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Abstract—Under the current opportunistic spectrum access (OSA) paradigm, a common belief is that a cognitive radio (CR) can use
a channel only when this channel is not being used by any neighboring primary radio (PR). Therefore, the existence of a spectrum
opportunity hinges on the absence of active co-channel PRs in a macroscopic region. In this paper, we propose the concept of
microscopic spectrum opportunity and show that CRs can still utilize this type of opportunities without interfering with active co-channel
PRs, even when these PRs are close to them. As a result, a channel may at the same time present different levels of availability to
different CRs. Channel access needs to be carefully coordinated between these CRs to avoid collisions, and more importantly, ensure
efficient utilization of the spectrum opportunity from a network’s standpoint. In this paper, we formulate the coordinated channel access
as a joint power/rate control and channel assignment optimization problem, with the objective of maximizing the sum-rate achieved by
the cognitive radio network (CRN). We develop both centralized and distributed algorithms to solve this problem. Our simulation results
show that even when accounting for the implementation overhead, significant throughput gain is achieved under our designs.

Index Terms—cognitive radio networks, opportunistic spectrum access, power/rate control, spectrum leasing.
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1 INTRODUCTION
1.1 Motivation
Cognitive radios (CRs) are an enabling technology for
opportunistic spectrum access (OSA). These radios rely
on channel sensing to identify idle frequency bands
(channels) and dynamically hop between them to avoid
interfering with licensed users (a.k.a., primary radios
(PRs)). Because channel sensing is based on detecting the
activity of a PR transmitter whereas interference takes
place at the PR receiver, hidden-terminal problems can
occur during the sensing process. Specifically, even if
the CR does not detect any nearby PR activity, it is still
possible for a PR receiver in the CR’s neighborhood to be
receiving signals from a PR transmitter that is outside the
CR’s sensing range. To alleviate this problem, a common
way is to increase the CR’s detection sensitivity, leading
to an enlarged detection range. Because the CR can now
access the channel only when all PR transmitters within
this relatively large range are silent, it may miss some
available spectrum opportunities.

To illustrate this situation, consider the example in
Figure 1 (a), which depicts two PR transmitters, a
and b, and one CR transmitter (CR1). The transmission
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Fig. 1. Macroscopic vs. microscopic spectrum opportuni-
ties.

range of a PR transmitter is denoted by R
(PR)
tx . This

is the maximum distance for the transmitted signal to
be correctly received by a PR receiver. We denote the
interference range of CR1 by R

(CR)
I . This is the maximum

range that CR1 can cause interference to a PR receiver
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when CR1 is transmitting at full power Pmax. Under
this setup, it is easy to show that, to avoid colliding
with a potential PR reception, CR1 should be able to
detect the activity of every PR transmitter in the range
R

(PR)
tx + R

(CR)
I . In other words, the energy detection

threshold at CR1 should be sensitive enough to maintain
a “keep-out” distance Rout = R

(PR)
tx + R

(CR)
I from any

active PR transmitter1. If a PR transmitter within this
range, e.g., node b, is active, then CR1 will not use the
channel. The spectrum opportunity identified under this
setting implies the absence of active PR transmitters in
a relatively large keep-out region. For this reason, we
refer to it as macroscopic spectrum opportunity. This is
the common type of spectrum opportunities studied in
the literature (see [24] for a good survey).

From Figure 1 (a), we observe that even when node b is
active, CR1 can still transmit over the same channel with-
out causing interference to any receiver of b, provided
that CR1’s transmission power is controlled such that its
effective interference range is smaller than d1b − R

(PR)
tx ,

where d1b is the distance between CR1 and node b (see
Figure 1 (b)). As long as the distance between CR1
and node b is greater than R

(PR)
tx , CR1 can always use

the channel with an appropriately selected transmission
power. Thus, the keep-out distance for CR1 becomes
R′out = R

(PR)
tx < Rout, implying more chances for CR1 to

use the channel (without interfering with PRs). Because
the availability of such a spectrum opportunity requires
a smaller keep-out region, we refer to it as microscopic.
We also refer to the maximum allowable transmission
power a CR can use over a channel without interfering
with co-channel PRs as the power mask of the CR over
that channel.

In practice, the identification of microscopic spectrum
opportunities can be realized using cluster-based collab-
orative spectrum sensing techniques (e.g., see [12][7][4]),
as illustrated in Figure 1 (c). Specifically, spectrum sen-
sors are grouped into clusters. Each cluster covers a
geographic grid. Sensors in the same cluster collaborate
to detect whether the received PR signal, if any, is
strong enough for valid reception by a PR receiver. This
detection capability essentially represents the reception
sensitivity of a PR receiver, and thus is lower than that
used in the macroscopic case. The grids in which a strong
PR signal is detected are marked, indicating the potential
presence of active PR receivers. The maximum allowable
interference range for each CR is simply the distance
from the CR to its nearest marked grid. The power masks
can be computed accordingly. In contrast to the binary-
type (0 or Pmax) power mask used with macroscopic
spectrum opportunities, the microscopic case has an
intrinsic multi-level structure, ranging between 0 and
Pmax. This is because the CR’s power mask changes with

1. Note that the keep-out region in this work is defined from the CR
transmitter’s standpoint (i.e., a circle centered at the CR transmitter).
This is in contrast with the conventional PR-transmitter-based defini-
tion, in which the keep-out region is centered at the PR transmitter.

the location of the closest marked grid, as shown in
Figure 1 (c). It is also easy to see that the macroscopic
spectrum opportunity is a special case of the microscopic
opportunity (when all PR transmitters within distance
R

(PR)
tx + R

(CR)
I are silent). Because the multi-level struc-

ture is unique to microscopic spectrum opportunities,
we will use these two terms interchangeably in the
subsequent discussion. Similarly, we will also use the
terms, “binary” and “macroscopic” spectrum opportu-
nities interchangeably.

In this paper, we are interested in studying the CR
network (CRN) throughput achieved under the micro-
scopic spectrum opportunity setting. The main challenge
here stems from the fact that the same channel may
simultaneously present different levels of availability to
different CRs. Therefore, channel access needs to be care-
fully coordinated between these CRs to avoid collisions,
and more importantly, ensure efficient utilization of the
spectrum opportunity from a network-wide standpoint.

We study the coordinated channel access problem by
formulating it as a joint power/rate control and channel
assignment optimization problem. Given the available
channels at different CRs, we need to specify for each
CR which channels to use and at what powers and
rates. We are interested in both centralized (for better
performance) and distributed (for better implementabil-
ity) solutions. In contrast to previous works that aim at
maximizing the information-theoretic capacity of the sys-
tem, our objective is to maximize the sum-rate achieved
by each CR. Unlike the information-theoretic (Shannon)
capacity, the achievable rate in our setup depends on the
PHY-layer implementation. In other words, our problem
has a wider scope and can be applied to any arbitrarily
given rate-SINR function.

In many existing power/rate control and channel as-
signment problems, a convex formulation is obtained
through the capacity approximation log(1 + SINR) ≈
SINR if SINR ¿ 1 (low-SINR regime, e.g., see [16])
or log(1 + SINR) ≈ log(SINR) if SINR À 1 (high-
SINR regime, e.g., see [20]). However, due to the multi-
level structure of its power mask, a CR is expected to
operate over a wide range of SINR values. Even at a
given time instance, different CRs may be operating in
different SINR regimes. Therefore, approximation tech-
niques that are adopted separately for low- and high-
SINR regimes are no longer appropriate here. A new
SINR-independent treatment is needed for the problem.
We attempt to accommodate this more general form in
our optimization.

