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Abstract

We study secure and distributed power control in a multi-link interference network that is tapped by

an external eavesdropper. To conceal information from the eavesdropper, legitimate links are equipped

with both transmit-based friendly jamming (TxFJ) and receiver-based friendly jamming (RxFJ). Each

transmitter-receiver (Tx-Rx) pair seeks to maximize its secrecy rate by determining the best power

assignment (PA) for the information, TxFJ, and RxFJ signals. The joint optimization of these parameters

is a non-convex problem, thus computationally demanding. Hence, each link should seek for suboptimal

solutions. To do so, we aim to provide positive secrecy for each link. Despite its sub-optimality, such an

approach precludes the possibility of employing a strong multiuser detector by the eavesdropper (such

as successive interference cancellation). We show that a careful assignment of TxFJ and RxFJ powers

of a link can provide it with a positive secrecy rate. The TxFJ PA at a link is done with respect to the

observed interference at the corresponding Rx, whereas the RxFJ of that link is adjusted using an on-off

PA that depends only on the link’s local channel state information (CSI). Hence, the RxFJ adjustment is

unaffected by interference fluctuations at the eavesdropper, which facilitates our distributed design. With

every link following such a strategy, we model this interaction as a non-cooperative game. Assuming

knowledge of eavesdropper’s CSI (E-CSI), we derive sufficient conditions for the uniqueness of the

resulting Nash equilibrium. We then propose an algorithm to implement the PA game. Lastly, we relax

An abridged version of this paper was presented at the IEEE ICC 2017, Workshop on Full-duplex Communications for Future
Wireless Networks, May 2017 [1].
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knowledge of E-CSI and propose a framework that is robust to unknown E-CSI at links. Our results

indicate that the robust framework has a performance close to when E-CSI is fully known to legitimate

links. Moreover, it is shown empirically that the secrecy sum-rate scales with the power budget of

legitimate transmitters.

Index Terms

Interference network, friendly jamming, full-duplex radios, game theory, distributed design

I. INTRODUCTION

Physical-layer (PHY-layer) security has recently gained considerable attention because of its

potential to provide secrecy at low computational overhead. This makes such an approach

particularly suitable for applications where it is either expensive or computationally demanding

to use cryptographic methods. The most common scenario for information-theoretic PHY-layer

security is the so-called wiretap channel. The wiretap channel involves communications between

a legitimate transmitter (Alice) and a corresponding receiver (Bob); such communications is to

be secured from an eavesdropper (Eve).

Among proposed methods for PHY-layer security, artificial noise (or friendly jamming) has

been noticeably the subject of many research efforts. According to this method [2], Alice can use

multiple antennas and a portion of her transmit power to create a bogus signal –known as artificial

noise or transmit-based friendly jamming (TxFJ)– alongside the information signal to confuse

a nearby Eve. Assuming that Alice knows Alice-Bob channel, she creates TxFJ via precoding

techniques such that the precoded TxFJ signal falls in the null-space of Alice-Bob channel, hence

not affecting Bob’s reception. Alongside the TxFJ method, secrecy can also be provided with the

help of another node (e.g., a relay) that is dedicated to generate friendly jamming (FJ) signals

[2]. Such a method is usually referred to as cooperative jamming (CJ)1. Despite having the same

effect as the TxFJ method, the CJ approaches face several implementation issues compared to

the TxFJ method such as mobility, trustworthiness and synchronization.

To address the issues related to the CJ approach, it has been suggested in [3] to equip Bob

with in-band full-duplex (FD) capabilities, allowing him to generate his own friendly jamming

signal while receiving the information signal from Alice. Such an FJ signal is hereafter referred

to as Rx-based friendly jamming (RxFJ) [3]. Hence, using RxFJ, the disadvantages of CJ can

1Same as TxFJ, the FJ signals emitted from the helper node in CJ do not affect Bob’s reception.
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be mitigated, and still a node exists in the system which is dedicated for generating FJ signals

(i.e., Bob). Another example of using RxFJ is [4], where the authors proposed an optimal power

allocation framework to maximize the secrecy rate of a link that is tapped by a single-/multiple-

antenna Eve under different configurations (e.g., deterministic/statistical knowledge of channel

between Alice and Eve, multi-antenna Bob/Eve). Other works consider PHY-layer security when

FD capability is adopted at both Alice and Bob for bidirectional communications, i.e., Bob

transmits information signals to Alice rather than generating RxFJ (see [5] and its references).

