we considered in Section VII. Instead of having a
single receiving BS and multiple transmitting UEs, CoMP
scenarios mainly deal with a single receiving UE and multiple
transmitting BSs. If the UE knows in advance how many BSs
will transmit SSBs to itself, it can choose a suitable K to

run the 3DPF algorithm with, as discussed in Section VII. In
reality, a UE can be in the coverage area of only a few BSs.
Therefore, it can still select a relatively small K and run 3DPF
to establish communications with multiple BSs.

X. SUMMARY

In this paper, we proposed FastLink, an efficient beam
finding protocol for mmW systems. FastLink always transmits
using the narrowest possible beams, allowing high beamform-
ing gains and low misdetection rate. We first formulated the
beam finding problem as a sparse problem considering a single
BS-UE pair, and used CS to determine the minimum number
of measurements needed to reconstruct the peaks of the sparse
channel. Using CS analysis, we designed the 3DPF algorithm
and showed that it significantly reduces the search latency
compared to existing search schemes. 3DPF was incorporated
into an IA protocol called FastLink to allow the BS and the
UE to establish a directional link. We then extended the design
into multiple users and showed how the discovery time scales
with the number of users. Finally, experimental and simulation
results were provided to verify the efficiency of FastLink.
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