1.2 Contributions and Paper Organization

The contributions of this work are as follows. We first
show that the joint power/rate control and channel
assignment problem can be formulated as a mixed in-
teger nonlinear programming (MINLP) problem that is
NP-hard. By exploiting the discrete nature of a CR’s
multi-rate capability, we transform this MINLP into a
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binary linear program (BLP) that contains only binary
variables and linear objective function and constraints.
This transformation applies to any arbitrary rate-SINR
relationship. We then develop two polynomial-time ap-
proximate algorithms for the BLP. The first one is the
centralized LPSF algorithm, and is based on iteratively
solving a series of linear programming problems and
sequentially fixing the variables to either 1 or 0 in
each iteration. The second is the distributed EF-based
algorithm. It involves iterative and on-line adjustment
of the powers and rates of each CR over each channel
based on some economic factor that accounts for the
efficiency of expending power over a given channel. We
show that this distributed algorithm is provably efficient,
i.e., it can achieve a provable fraction of the optimal
performance. As a byproduct, the centralized algorithm
gives an upper bound on the optimal solution. This
allows us to explicitly evaluate the performance gap
between the approximate solutions and the optimal one.
Simulation results are used to verify the accuracy of the
LPSF and EF algorithms. They indicate that the observed
performance gap between the approximation and the
exact (optimal) solution is always less than 10%.

To evaluate the benefit brought by the microscopic
spectrum opportunity, we subsequently apply our algo-
rithms to a spectrum-leasing system, whereby a CRN
shares the spectrum with an infrastructure PR network
(PRN). We illustrate how the multi-level spectrum op-
portunity can be calculated under the assistance of a
broadcast-subscription mechanism. The interesting ques-
tion is how much gain the multi-level spectrum oppor-
tunity scheme can attain over the conventional binary
scheme, with the protocol overhead being accounted for.
We evaluate this gain for various levels of overhead. Our
simulation results show that significant gain (e.g., over
100% at best) can be achieved by the multi-level scheme.

The rest of this paper is organized as follows. We
review the related work in Section 2. We describe the
models and formulate the optimization problem in Sec-
tion 3. The transformation to a BLP, the LPSF, and the
EF algorithms are presented in Section 4. We apply
our algorithms to the infrastructured PRN/CRN system
in Section 5. Simulation evaluation and discussion are
provided in Section 6, and we conclude the work in
Section 7.

2 RELATED WORK

Prior work was mostly focused on exploiting macro-
scopic spectrum opportunities. Early works provide
collision-free channel assignment for CR nodes given
a set of available channels at each node. This problem
can be described as an interference-graph vertex-coloring
problem [18], [27]. To obtain a fast solution, various
distributed approximations were proposed, based on
observing local interference patterns [26], local bargain-
ing [1], or coordinations between CR nodes that aim
at maximizing some system utility [2][22]. Because of

the graph-theoretic nature of these algorithms, they take
transmission power as input, and thus are not applicable
to power/rate control problems.

Another body of work considers the optimal sens-
ing/channel access decision-making process from a
single CR’s viewpoint. This is also termed as MAC-
layer sensing. Existing works include the POMDP
model [25], the constrained Markov decision processes
(CMDPs) model [23], and the optimal stopping-rule
models [3] [10]. Assuming a semi-Markov process for
the PR traffic, Kim and Shin [11] proposed a sensing-
period adaptation algorithm that maximizes the discov-
ery of spectrum opportunities and minimizes the delay
in finding an available channel. Based on a similar PR
traffic model, the authors in [9] studied a dynamic access
scheme subject to a constraint on the CR-to-PR violation
rate, but only for a system of one PRN and one CR link.
In contrast to these works, ours aim at optimizing the
spectrum utilization for the entire CRN, rather than for
a single CR.

The third type of works simplifies the problem by
restricting the treatment to CR nodes only. So the CR-to-
PR and PR-to-CR interferences are not accounted for. As
a result, the power mask for every CR on each channel
is implicitly assumed to be Pmax. Within this category,
Hou et al. [8] considered the joint optimization of spec-
trum, scheduling, and routing in a multi-hop software-
defined-radio (SDR) network. Yi and Hou [14][15] stud-
ied the joint optimization of power control, scheduling,
and routing for a multi-hop SDR network, assuming
a logarithmic rate-SINR relationship. Yuan et al. [21]
introduced the concept of time-spectrum blocks to study
spectrum allocation in CRNs. Based on a continuous-
time Markov model, Xing et al. [19] proposed a random
access protocol that achieves airtime fairness among
CRs. The work in [20] considers spectrum access for
CRs under an interference temperature constraint. How-
ever, because this constraint is defined only at a single
location, compliance to it does not necessarily prevent
interference to PR nodes.

3 SYSTEM MODEL AND PROBLEM FORMULA-
TION

We consider a distributed (ad hoc) CRN that coexists
with M legacy (fixed spectrum) PRNs over a finite area.
PRN m, m = 1, . . . , M , is licensed to operate over its own
frequency channel of bandwidth Bm. In reality, a PRN
may occupy several channels. Such a network can be
easily captured in our model by using multiple (virtual)
PRNs that operate over different channels.

Let the number of CR links be N . For CR link i,
we denote its sender and receiver by S(i) and D(i),
respectively. A CR link can simultaneously transmit over
multiple non-contiguous channels. Let the transmission
power on channel m be P

(m)
i . To avoid unacceptable

CR-to-PR interference, this transmission power must be
constrained below a certain power mask P̂

(m)
i . The value
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of P̂
(m)
i is related to the status of neighboring PRs

and thus changes over time. For now, we assume that
P̂

(m)
i , i = 1, . . . , N and m = 1, . . . , M , is given in each

snapshot as an input parameter to the joint power/rate
control and channel assignment problem. We consider
the calculation of P̂

(m)
i in Section 5.

We say that CR links i and j are interfering links on
channel m if P̂

(m)
i hS(i)D(j) > PI,CR or P̂

(m)
j hS(j)D(i) >

PI,CR, where hS(i)D(j) and hS(j)D(i) are the cross-link
channel gains of the two links and PI,CR is the sensitivity
of the CR receiver (fixed). Any received power below
PI,CR is deemed ignorable. We assume that an exclusive
channel occupancy policy is used to resolve collisions
between CRs: For any two interfering CR links on channel
m, only one of them can access the channel at any given
time.

Treating interference as noise, the rate of CR link i on
channel m is given by

R
(m)
i = Bmf


 P

(m)
i h

(m)
i

q
(m)
D(i) + N0


 (1)

where f is any arbitrary rate-SINR function, decided by
the PHY layer, h

(m)
i is the channel gain of link i on

channel m, q
(m)
D(i) is the received interference over channel

m at D(i), and N0 is the AWGN. Because of the exclusive
channel occupancy policy, the interference q

(m)
D(i) comes

only from active co-channel PRs. It can be measured by
the CR receiver D(i).

For i = 1, . . . , N and m = 1, . . . , M , let

x
(m)
i

def=





1, if channel m is used by CR link i,
i.e., R

(m)
i > 0

0, otherwise
(2)

Our objective is to maximize the sum-rate of all CR links
over all channels, i.e.,

maximize
N∑

i=1

M∑
m=1

x
(m)
i R

(m)
i (3)

where the maximization is to be carried out with respect
to x

(m)
i ’s and R

(m)
i ’s.