Our focus in this paper is the case where Bob is employed to generate RxFJ.

While the single-link scenario is of great importance in developing early observations, se-

crecy analysis for multi-link settings introduces new challenges not present in the single-link

scenario. The definition of secrecy in multi-link settings depends on the specific network under

consideration. For instance, links might be interested in transmissions of their neighboring links.

Thus, the design must ensure that a given link’s transmission is secured from other links. Such

a network is referred to as multi-link channel with confidential messages. Another possibility is

when external Eves exist in the network and the transmissions of legitimate links must be kept

secure from these Eves. Such a network is referred to as multi-link wiretap channel.

In this paper, we study PHY-layer security in a multi-link wiretap channel. In our network

model, legitimate links share the same bandwidth for their transmissions, thus interfering with

one another; at the same time, an eavesdropper snoops on ongoing communications, hence the

name wiretap interference channel. Legitimate links are capable of TxFJ and RxFJ. Our design

parameters are the power of RxFJ, and the power assignment (PA) between the information and

TxFJ signals. Our work is motivated by the following simple observation: For a given link, when

no secrecy is required, the higher the Alice’s power budget, the higher the information rate at

the respective Rx. However, when secrecy is also a requirement, although the information rate

still increases monotonically with the power at Alice, the secrecy rate may not be necessarily so

because more power transmitted from Alice also increases the leakage rate at Eve.

Our first objective is to find a setting under which the secrecy rate of a link increases

monotonically with Alice’s power. We find a lower bound on the power allocated to TxFJ

above which positive secrecy is achievable for a given link. Once positive secrecy is achieved,

the secrecy rate becomes a monotonically increasing function of power at Alice, thus having

the same trend as the information rate. Therefore, the rest of Alice’s power is allocated to

the information signal. Clearly, having a larger power budget at Alice leads to larger secrecy



4

rates. Although guaranteeing positive secrecy does not offer any sort of optimality in terms of

individual or network-wide secrecy, it ensures that no link experiences zero secrecy. In contrast,

when the aim is to maximize the sum of secrecy rates, we cannot ensure that every link achieves

a non-zero secrecy rate [6]. A zero secrecy scenario can be exploited by Eve, who can perform

sophisticated multiuser detection techniques (e.g., successive interference cancellation or SIC)

to decode ongoing communications. Such an issue was reported in [7], and it was shown in [8]

that an SIC-capable Eve can significantly decrease the network secrecy if some links experience

zero secrecy rates. Provided that all links have non-zero secrecy rates, Eve cannot apply SIC2.

In our framework, the lower bound on the TxFJ power of an Alice (which guarantees positive

secrecy) depends on the amount of interference at her corresponding Bob. As for the RxFJ power,

though its setting generally depends on multiuser interference (MUI), we show that to preserve

positive secrecy, it is sufficient for each Bob to set RxFJ based on only his local channels (i.e.,

Alice-Bob and Bob-Eve channels). This result offers a great simplification to our distributed

design, as Bobs do not require to adjust RxFJ w.r.t. MUI which is often varying in time.

We assume that when setting their transmission parameters, there is no centralized authority re-

sponsible for computations and optimization. Hence, links have to make decisions in a distributed

fashion. Such a design inevitably produces interference at several links. However, because Eve

also receives interference from all links, a careful design ensures that interference at legitimate

links is properly managed while interference at Eve is kept high as much as possible. We model

such an interaction between legitimate links using the theory of non-cooperative games.