At the same time, CR link i should satisfy the follow-
ing constraints:
C1: CR-to-PR constraint: The transmission power of link
i on channel m should not exceed P̂

(m)
i . From (1), this

constraint can be written in terms of R
(m)
i as

1

h
(m)
i

(q(m)
D(i) + N0)f−1(r(m)

i ) ≤ P̂
(m)
i , m = 1, . . . , M (4)

where f−1 is the inverse of f and r
(m)
i = R

(m)
i

Bm
is the

spectrum efficiency of link i on channel m.
C2: Power supply constraint: The sum of the transmis-
sion powers over all channels should not exceed the
maximum power provided by the battery, i.e.,

M∑
m=1

1

h
(m)
i

(q(m)
D(i) + N0)f−1(r(m)

i ) ≤ Pmax,i. (5)

C3: CR-to-CR collision constraint: If channel m is being
used by CR link i, then it cannot be used by another CR
link that interferes with link i on channel m, and vice
versa:

x
(m)
i + x

(m)
j ≤ 1, ∀j ∈ I

(m)
i (6)

where I
(m)
i =

{
j : j 6= i, P̂

(m)
i h

(m)
S(i)D(j) > PI,CR

}
∪{

j : j 6= i, P̂
(m)
j h

(m)
S(j)D(i) > PI,CR

}
is the set of CR links

that interfere with link i on channel m.

4 SOLUTIONS

4.1 Transformation to BLP

An observation of (3) and the constraints C1-C3 shows
that this formulation constitutes a MINLP problem. In
general, the solution to such a problem is NP-hard.
To make this formulation more amenable to further
processing, we exploit the fact that practical communi-
cation systems support only a finite set of transmission
rates. Denote this set by U = {0, u1, u2, . . . , uK} (in
bits/sec/Hz), where 0 < u1 < . . . < uK . Let γk

def=
f−1(uk) for k = 1, . . . ,K; γk is the received symbol-
energy-to-interference-plus-noise density ratio (ES/I0)
required to support the kth rate under the power-rate
relationship defined by (1). Let C

(m)
i

def= 1

h
(m)
i

(
q
(m)
D(i) + N0

)

for i = 1, . . . , N and m = 1, . . . , M . C
(m)
i is a known

quantity for each CR link on each channel. We further
define the new variable y

(m)
k,i for all k = 1, . . . , K,

i = 1, . . . , N , and m = 1, . . . , M :

y
(m)
k,i

def=
{

1, if link i is transmitting on channel m using rate uk

0, otherwise.
(7)

In addition, we impose the following constraint on y
(m)
k,i :

K∑

k=1

y
(m)
k,i ≤ 1 (8)

which says that a link can use at most one rate on a
given channel at a given time. It is easy to show that:

x
(m)
i =

K∑

k=1

y
(m)
k,i . (9)

Similarly, we can rewrite the spectrum efficiency r
(m)
i

in terms of y
(m)
k,i and uk:

r
(m)
i =

K∑

k=1

uky
(m)
k,i . (10)

Substituting (9) and (10) into (3) through (6), we get the
following equivalent formulation to the original MINLP
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problem:

maximize
∑N

i=1

∑M
m=1

∑K
k=1 Bmuky

(m)
k,i

such that
C̃1 : C

(m)
i

∑K
k=1 γky

(m)
k,i ≤ P̂

(m)
i

C̃2 :
∑m

m=1 C
(m)
i

∑K
k=1 γky

(m)
k,i ≤ Pmax,i

C̃3 :
∑K

k=1 y
(m)
k,i +

∑K
k=1 y

(m)
k,j ≤ 1, ∀j ∈ I

(m)
i

(11)
where the maximization is w.r.t. the y

(m)
k,i ’s.

An examination of (11) shows that the former MINLP
problem has been transformed into a binary linear pro-
gram (BLP) that contains only binary variables and linear
objective function and constraints. A nice property of
(11) is that the rate levels uk, k = 1, . . . ,K, and the cor-
responding γk’s are inputted into the BLP formulation as
tuples (uk, γk). In other words, the BLP formulation does
not rely on the specific functional relationship between
uk and γk, and thus can accommodate any arbitrary
rate-power relation (e.g., a staircase-like function that
characterizes practical multi-rate systems).

4.2 LPSF Centralized Algorithm
A BLP is a combinatorial problem. Its solution is, in
general, NP-hard. A typical approximation approach to
such a problem is provided by the so-called branch-and-
bound algorithm, whose worst-case time complexity is
exponential.

Instead of employing a branch-and-bound algorithm,
we exploit the special structure of the problem to de-
velop polynomial-time approximate algorithms. An ob-
servation of (11) indicates that if we relax y

(m)
k,i ’s from

their binary values and allow them to take real values
between 0 and 1, then the formulation becomes a linear
program (LP) that is solvable in polynomial time. In
addition, the constraint C̃3 dictates that if for some m, k,
and i, y

(m)
k,i = 1, then y

(m)
h,i = 0 for all h 6= k and y

(m)
l,j = 0

for all j ∈ I
(m)
i and 1 ≤ l ≤ K. In other words, a strong

dependence exists between the y
(m)
k,i ’s that belong to the

same set of interfering links. The main idea behind our
approximate solution is to sequentially fix the values of
y
(m)
k,i ’s by solving a series of relaxed LP problems, where

in each iteration the binary value of at least one y
(m)
k,i is

finalized.
An overview of our approximation algorithm, called

LP with sequential fixing (LPSF), is given in Table 1. In
the first iteration, we append the constraint 0 ≤ y

(m)
k,i ≤ 1

to (11) and relax all y
(m)
k,i ’s to real values between 0 and

1. We refer to the resulting formulation as LP(1), which
must have a feasible solution according to Lemma 1 (in-
troduced later). The solution to LP(1) is an upper bound
on the optimal solution to (11), because the feasibility
region of the BLP is a subset of that of LP(1). However,
the solution of LP(1) is, in general, not a feasible solution
to the original BLP problem, because the y

(m)
k,i ’s can now

take any real values between 0 and 1. Among all y
(m)
k,i ’s,

we pick the largest one, and we denote this y
(m)
k,i by Y

(m)
k,i

STEP 0: Formulate LP(1) by appending 0 ≤ y
(m)
k,i ≤ 1 to (11) and relaxing

all binary variables to real values.
STEP 1: Solve LP(1).
STEP 2: Set Y

(m)
k,i ← max

{
yn

l,j , l ∈ (1, . . . , K), j ∈ (1, . . . , N),

n ∈ (1, . . . , M)}.
STEP 3: Formulate LP(2) by substituting Y

(m)
k,i = 1, y

(m)
h,i = 0 for h 6= k

and y
(m)
l,j = 0 ∀j ∈ Ii and 1 ≤ l ≤ K into LP(1).

STEP 4: If LP(2) is feasible
LP(1) ← LP(2)

else
Formulate LP(3) by substituting Y

(m)
k,i = 0 into LP(1).

LP(1) ← LP(3)

End-if
STEP 5: If all variables are fixed, then Terminate;

otherwise go to STEP 1.

TABLE 1
Overview of the LPSF algorithm.

for ease of identification. We set Y
(m)
k,i = 1. Accordingly,

all y
(m)
h,i ’s for h 6= k and all y

(m)
l,j ’s for j ∈ I

(m)
i and

1 ≤ l ≤ K must now be set to 0. Replacing these y
(m)
k,i ’s

by their fixed values in LP(1), we get a new LP, called
LP(2), whose variables do not include those that have
been fixed after the execution of LP(1). A feasibility check
is then conducted on LP(2). An empty feasible region for
LP(2) means the first fixing in this iteration, i.e., Y

(m)
k,i = 1,

is not correct. So we reset Y
(m)
k,i to 0. This change means

all those variables that belong to the same interfering CR
link set as Y

(m)
k,i and whose values have been fixed to 0 in

this iteration must become variables again. The revised
fix, i.e. Y

(m)
k,i = 0, is then substituted into LP(1), giving

rise to LP(3). LP(3) must be feasible (see Lemma 2). In
a nutshell, at this point we either have a feasible LP(2)

or a feasible LP(3). Whichever formulation is feasible is
renamed as LP(1), and a new iteration starts following
the same process above. The process is repeated until all
y
(m)
k,i ’s are set to either 0 or 1. The final rate allocation

for each link on each channel is calculated according to
(10).

Note that a similar algorithm was suggested in [8] to
solve a different problem. From a methodology stand-
point, the main difference between our algorithm and
the one in [8] is that in [8] there is no guarantee that a
feasible solution can be found at the termination of the
algorithm. Our algorithm improves upon [8] by adding a
revised fixing component when any intermediate fixing
leads to infeasibility, so that a feasible solution can
always be found.
Theorem 1: The LPSF algorithm can correctly determine
the binary values of all y

(m)
k,i ’s in no more than NMK

iterations.
The proof of Theorem 1 is based on the following

lemmas.
Lemma 1: In the first iteration, LP(1) has a nonempty fea-
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sible solution set, and because its variables are bounded,
it also has an optimal solution.

Proof: It is easy to show that y
(m)
ki = 0 for all k =

1, . . . ,K, i = 1, . . . , N , and m = 1, . . . ,M , is one feasible
solution to the original BLP. Thus, it is also a feasible
solution to LP(1). Note that all variables are bounded
between 0 and 1; therefore, Lemma 1 holds.
Lemma 2: In the first iteration, LP(3) has a nonempty fea-
sible solution set, and because its variables are bounded,
it also has an optimal solution.

Proof: According to Lemma 1, LP(1) in the first iteration
must have an optimal solution. Therefore, Y

(m)
ki ≥ 0

before the fix. When Y
(m)
ki is fixed to 0 to get LP(3), its

value is changed from no less than 0 to 0, leading to
a non-increase in the required transmission power. So
none of the RHS of C1’ through C3’ could be violated
by this non-increasing action on the LHS of C1’ through
C3’, respectively. Therefore, LP(3) must have at least one
feasible solution. Noting that all variables are bounded,
Lemma 2 holds.
Lemma 3: In all iterations, LP(1) and LP(3) have
nonempty feasible solution sets, and because their vari-
ables are bounded, they also have optimal solutions.

Proof: The situation in the first iteration is proved by
Lemma 1 and Lemma 2. In the second iteration, LP(1)

is obtained either from a feasible LP(2) or a feasible
LP(3) of the first iteration. So LP(1) must be feasible in
the second iteration. Given that LP(1) is feasible in the
second iteration, the rationale used in proving Lemma 2
also applies here to prove the feasibility of LP(3) in the
second iteration. This induction can be repeated in all
iterations. Noting that all variables are bounded, Lemma
3 holds.

The proof of Theorem 1 is straightforward: Iteratively
applying Lemmas 1 to 3, it is guaranteed that in each
iteration at least one y

(m)
ki is fixed to either 0 or 1 and a

new feasible LP(1) is generated for the next iteration. For
the last iteration, if fixing y

(m)
ki to 1 does not lead to a

feasible BLP solution, then changing its value to 0 must
lead to a feasible BLP solution (for the same reason as
in the proof of Lemma 2).

Based on Theorem 1, it is easy to show that the time
complexity of the LPSF algorithm is bounded by the
complexity of the LP solver times NMK. An LP solver is
of polynomial complexity, so the complexity of the LPSF
is also polynomial. In addition, the performance gap
between the approximate LPSF solution and the exact
(optimal) one can be assessed by comparing the former
with an upper bound on the optimal solution, given by
the the solution to LP(1) in the first iteration. Lemma 1
guarantees the existence of this upper bound. We will
later show by simulation that this gap is small (below
10%), and in most cases it is zero.

4.3 Distributed Algorithm
In this section, we develop an efficient distributed algo-
rithm for the BLP problem in (11), which can achieve

a provable fraction of the optimal performance. The
intuition behind such an algorithm comes from un-
derstanding the conflicts between CRs when utilizing
spectrum opportunities. There are two aspects to such
conflicts. First, neighboring CRs may observe a similar
level of spectrum availability over a given channel, and
thus may attempt to transmit simultaneously over the
same channel, causing collisions. Second, transmissions
by the same CR over different channels may also con-
flict with each other, in the sense that the maximum
transmission power provided by the battery may not be
sufficient to support parallel transmissions over all these
channels. In a nutshell, conflicts between transmissions
occur due to their competition for both spectrum and
power resources. A good design philosophy is to give
priority to a transmission that can contribute a higher
rate at a lower power. Following this philosophy, the
proposed distributed algorithm defines an economic factor
(EF) for each channel at each CR link. Let the current
transmission rate of link i on channel m be r

(m)
i = uk,

k ∈ {0, . . . , K − 1}. Then, the EF of this link on channel
m is defined as

η
(m)
i

def=
∆P

(m)
i

Bm∆r
(m)
i

=
C

(m)
i (γk+1 − γk)

Bm(uk+1 − uk)
. (12)

We let η
(m)
i

def= +∞ when r
(m)
i = uK .

The basic idea of our EF-based distributed algorithm
is to iteratively ramp up the rate level over each channel
of every neighboring link until the power mask and
maximum-power constraints are violated. In each itera-
tion, the link-channel pair that has the smallest EF value
among its interfering-link set is raised to the next higher
rate. This is achieved by sequentially executing the
following three procedures in each iteration (note that
this algorithm is asynchronously executed by various CR
transmitters). The first procedure is an internal candidate
selection process, in which a link, say i, selects a channel
m∗ that has the smallest EF among all channels in a
candidate channel set C. The set C is initialized to contain
all M channels. The selected channel m∗ is tested for the
feasibility of a rate increase. This is done by calculating
the power increment ∆P

(m∗)
i = C

(m∗)
i (γk+1 − γk). If

this increment violates the power mask or the battery
power constraint, then a rate increase on channel m∗ is
infeasible for that CR. So m∗ is deleted from C and the
above selection process is repeated. Eventually, either a
feasible m∗ is selected or C becomes empty. When C be-
comes empty, the iterative process at the CR transmitter
terminates. If a feasible m∗ is found, the algorithm enters
the inter-link selection phase.

In the inter-link selection phase, neighboring CR trans-
mitters exchange the results of their internal selection to
elect the link-channel pair that has the smallest EF in the
neighborhood. The internal selection result of a link i is
broadcasted as a triple (link id i, channel id m∗, η

(m∗)
i ).