The works in [9], [10] studied secure precoding in wiretap interference networks. Moreover, the

authors in [11] studied power control in a multi-channel interference network without considering

TxFJ and RxFJ. All of these works assumed full knowledge of the eavesdropper’s channel state

information (E-CSI) at each Alice, which may not be a practical assumption. In addition, to the

best of our knowledge, the solutions proposed in those works are not extendable to cover the

case of unknown E-CSI. Regarding the PA between the information and TxFJ signals, the works

in [12] and [13] focused only on a single-link scenario, and their approaches are not extendable

to the case of multiple links. The authors of [14] exploited full-duplex capability in the base

station of a broadcast/multiple-access wiretap channel to secure multiple half-duplex downlink

2A full description of the effect of a zero secrecy rate on the secrecy of an interference network was given in [8], where we
showed that Eve can cancel the interference coming from links with zero secrecy rates, thus increasing the signal-to-interference-
plus-noise-ratio (SINR) while snooping on other transmissions with non-zero secrecy rates.
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and uplink users by generating RxFJ/TxFJ for uplink/downlink communications. They proposed

a multi-objective optimization framework to find the best trade-off in minimizing downlink and

uplink powers consumed at the base station (BS), subject to given constraints on information and

secrecy rates of downlink and uplink users. The work in [15] studied power minimization for

the information, TxFJ and RxFJ signals in a broadcast channel with confidential messages under

given guarantees on the individual secrecy rate for each Bob. In [15], the BS is responsible to do

the optimization. This indicates that the power minimization is done in centralized fashion, for

which the BS must acquire the CSI between itself and all downlink users. We investigate a more

challenging scenario (i.e., interference channel) where contrary to [15], distributed computation

and limited coordinations are required [16]. Overall, our contributions can be summarized as

follows:

• Using TxFJ and RxFJ, we define a lower bound on the power allocated to the TxFJ that

guarantees positive secrecy of transmissions at each given link.

• We propose a non-cooperative game to model the power control problem in the interference

network under our study. Under the assumption that Alice-/Bob-Eve channels are fully

known, we derive sufficient conditions under which the proposed non-cooperative game

admits a unique Nash equilibrium (NE).

• We propose alternative sufficient conditions for the uniqueness of the NE. Such conditions

allow for predicting the existence of a unique NE in distributed fashion.

• We show that our distributed design can be implemented using an asynchronous update

algorithm. This algorithm is robust to transmission delays over various links.

• Lastly, we relax the assumption of full knowledge of E-CSI at each Alice and propose a

version of our algorithm that is robust to uncertainties in knowledge of E-CSI.

We need to emphasize that in this paper, we first examine our proposed distributed design under

full knowledge of E-CSI. Although availability of E-CSI at all links is not a practical assumption,

we can build foundations for our distributed algorithm to easily introduce important performance

metrics. Once, our analysis is complete, we relax knowledge of E-CSI and propose the version

of our algorithm that is robust to uncertainties in E-CSI knowledge.

Notation: Boldface uppercase/lowercase letters denote matrices/vectors. a ≥ b denotes the

element-wise inequality between vectors a and b. The matrix I is the identity matrix of appro-

priate size. E[•], •†, and Tr(•) are, respectively, the expected value, complex conjugation (with
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transposition in case of vectors and matrices), and the trace of a matrix. The sets of real and

complex numbers are indicated by R and C, respectively.

II. SYSTEM MODEL

We first describe a model for the network under consideration and introduce the main per-

formance metrics. Consider Q transmitters (Q ≥ 2), Alice1, . . . , AliceQ that communicate with

their respective receivers, Bob1, . . . , BobQ. Let Q , {1, 2, . . . , Q}. Aliceq, q ∈ Q, has Nq

transmit antennas, and Bobq has Mq antennas. A passive Eve with L antennas is also present in

the communication range3. The received signal at Bobq is

yq = H̃qquq +
√
τqH′qqmq +

Q∑
r=1
r 6=q

(H̃rqur + H′rqmr) + nq (1)

where H̃rq ∈ CMq×Nr , r ∈ Q, is the Mq-by-Nr complex channel matrix between Alicer and Bobq,

uq ∈ CNq is the transmitted signal from Aliceq, τq ∈ R+ and H′qq ∈ CMq×Mq are, respectively, the

positive-real-valued self-interference-suppression (SIS) factor and the self interference channel at