The link-channel pair that has the smallest EF in its
neighborhood raises the corresponding transmission rate
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/* CR link i */
Initialization: r

(m)
i ← 0, for m = 1, . . . , M and C ← {1, . . . , M}

while (C6= ∅ )
/* Internal candidate selection */
violation flag ← 1
while (violation flag == 1)

m∗ ← arg min
{

η
(m)
i |m ∈ C

}

calculate ∆P
(m∗)
i

if ((∆P
(m∗)
i + P

(m∗)
i ≤ P̂

(m∗)
i )

or (∆P
(m∗)
i +

∑M
m=1 P

(m)
i ≤ Pmax,i))

violation flag ← 0
else
C ← C−{m∗}

end-if
end-while

/* Inter-link selection */
exchange with neighbors the message:
(link id i, channel id m∗, η

(m∗)
i )

if (η
(m∗)
i is the minimum among neighbors)

increase r
(m∗)
i from uk to uk+1

if (r(m∗)
i == uK )

C ← C−{m∗}
end-if
send rate-adjustment message

end-if

/* Collision elimination routine */
if (rate-adjustment message is received from link j)

calculate hS(j)D(i) based on received signal strength

if (hS(j)D(i)P̂
(m∗)
j > PI,CR)

if (r(m∗)
i ≤ r

(m∗)
j )

r
(m∗)
i ← 0 and C ← C−{m}

else
S(i) sends a rate-adjustment message

end-if
end-if

end-if
end-while
Output: r

(m)
i , for m = 1, . . . , M

TABLE 2
Pseudo-code for the EF-based distributed algorithm.

by one level, i.e., from uk to uk+1. At the same time, the
sender of this link, say S(j), broadcasts at power Pmax,j

the following rate-adjustment message to its neighbors:
(link id j, channel id m∗, r

(m∗)
j , P̂

(m∗)
j , Pmax,j).

Whenever a CR link i receives a rate-adjustment mes-
sage from link j, it performs a collision elimination routine.
Specifically, the receiver of the ith link, D(i), calculates
the path loss from S(j) to D(i) based on the received
signal strength. From the power mask information in the
message, D(i) can then decide whether S(j)’s transmis-
sion will interfere with the reception at D(i) on channel
m. If so, D(i) compares r

(m∗)
i with r

(m∗)
j . If r

(m∗)
i ≤ r

(m∗)
j ,

D(i) notifies S(i) to set r
(m∗)
i to zero and deletes m∗ from

C. If r
(m∗)
i > r

(m∗)
j , D(i) notifies S(i) to send a rate-

adjustment message that triggers link j to avoid using
channel m∗.

A pseudo-code of the algorithm is given in Table 2.

Because at least one r
(m)
i will be increased by one level

in each iteration in each interfering-link set, the rate
adjustment will terminate in at most MK iterations.
Theorem 2 quantifies the efficiency of this algorithm.
Theorem 2: The EF-based distributed algorithm can
achieve at least 1/(κ∗ + 1) of the optimal throughput,
where κ∗ = maxi,m |I(m)

i | is the maximum interference
degree of all CR links over all channels and | · | denotes
the cardinality of a set.
Proof: The rate adjustment in the EF algorithm is anal-
ogous to the well-known single-user optimal Levin-
Campello greedy algorithm [17] for bit loading in OFDM
systems. In allocating each bit, this greedy algorithm
calculates the cost to add one more bit in each sub-
channel and chooses the sub-channel that requires the
least cost, where the cost is the necessary power in-
crement. It has been shown in [13] that for multi-user
multi-carrier systems, if we assume no interference exists
between users, then the same greedy algorithm achieves
the optimal performance. Denote the optimal sum-rate
of this idealized non-interfering multi-user system by
R

(0)
tot,max. This sum is calculated as:

R
(0)
tot,max =

N∑

i=1

M∑
m=1

R
(m)
i (13)

where R
(m)
i are the output of the greedy algorithm when

interference between users is ignored. When interference
is accounted for, the third “if” statement in the collision-
elimination routine of the EF-based algorithm (see Ta-
ble 2) guarantees that for every interfering link set, only
the link that achieves the largest rate is kept (i.e., only
this link can access the channel). All other interfering
links are prohibited from accessing the channel (their
rates on this channel are set to 0). Denote by Z(m) the
set of links that can access channel m when the EF
algorithm is used. For all z ∈ Z(m), it must be true that
R

(m)
z ≥ R

(m)
j , ∀j ∈ I

(m)
z . When interference is accounted

for, denote the sum-rate of the EF algorithm by R
(1)
tot,EF .

Then R
(1)
tot,EF =

∑M
m=1

∑
z∈Z(m) R

(m)
z . We further have

the following relationship:

R
(0)
tot,max =

M∑
m=1

N∑

i=1

R
(m)
i

≤
M∑

m=1

∑

z∈Z(m)

(|I(m)
z |+ 1)R(m)

z

≤
M∑

m=1

∑

z∈Z(m)

(κ∗ + 1)R(m)
z

= (κ∗ + 1)R(1)
tot,EF . (14)

When interference exists between users, we denote the
optimal sum-rate by R

(1)
tot,max. Obviously,

R
(1)
tot,max ≤ R

(0)
tot,max ≤ (κ∗ + 1)R(1)

tot,EF . (15)



8

So it follows that R
(1)
tot,EF ≥ 1

κ∗+1R
(1)
tot,max. Then Theorem

2 follows.
Theorem 2 shows that the EF-based algorithm is op-

timal when κ∗ = 0, e.g., when every two CR links are
sufficiently separated such that they do not interfere with
each other. When interference exists, the lower bound
on the algorithm’s performance decreases linearly with
κ∗. The actual performance gap is evaluated later by
simulations.
Remark: Depending on the CR’s hardware capabilities
as well as other regulatory factors, additional constraints
on the CRN may be imposed. These include:
C4: Number of Parallel Transmissions: The maximum
number of channels a CR transmitter can use at one
time may be bounded by Mt. In the BLP framework,
this constraint is presented as

C̃4 :
∑M

m=1

∑K
k=1 y

(m)
k,i ≤ Mt, for i = 1, . . . , N.

(16)
C5: Transmission Bandwidth: The total bandwidth a
CR can transmit over at any time is bounded by Bt.
Formally,

C̃5 :
∑M

m=1

∑K
k=1 Bmy

(m)
k,i ≤ Bt, for i = 1, . . . , N.

(17)
C6: Forbidden Channels: A CR link i may be prohib-
ited from using a certain set of channels, say BFi ⊆
{1, . . . ,M}. This constraint can be modeled as

C̃6 : y
(m)
k,i = 0, for k = 1, . . . , K, and m ∈ BFi.

(18)
An examination of (16) through (18) shows that the

additional constraints are linear in the y
(m)
k,i ’s. Thus, they

do not fundamentally change the BLP formulation and
its solutions discussed in the previous sections. Exten-
sions of LPSF and the EF-based algorithm to handle such
constraints are trivial, and thus are omitted due to space
limitation.

5 EXAMPLE APPLICATION AND PRACTICAL
CONSIDERATIONS

In this section, we illustrate through an application the
main idea behind the multi-level spectrum opportunity.
We consider a spectrum-leasing scenario, where a CRN
shares the spectrum with an infrastructure PRN, as
shown in Figure 2. The PRN consists of multiple static
base stations (BSs) that are interconnected via a broad-
band wired network. We assume that the PRN operates
using frequency division duplexing (FDD). At any given
time, each BS tunes to some of the M uplink channels
to receive signals from the PR mobile stations (MSs)
(not shown in the figure). We only consider spectrum
sharing on the uplink. To be consistent with the model
in Section 3, a BS operating on multiple channels can
be modeled as multiple virtual BSs that operate on
individual non-overlapping channels.