Bobq due to the imperfect SIS at Bobq4. Such a model for self-interference was adopted in several

recent works (see [14], [18]), and practical implementations of it exist in the literature (see e.g.,

[19])5. mq ∈ CMq is the RxFJ signal created by Bobq, which is a zero mean circularly symmetric

complex Gaussian random variable (ZMCSCG-RV) with covariance matrix of E[mqm†q] = p′qI

where Tr(mqm†q) = Mqp
′
q ≤ P ′q and P ′q denotes the total power of Bobq to be used for RxFJ.

H′rq ∈ CMq×Mr , r 6= q, is the channel from Bobr to Bobq because the RxFJ created by other Bobs

interfere with Bobq’s reception. nq ∈ CMq is the complex additive white Gaussian noise (AWGN)

whose covariance matrix is E[nqn†q] = N0I with N0 ∈ R+. We assume that H̃rq = H̄rqd
−η/2
rq

where H̄rq ∈ CMq×Nr represents the small-scale fading, drq is the distance between Alicer and

Bobq in meters and η is the path-loss exponent. The same equivalent assumption holds for H′rq,

r 6= q, i.e., H′rq = H̄′rqd′rq
−η/2 where H̄′rq ∈ CMq×Mr and d′rq is the distance from Bobr to Bobq.

3Note that L can be assumed to be large enough to represent multiple multi-antenna colluding eavesdroppers [2]. However,
in this paper, for ease of presentation, we consider the L-antenna Eve as a single entity.

4Recall that enabling in-band full-duplex communications requires suppression of the transmitted signal of the FD-enabled
device at its receive chain to allow for simultaneous transmission and reception. However, such suppression may not be perfect,
and there is often a residual self-interference captured at the receive chain [17].

5We assume that FD receivers are not experiencing dynamic range issues (as pointed out in [20]), which causes the additive
noise at the receive chain to be dependent of the transmit power of the FD device. Incorporating this assumption can be considered
as a subject for future research.
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The received signal at Eve is

z = G̃quq + G′qmq +

Q∑
r=1
r 6=q

(G̃rur + G′rmr) + e (2)

where G̃q ∈ CL×Nq , q ∈ Q denotes the complex channel matrix between Aliceq and Eve. Let

G̃q = Ḡqd
−η/2
qe where Ḡq ∈ CL×Nq and dqe is the distance between Aliceq and Eve. G′q ∈ CL×Mq ,

q ∈ Q, is the channel between Bobq and Eve, and G′q = Ḡ′qd′qe
−η/2 where Ḡ′q ∈ CL×Mq and

d′qe is the distance from Bobq to Eve. Finally, e has the same characteristics as nq. The signal

uq = sq + wq consists of the information signal sq and TxFJ wq. We only consider the case

of single-stream data transmission using multiple antennas. That is, we set sq , Tqxq where

Tq ∈ CNq is the precoder and xq ∈ C is the information signal. In fact, we use multiple transmit

and receive antennas at each link to exploit the maximum diversity of the MIMO link, and not

exploit the spatial multiplexing, i.e., multiple antennas are exploited for beamforming6. Although

in our scenario, beamforming is a suboptimal approach, it helps us to gain valuable insight into

solving the underlying optimization problems. Beamforming has been shown to be optimal under

several channel models (see [21]).

Assume that a Gaussian codebook is used for xq, i.e., xq is distributed as a ZMCSCG-RV

with E[xqx
†
q] = φqPq where Pq is the total transmit power of Aliceq and 0 ≤ φq ≤ 1 is the

portion of transmit power allocated to the information signal. For the TxFJ, we write wq , Zqvq,

where Zq ∈ CNq×(Nq−1) is the precoder for the TxFJ signal and vq ∈ C(Nq−1) is the TxFJ signal

with i.i.d. ZMCSCG entries and E[vqv†q] = σqI. The scalar value σq = (1−φq)Pq

Nq−1
denotes the

TxFJ power7. Let H̃qq = UqΣqV†q denote the singular value decomposition (SVD) of H̃qq where

Σq is the diagonal matrix of singular values in descending order, and Uq and Vq are left and

right matrices of singular vectors, respectively. We set Zq = V(2)
q where V(2)

q is the matrix of

Nq − 1 rightmost columns of Vq corresponding to the smallest singular values [2]. We assume

that Aliceq knows the channel H̃qq
8. The precoder Tq is set to Tq = V(1)

q , where V(1)
q is the

6Later on, we explain the rationale behind choosing beamforing over spatial multiplexing.
7Notice that the TxFJ power is distributed uniformly between different dimensions of vq . In the case of full knowledge of

E-CSI, such power division is not optimal. However, when no knowledge of E-CSI is available (which we assume later in this
paper), it was shown that uniform division of TxFJ power between different dimensions of vq is the optimal approach (see [2],
[12]).

8Acquiring channel state information (CSI) between Aliceq and its corresponding Bobq is assumed to be done securely. For
example, a two-phase channel estimation can be performed, where in the first/second time-slot, Aliceq/Bobq sends the pilot
signals to Bobq/Aliceq . This way, we avoid having to send explicit CSI feedback from one communication end to another, thus
lowering the probability of eavesdropping on channel estimates.
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Fig. 1: System model.

first column of Vq corresponding the largest singular value, to execute transmit beamforming

[22]. Let Hqq , H̃qqV(1)
q , Hjqq , H̃qqV(2)

q , Hqr , H̃qrV(1)
q , Hjqr , H̃qrV(2)

q , Gq , G̃qV(1)
q ,

Gjq , G̃qV(2)
q . The terms Gq and Gjq , ∀q ∈ Q denote the E-CSI components. Hence, (1) and

(2) can be written as

yq = Hqqxq + Hjqqvq +
√
τqH′qqmq+

Q∑
r=1
r 6=q

(Hrqxr + Hjrqvr + H′rqmr) + nq (3a)

z = Gqxq+Gjqvq + G′qmq+

Q∑
r=1
r 6=q

(Grxr + Gjrvr + G′rmr) + e. (3b)

An illustration of the system model under study is given in Fig. 1 for a two-link network. It can

be seen that the interference components at each Bob include his self-interference signal as well

as information, TxFJ and RxFJ signals of unintended links. Eve also receives all information,

TxFJ and RxFJ signals.

After receiving yq at Bobq, a linear receiver dq ∈ CMq is applied. Given that d†qHjqqvq = 09,

9Note that the choice of the linear receiver (to be discussed near the end of this section) affects this assumption. In this paper,
we choose the linear receiver such that this assumption holds.
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the linear estimate of xq at Bobq is

x̂q = d†q
(

Hqqxq +
√
τqH′qqmq+

Q∑
r=1
r 6=q

(Hrqxr + Hjrqvr + H′rqmr) + nq
)
. (4)

Hence, the information rate for the qth link can be expressed as10

Cq = log(1 +
φqPq

aq + bqp′q
) (5)

where

aq = (6a)∑Q
r=1
r 6=q

(∣∣d†qHrq

∣∣2 φrPr +
∣∣d†qHjrq

∣∣2 σr + |d†qH′rq|2p′r
)

+N0∣∣d†qHqq

∣∣2 (6b)

bq = τq
|d†qH′qq|2

|d†qHqq|2
. (6c)

Eve also applies the linear receiver rq ∈ CL while eavesdropping on qth link’s signal to obtain

the following estimate on xq

ẑq = r†q(Gqxq + Gjqvq + G′qmq +

Q∑
r=1
r 6=q

(Grxr + Gjrvr + G′rmr) + e). (7)

Thus, the rate at Eve while eavesdropping on Aliceq (i.e., leaked rate of Aliceq at Eve) is

Ceq = log(1 +
φqPq

cq + dqp′q
) (8)