We consider two different spectrum-opportunity dis-
covery mechanisms: distributed sensing (DS) and

Spectrum server

CR1

CR2

BS3

BS1

BS2

Wired
network

Level 1 Level 2

broadcast
period

collected
channel
status

time

Broadcast
channel

(a) (b)

Fig. 2. Spectrum leasing application: (a) system ar-
chitecture; (b) timing of the broadcasted channel-status
information from the spectrum server.

subscription-based (SB). DS is what is commonly studied
in most previous works. Each CR periodically senses
channels and discovers binary-type spectrum opportu-
nities. The power mask is either Pmax or 0, depending
on whether the channel is idle or busy. In SB, each PR BS
periodically reports its status (receiving or idle) on each
channel to the spectrum server via the wired network.
Along with the location of each BS, the collected real-
time channel-status information is broadcasted by the
server to the CRN. By subscribing to the broadcast, each
CR can calculate its multi-level spectrum opportunity,
as described shortly. Note that the SB scheme fits within
the CRN operational model recently advocated by the
FCC [6], which calls for establishing a database that
CR systems must first register with. This database also
provides geo-location information of PRs, and assists the
CR in identifying spectrum opportunities. In reality, the
SB scheme may be used by CRs to share spectrum with
an infrastructure-based PRN, such as a cellular IS-95 or
802.16 WiMAX system.

In contrast to the DS scheme, which assumes that the
PRN is ambivalent to the existence of the CRN and no
information exchange takes place between the two, the
SB scheme assumes that the PRN collaborates with the
CRN in identifying spectrum opportunities. This collabo-
ration can be justified by economic considerations, where
a PRN opens its spectrum to secondary reuse for a profit.
The subscription component in SB is extremely suitable
for implementing fee-based services, and thus provides
a good incentive for the PRN to collaborate. Besides the
economic reasons, other incentives to use the SB scheme
include (1) providing the spectrum leaser more control
over the pricing and control of the shared spectrum, and
(2) lowering the CR’s hardware complexity (and cost)
because the sensing functionality can now be removed
from the CR.

The SB scheme requires calculating the power mask.
The basic idea behind this calculation is to adapt the CR’s
interference range to the activity of neighboring BSs. The
interference range is defined as the distance dI for which



9

P̂
(m)
i h(m)(dI) ≤ PI , where h(m)(dI) is the channel gain

at distance dI on channel m and PI is the interference
tolerance, below which the interference can be deemed
as harmless to the PR. We also assume that each CR
has knowledge of its location, and thus can calculate its
distance to neighboring PR BSs. The determination of the
interference-range is illustrated in Figure 2: If the channel
gain is dictated by the propagation distance, then when
BS1 is receiving on channel m, CR1’s power mask should
be such that its interference range is smaller than the
distance between CR1 and BS1, denoted by the smallest
dotted circle (Level 1) in the figure. When BS1 is not
receiving but BS2 is receiving, then the power mask can
be increased such that CR1’s interference range reaches
the larger dotted circle (Level 2), and so on. Although
this basic idea seems straightforward, the calculation
needs to take into account the following two random
factors.

5.1 Randomness of PR Activity
This randomness impacts the determination of the the
power mask. For example, in Figure 2, even if BS1 is
not currently receiving on channel m, there is a chance
that it subsequently starts receiving data before the next
reporting time. This status change cannot be conveyed to
CRs until the next report. So if a CR transmits based on
the power mask of Level 2, which is calculated according
to the current status report, it will cause unacceptable in-
terference to BS1. To account for this impact, we impose
a soft guarantee, α(m) for channel m, such that the ratio
of the time the CR interferes with the PRN on channel
m is smaller than α(m). This constraint requires us to
take into account the accumulated possibility of status-
flipping (from not-receiving to receiving) of all idle BSs
that are closer to the target CR than its closest active BS
neighbor. As a result, it might not always be appropriate
to use a power mask that corresponds to the closest
active BS neighbor. For example, in Figure 2, even if BS2
is the closet active neighbor of CR1 in the current report,
the CR should not use the power mask of Level 2, if the
likelihood of BS1 flipping to receiving is greater than
α(m). The detailed mathematical treatment is given in
the appendix.

5.2 Randomness of the Channel Gain
This randomness impacts the value of each power mask
level. Given P̂

(m)
i , the random channel fluctuation means

that the received signal strength at distance dI is a
random variable: p̂

(m)
i = P̂

(m)
i h̄(dI)χ(m), where χ(m) is

a unit-mean r.v. denoting the random fluctuation of the
channel, h̄(dI) = A0d

−µ
I is the distance-related compo-

nent of the path loss, A0 is the close-in constant, and µ
is the path loss exponent. To counter this random effect,
we impose a second soft guarantee, β(m) for channel m,
which requires Pr{P̂ (m)h̄(dI)χ(m) ≥ PI} < β(m). Since
dI is fixed (this corresponds to the interference range
of the level selected in the previous section), P̂

(m)
i is

calculated as P̂
(m)
i = PI

h̄(dI)Q(m)(β(m))
, where Q(m)(β(m))

is the (1 − β(m))-quantile of the fluctuation χ(m), i.e.,
Pr{χ(m) ≤ Q(m)(β(m))} = 1− β(m).

Obviously, the rate at which each BS reports to the
spectrum server impacts the calculated power mask.
The lower this rate is, the larger the uncertainty in
the BS’ status between two consecutive reports, and
therefore the more conservative the power mask has
to be in order to guarantee the given PRN violation
constraint. On the other hand, the bandwidth of the
channel-status information broadcast channel also influ-
ences the throughput of the CRN: Because CRs update
their power masks according to the periodic broadcast,
the higher the broadcast bandwidth, the quicker each CR
can acquire the channel-status information, thus more
time left between two consecutive updates for a CR to
deliver data. An interesting question is how much gain
the multi-level scheme can attain when accounting for
the broadcast overhead. We will answer this question
using simulations.

6 PERFORMANCE EVALUATION

6.1 Accuracy of the Approximate Algorithms
We consider a 1000 meter × 1000 meter region, in
which 5 PRNs (5 channels) coexist with 5 CR links.
The parameter values used in our simulations are listed
in Table 3. We assume the following rate-SINR rela-
tionship: R

(m)
i = Bm log2(1 + SINR/8), and r

(m)
i ∈

{0, 1/2, 1, 3/2, 2} bits/second/Hz for all i and m. The
locations of the PR and CR transmitters and receivers are
randomly assigned within the simulation region. A sim-
ple path loss model with exponent of 4 is assumed for
the channel gain between any two points (i.e., hij = d−4

ij ).
We assume the PRs on all channels follow the same 2-
state Markov activity model, i.e., durations of ON/OFF
states are exponentially distributed, with the average ON
and OFF periods as given in Table 3. The power masks
of all CRs are calculated periodically according to the
SB scheme. A CR is capable of using all 5 channels at
once. We compare the achieved sum-rate of all CR links
in each reporting period under 3 different algorithms:
an exhaustive-search algorithm that finds the optimal
solution, our polynomial-time LPSF algorithm, and the
EF algorithm.

A trace of the CRN sum-rate is plotted in Figure 3
for 50 consecutive reporting periods. The upper bound
generated in the first iteration of the LPSF algorithm
is also shown. It is clear that the LPSF and the EF
algorithms give near-optimal solutions (within 5% from
the optimal solution). In most of the cases, they give
the optimal solution. The upper bound provided by the
LPSF algorithm is reasonably tight. In all simulations,
the gap between this bound and the optimal solution
does not exceed 10%. So this bound provides a useful
reference to evaluate the accuracy of the approximate
solutions in large networks when the optimal solution is
computationally difficult to obtain.
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channel bandwidth 1 MHz
number of PRs over various channels 25, 10, 15, 20, 25

average PR ON period 1 second
average PR OFF period 10 second

transmission power of a PR 500 mW
total transmission power of a CR Pmax 1 W

PR interference tolerance PI 0.12346 µW
sensitivity of CR receiver PI,CR 0.06173 µW

PR status report period 100 ms
CR-to-PR violation bound α(m) 2% for all channel m

TABLE 3
Simulation parameters.
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6.2 Comparison between Binary and Multi-level Op-
portunity

In this section, we simulate a large network and apply
the EF algorithm for channel access. We consider 10
channels and 10 CR links over the same square area.
The numbers of PRs operating on each channel are
25, 10, 15, 20, 25, 10, 5, 15, 20, and 25, respectively.
The set of rates supported by a CR is now given by
{0, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4} b/s/Hz. So the number of
binary variables in the BLP is 800. Unless indicated
otherwise, the other parameters are kept the same. The
results presented below are averaged over 20 randomly
generated topologies, with a simulation time of 1000
sensing/status-report periods for each topology.

For the DS scheme, we assume a channel-sensing
period of 100 ms. We denote the status-report period of
the SB scheme by T . The performance metric of interest
is the CRN throughput, defined as the average number
of data bits that can be transmitted by all CR links in one
period divided by the duration of the period. Because
under the SB scheme, a fraction of the period, denoted
by TB , is used to receive broadcast information at each
CR, the actual data transmission time in each period
is T − TB . The overhead is given by TB = VB

BB
, where

VB is the number of bits of the collected channel-status
information in one report period and BB is the band-
width of the broadcast channel. For our simulations, VB

is loosely upper bounded as follows. We assume that

the channel-status information for one PR has the format
(PR id ‖ channel id ‖ channel status). The total number
of PRs is less than 200, so an 8-bit id field is enough
to identify them. The 10 channels can be identified by a
4-bit field, and 1 bit is used to identify the status of the
PR (ON/OFF). So VB < 200× (8+4+1) = 2.6 Kbits. We
use this value in the following overhead calculation. To
give a conservative estimate of the gain attained by the
SB scheme, we assume that channel sensing under the
DS scheme takes zero time. Thus, the throughput of the
DS scheme plotted below represents an upper bound on
any channel access scheme that is based on the binary
spectrum opportunity. We ignore the computation time
of the EF algorithm in both schemes.

In Figure 4, we study the CRN throughput as a func-
tion of the average length of a PR’s active period. Here,
we fix BB = 260 Kbps, corresponding to TB = 10 ms. We
observe that SB always achieves higher throughput than
DS. This is because SB is able to exploit the microscopic
multi-level spectrum opportunities, while DS can only
utilize binary spectrum opportunities. More specifically,
when a CR is close to an active PR, this CR cannot
transmit on the same channel under the DS scheme.
However, under the SB scheme, such a transmission can
take place if a reasonably small transmission power is
used. Therefore, more CR transmission opportunities are
found under SB, leading to better CRN throughput per-
formance. It can also be observed from Figure 4 that at
low PR activity, the throughput of SB exceeds DS slightly
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Fig. 6. CRN throughput vs. period of the status broadcast.

(15% gain), but at high PR activity, SB exceeds DS signif-
icantly (150% gain ). So, although the broadcast channel
consumes about 2.6% of the total system bandwidth, it
leads to at least 15% throughput gain in the worst case
and 150% gain in the best case. The difference in gain is
because when the PR activity is low, all neighboring PRs
are often in the OFF state. The outcome of SB approaches
that of DS, in the sense that most of the time a CR
can transmit at power level Pmax. With increased PR
activity, low-power CR transmission opportunities occur
more frequently under the SB scheme, which cannot be
exploited under DS, and thus the gap between the two
schemes keeps growing.

We study the impact of channel fluctuations in Figure
5, where a channel is subject to log-normal shadowing.
The channel gain is taken as gij = d−4

ij 10
χ
10 , where χ is

a zero-mean Gaussian random variable that denotes the
channel fluctuation in db. The standard deviation of χ
represents the severity of shadowing. For each channel,
we require a soft guarantee β = 5%. We first note that
the average throughput under DS barely changes with
std(χ) because of the fixed power mask set (0, Pmax).
It is also observed that with the increase in channel
fluctuation, the throughput under SB will decrease, and
eventually it approaches that of DS. However, when the
standard deviation is 6 db, which represents a typical
shadowing environment, SB still achieves about 50%
throughput gain over DS.

In Figure 6, we fix BB to 260 Kbps (TB = 10 ms) and
vary the status-broadcast period. It can be observed that
in general, a shorter broadcast period leads to higher
throughput because of the increased certainty in the PR’s
activity between two consecutive reporting instances.
However, when the broadcast period is very small, e.g.,
T = 40 ms, the throughput under SB is low. This is
because the broadcast of status information occupies a
significant portion of each broadcast period, thus less
time is left for data transmissions.

In Figure 7, we fix the status-broadcast period at
T = 100 ms and plot the throughput under SB for
various TB values (corresponding to various broadcast
channel bandwidths). It is observed that the throughput
degrades linearly with TB (or equivalently, with the
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decrease in the broadcast bandwidth), because less time
in each period is left for data transmissions. At low PR
activity, the throughput of SB crosses that of DS once
TB is greater than 20 ms or BB is smaller than 130
Kbps, which is about 1.3% of the total system bandwidth.
At high PR activity, the crossing point is TB = 50
ms. This corresponds to BB ≈ 50 Kbps (0.5% of the
total bandwidth). The extremely small bandwidth at
the crossing point in both situations indicate that the
overhead of SB is basically negligible.