10Note that the distribution characteristics of the additive noise do not change after passing through the linear receiver [22].
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where

cq =

∣∣r†qGjq

∣∣σq∣∣∣r†qGq

∣∣∣2 +

∑Q
r=1
r 6=q

(∣∣r†qGr

∣∣2 φrPr +
∣∣r†qGjr

∣∣2 σr + |r†qG′r|2p′r
)

+N0∣∣∣r†qGq

∣∣∣2 (9a)

dq =
|r†qG′q|2

|r†qGq|2
. (9b)

Finally, the secrecy rate of Aliceq can be written as11

Csec
q = max{Cq − Ceq, 0}. (10)

The linear receivers dq and rq, q ∈ Q, are assumed to be chosen according maximal ratio

combining (MRC [22]) method to maximize the reception of signal at Bobq and Eve, respectively.

Hence, dq = U(1)
q where U(1)

q is the first column of Uq (recall that H̃qq = UqΣqV†q). Using this

linear receiver, the TxFJ signal of Aliceq will be nullified at Bobq as shown in the system model

in Fig. 1, i.e., Bobq does not receive the TxFJ from Aliceq, q ∈ Q. In other words, d†qHjqqvq = 0,

q ∈ Q (see (4)). Let the SVD of G̃q be denoted as G̃q = LqDqRq where Lq and Rq are matrices

of left and right singular vectors, respectively, and Dq is the diagonal matrix of singular values

in descending order. Thus, while eavesdropping on qth link, Eve sets its linear receiver rq = L(1)
q

where L(1)
q is the first column of matrix Lq

12.

We need to emphasize that the choice of precoder (i.e., beamformers) for TxFJ signal in this

paper is mainly driven by the fact that acquiring E-CSI knowledge may not be possible in the

cases where eavesdropper is a passive node. For a single-link scenario, it was shown in [24]

that optimizing the precoders of information and TxFJ signals requires complete knowledge of

E-CSI. However, in this paper, the beamforming vector of TxFJ signal for each link depends only

on the channel between the two nodes comprising that link, which is relatively more practical

to achieve.

11Note that in specifying the secrecy rate of a link, because no link has the knowledge on whose transmission Eve is interested,
all legitimate links protect their transmissions from Eve. Thus, the secrecy rate of each link can be determined by (10) (see
[23]).

12Note that other decoders (such as MMSE [22]) can also be employed by Eve. This issue will be discussed later in the
simulation section.
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Our choice of beamforming vector of information signal for each link comes from the fact that

the number of antennas at Eve may not be known in some cases. As pointed out in [2], the main

limitation of the TxFJ method is that if Eve has more antennas than Alice, then Eve may be able

to nullify the effect of TxFJ on itself by a specific choice of decoder (i.e., linear receiver) at its

receive antennas. Looking at (7), the general form of the TxFJ signal from the Aliceq that is

received at Eve can be written as r†qGjqvq = r†qG̃qV′qvq where V′q is the N rightmost columns

of Vq, 0 ≤ N ≤ Nq − 1. Let G̃qV′q = L′qD
′
qR
′
q be the SVD of the L × N matrix G̃qV′q, where

L′q and R′q are matrices of left and right singular vectors, respectively, and D′q is the diagonal

matrix of singular values. If L > N , indicating that G̃qV′q is a tall matrix, then Eve has more

antennas than the total dimensions considered for the TxFJ signal of Aliceq. Hence, if Eve knows

G̃qV′q, she can choose rq to be the rightmost L − N columns of the matrix L′q. This way, Eve

can nullify the TxFJ signal, i.e., r†qG̃qV′qvq = 0. Therefore, with sufficiently high number of

antennas, Eve can nullify the effect of TxFJ on herself. To prevent this, we need to make sure

that L−N ≤ 0, so N ≥ L. To ensure that N ≥ L, Aliceq Tx uses as many dimensions for the

TxFJ signal as possible. Hence, we set N to its maximum value, i.e., N = Nq− 1, meaning that

V′q is the Nq − 1 rightmost columns of Vq, so V′q = V(2)
q (see also (3) and the description above

it). This way, at least we know that Aliceq cannot do any better to prevent nullification of TxFJ

on Eve. Obviously, by choosing, for example, N = 1 (i.e., allocating one dimension to the TxFJ

precoder), even an Eve with L = 2 antennas can nullify the effect of TxFJ on herself.