In Figure 8, we study the CRN throughput as a
function of the number of CR links under the SB and
DS schemes. It can be observed that for both schemes,
throughput increases with the number of CR links.
Interestingly, the throughput gap between SB and DS
grows with the number of CR links. This phenomenon
can be explained by noting that DS has a much larger
keep-out region than SB. Therefore, under DS, increasing
the number of CR links in the area does not lead to a
significant increase in the number of active CR links. In
contrast, under the SB scheme, because a CR that is close
to an active PR can still transmit data by adjusting its
transmission power, an increase in the number of CR
links can be directly translated into more transmitting
CRs, leading to higher throughput gain.
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7 CONCLUSIONS

In this paper, we developed centralized and distributed
algorithms for joint power/rate control and channel as-
signment in CRNs. The problem was formulated under
a multi-level spectrum opportunity framework, which
reflects the microscopic spatial opportunity available
to CRs. We also applied our algorithms to study the
achieved throughput gain over the conventional binary
spectrum opportunity while taking its overhead into ac-
count. We showed that a significant gain can be achieved
under the SB scheme with the assistance of a narrow-
band channel, which periodically broadcasts channel-
status information. Our work only considered single-hop
ad hoc CRNs. Our future efforts will focus on the routing
problem in a multi-hop CRN.
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APPENDIX A
CALCULATION OF THE POWER MASK UNDER
RANDOM PR ACTIVITY

We use the calculation on channel m as an example. For
a target CR, label its PR BS neighbors from closest to far-
thest as BS1, BS2, . . .. Denote its power mask set on chan-
nel m by p(m)

mask = (p(m)
mask(1), p(m)

mask(2), . . . , p(m)
mask(Nm +

1)), where p
(m)
mask(j) = PI/h

(m)
j for j = 1, . . . , Nm, PI

is the PR’s interference tolerance, h
(m)
j is the path loss

from the target CR to BS j with h
(m)
1 ≥ . . . ≥ h

(m)
Nm

, and
Nm is the BS beyond which the CR-to-PR interference is
always smaller than PI even if the CR is transmitting at
its full power Pmax. We let p

(m)
mask(Nm+1) def= Pmax. Define

the channel-usage profile at the nth reporting time as an
Nm-dimensional vector S(m)(n) = (s(m)

1 (n), . . . , s(m)
Nm

(n)).
For i = 1, . . . , Nm:

s
(m)
i (n) =

{
1, if BS i is receiving at the nth report
0, if BS i is not receiving at the nth report

(19)
The status of BS i is characterized by a random process
{x(m)

i (t): t ≥ 0}, where x
(m)
i (t) = 1/0 denotes the receiver

is receiving (ON)/not-receiving (OFF) at time t. Let τn

and τn+1 denote the nth and the (n+1)th status reporting
times, respectively. So s

(m)
i (n) denote the value of x

(m)
i (t)

at time τn. Define the random variable ξ
(m)
i as follows:

ξ
(m)
i =

{
1, if x

(m)
i (t) = 1 for some t ∈ [τn, τn+1]

0, if x
(m)
i (t) = 0 ∀t ∈ [τn, τn+1].

(20)
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Fig. 9. Randomness of the PR activity.

Between τn and τn+1, x
(m)
i (t) fluctuates according to

one of the four possible cases in Figure 9. Using the
current sensing time τn as a reference point, we denote
the forward recurrence time of the OFF state by T̃OFF

and the forward recurrence time of the ON state by
T̃ON . Following standard renewal theory results [5], the
probability of each case can be calculated as follows:

Pr
{

ξ
(m)
i = 0|s(m)

i (n) = 0
}

= Pr
{

T̃OFF > T
}

= 1−
∫ T

0

fT̃OF F
(t)dt (21)

Pr
{

ξ
(m)
i = 1|s(m)

i (n) = 0
}

= Pr
{

T̃OFF ≤ T
}

=

∫ T

0

fT̃OF F
(t)dt (22)

Pr
{

ξ
(m)
i = 0|s(m)

i (n) = 1
}

= 0 (23)

Pr
{

ξ
(m)
i = 1|s(m)

i (n) = 1
}

= 1− Pr
{

ξ
(m)
i = 0|s(m)

i (n) = 1
}

= 1 (24)

where T
def= τn+1 − τn is the sensing period and fT̃OF F

(t)
is the pdf of T̃OFF , which can be derived from the pdf
of the OFF period f

(m)
0 :

fT̃Off
(t) =

1− ∫ t

0
f

(m)
0 (τ)dτ

∫∞
0

τf
(m)
0 (τ)dτ

. (25)

Note that (23) can be explained from the definition of
the r.v. ξ

(m)
i in (20). At time τn, given a sensing output

S(m)(n), the violation probability of the CR transmitter
on channel m is conditioned on the power mask to be
used. Because the neighboring PR receivers v

(m)
i ’s are

labeled in a descending order of their channel gains, at

CR

)(
1

mBS )(
2

mBS

)(
3

mBS

)(
4

mBS

)1()(m
maskp )2()(m

maskp

)3()(m
maskp
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Fig. 10. An example of run-time spectrum opportunity
detection.

a given power-mask level l (1 ≤ l ≤ Nm + 1), a violation
will happen if and only if there exists at least one PR
neighbor i, i < l, for which ξ

(m)
i = 1. Mathematically,

the violation rate for a given level of power mask can
be calculated as follows:

Pr{violation of PRN m|S(m), p
(m)
mask(l)}

= Pr{ξ(m)
1 = 1|S(m)}+ Pr{ξ(m)

1 = 0, ξ
(m)
2 = 1|S(m)}

+ . . . + Pr{ξ(m)
1 = 0, . . . , ξ

(m)
l−2 = 0, ξ

(m)
l−1 = 1|S(m)}

= Pr{ξ(m)
1 = 1|s(m)

1 }+ Pr{ξ(m)
1 = 0|s(m)

1 }Pr{ξ(m)
2 = 1|s(m)

2 }
+ . . . + Pr{ξ(m)

1 = 0|s(m)
1 }Pr{ξ(m)

2 = 0|s(m)
2 }

× . . .× Pr{ξ(m)
l−2 = 0|s(m)

l−2}Pr{ξ(m)
l−1 = 1|s(m)

l−1}. (26)

The multiplicative form in the last step of (26) is due to
the assumed independence between different PR links.
We can rewrite (26) in a compact form as

V (l,S(m)) def=
l−1∑

i=1

Pr{ξ(m)
i = 1|s(m)

i }
i−1∏

j=1

Pr{ξ(m)
j = 0|s(m)

j }

(27)
for l = 1, . . . , Nm+1. In addition, we also define V (Nm+
2,S(m)) = 1. The conditional probabilities Pr{ξ(m)

i |s(m)
i }

in (27) can be computed according to (21) through (24).
The level of spectrum opportunity l∗ over channel m
should be selected such that V (l∗,S(m)) ≤ α(m) and
V (l∗+1,S(m)) > α(m). It is easy to verify that V (l,S(m))
defined in (27) is a mono-increasing function of l. Thus,
this selection is valid in the sense that some l∗ can always
be found. Then, the power mask of a given CR i is simply
P̂

(m)
i = p

(m)
mask(l∗).

As an example of the above calculation, consider the
scenario in Figure 10, where the CR has four PR BS
neighbors. Assume the pdf function f0 is exponential
with a mean of 10 seconds, and the sensing period is
100 ms. The translation from a sensing output vector
(s(m)

i corresponds to BS
(m)
i ) to the level of maximum

allowable power mask l∗ is calculated in Table 4 for
α = 1% and α = 2%. From this table, it is clear
that the microscopic spectrum opportunities are more
aggressively exploited under a larger tolerance (i.e., a
larger α) of the randomness of PR activities, which is in
line with our intuition.
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(s
(m)
1 s

(m)
2 s

(m)
3 s

(m)
4 ) l∗ (α = 1%) l∗ (α = 2%)

(0000) 1 3
(0001) 1 3
(0010) 1 3
(0011) 1 3
(0100) 1 2
(0101) 1 2
(0110) 1 2
(0111) 1 2
(1000) 1 1
(1001) 1 1
(1010) 1 1
(1011) 1 1
(1100) 1 1
(1101) 1 1
(1110) 1 1
(1111) 1 1

TABLE 4
Mapping between sensing output and spectrum

opportunity.
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