As mentioned before, the information signal sq can be written as sq = Tqxq, where Tq is the

precoding matrix (precoder) and xq is the information signal. With the aforementioned choice of

TxFJ beamformer, the beamformer that can maximize the information rate of the Aliceq would

be Tq = V(1)
q , where V(1)

q is the Nq −N = Nq − (Nq − 1) = 1 leftmost column of Vq, i.e., the

first column of Vq. Such a choice of precoders forces xq to be a scalar value, signifying that

only single-stream signals are allowed to be transmitted.

Overall, with these choices of precoders, we first make sure that our precoders do not require

knowledge of E-CSI, then we make sure that our TxFJ signal will not be nullified at an Eve

that has relatively low number of antennas. Such an approach in assigning precoders was also

used in [25], [26]. Notice that with knowledge of number of antennas at Eve, the exact amount

of dimensions for the TxFJ beamformer can be chosen to ensure that Eve is not able to nullify

the TxFJ at herself. However, in the case of collusion between multiple eavesdroppers, they can

form a MIMO receiver with higher number of receive antennas.
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III. PROBLEM FORMULATION

In this section, we present necessary bounds to achieve positive secrecy and make foundations

for our game-theoretic formulation. We form the following optimization problem for q ∈ Q:

maximize
φq ,p′q

Csec
q

s.t. 0 ≤ φq ≤ 1

0 ≤ p′q ≤ P ′q. (11)

Due to the non-concavity of the objective function in (11) w.r.t. decision variables, the optimiza-

tion in (11) is non-convex13. To find a tractable (and yet suboptimal) solution, we decompose

the analysis of RxFJ and PA into two sub-problems. We first propose a tractable solution for p′q
that results in not only maintaining positive secrecy, but also alleviating the need for knowledge

of MUI at Eve. Then, we propose a method to find a suboptimal value for the PA between

information and TxFJ signals.

A. RxFJ Power Assignment

Removing the max{•} and log(•) operators from Csec
q in (10), the secrecy maximization w.r.t.

p′q can be written as

maximize
p′q

1 + φqPq

aq+bqp′q

1 + φqPq

cq+dqp′q

s.t. 0 ≤ p′q ≤ P ′q. (12)

One can do a simple one-dimensional search to find the optimal value of p′q. However, such an

approach demands knowledge of MUI at Eve to be available, which may be difficult to achieve.

In the remainder of this section, we propose a method for setting RxFJ power that can set the

RxFJ PA independent of MUI at Eve.

We first find conditions that result in having positive secrecy at link q. Positive secrecy in

(10) is achievable if and only if the objective value in (12) is larger than one. Furthermore, it

13The non-concavity of objective function can be easily seen by examining the Hessian matrix of the objective function.
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can be easily shown that the objective value in (12) is larger than one if and only if the optimal

objective value of the following optimization is larger than one14:

maximize
p′q

g(p′q) ,

φqPq

aq+bqp′q
φqPq

cq+dqp′q

=
cq + dqp

′
q

aq + bqp′q

s.t. 0 ≤ p′q ≤ P ′q. (13)

Note that the relationship between the solutions of (12) and (13) (that result in their correspond-

ing objective values being larger than one) is of necessary and sufficient type. Hence, if we are

seeking for a set of conditions/solutions that result in positive secrecy, we can examine those

solutions by judging on the objective value that they yield for (13) instead of (12). The first and

second derivatives of g(p′q) are as follows

dg(p′q)

dp′q
= − bqcq − aqdq

(aq + bqp′q)
2

(14a)

d2g(p′q)

dp′q
2 = 2bq

bqcq − aqdq
(a+ bp′q)

3
. (14b)

Hence, the optimal value of p′q (i.e., p′q
∗) that solves (13) is as follows:

p′q
∗

=


P ′q if bq <

aqdq
cq

0 if bq >
aqdq
cq

.

(15)

Simplifying the first condition of (15), a threshold for SIS factor is as follows15

τq <
|d†qHqq|2

|d†qH′qq|2
aqdq
cq

. (16)

Later on, we show in simulations that whenever positive secrecy is achievable (i.e., the objective

in (12) is larger than one), the optimal value of RxFJ can be frequently derived from (15),

signifying that the solution to (13) is very likely the optimal solution to (12) as well (see Fig. 2).

Considering (16), we can conclude the following: Given cq and dq, if the (normalized) MUI at

Bobq (aq) is not as strong as the (normalized) self-interference channel ( |d
†
qHqq |2

|d†qH′qq |2
), i.e., if |d

†
qHqq |2aq
|d†qH′qq |2

14 One can simply set the objective of (12) to be larger than one and end up with g(p′q) > 1 (and vice versa) where g(p′q) is
defined in (13).

15Although when p′q = 0 the benefits of RxFJ are not present, one can set a minimum RxFJ power to prevent RxFJ from
going to zero.
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is small, the power of RxFJ should be very weak to maintain positive secrecy, leading to p′q
∗ = 0.

However, if |d
†
qHqq |2aq
|d†qH′qq |2

is large, the effect of RxFJ on Bobq is not as significant as MUI, so less

suppression of self-interference can be allowed and still maintain positive secrecy, i.e., p′q
∗ = P ′q

becomes the favorable solution. An equivalent intuition holds for dq/cq when |d†qHqq |2

|d†qH′qq |2
and aq

are given. Specifically, a large dq/cq indicates that RxFJ degrades Eve’s reception more than

the MUI (cq) received at Eve. Hence, the FD-enabled Bobq can perform less suppression, i.e.,

p′q
∗ = P ′q becomes the favorable solution.

It can be seen in (15) that the optimal value of RxFJ that solves (13) depends on two factors:

MUI at Bobq (i.e., aq) and MUI at Eve while eavesdropping the qth link (i.e., cq), which are

defined in (6) and (9), respectively. It may not be practical for a legitimate node to have knowledge

on MUI at Eve because Eve could be a passive device, or Eve does not broadcast the MUI she

is receiving. In addition, because MUI at Bob varies a lot (due to the behavior of other links)

while the SIS factor does not, changing RxFJ according to MUI variations at Bob (in order to

satisfy the rule in (15)) is not desirable. We show in the following that using a specific technique

in setting TxFJ will help us to mitigate the dependece of the RxFJ (found from (15)) on MUI

at Eve.

B. PA Between TxFJ and Information Signals

After finding a suitable set of conditions/solutions for p′q (i.e., the rule in (15)), we now focus

on finding the optimal PA between TxFJ and information signals of Aliceq (i.e., φq):

maximize
φq

Csec
q

s.t. 0 ≤ φq ≤ 1. (17)

Note that although a simple one-dimensional search can find us the optimal value of φq, we

would like to eventually solve (17) by avoiding the required knowledge of MUI at Eve. In this

part of the paper, we propose a solution to solve (17) in the perfect E-CSI scenario. Later on,

we show that our approach in the perfect E-CSI scenario is extendable to the case of unknown

E-CSI, which has not been the case in recent designs.

Same as what we proposed for the RxFJ PA earlier, we approach problem (17) by first finding

a bound on φq that guarantees positive secrecy of link q. Thus, the objective in (17) is assumed
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to be positive, which reduces to

φqPq
aq + bqp′q

>
φqPq

cq + dqp′q
. (18)

Simplifying this inequality, we end up with the following

cq > aq + (bq − dq)p′q. (19)

The inequality in (19) is a bound on TxFJ power of Aliceq (i.e., σq) because according to (9a),

cq is a function of σq. Hence, reducing (19) gives us a bound for the portion of power allocated

to the information signal (i.e., φq) as well. However, for ease of presentation, we do not simplify

(19) to write φq (or σq) at the left hand side of the inequality. We refer to (19) as the lower-bound

on TxFJ power of link q that provides it with positive secrecy.

To make use of the lower bound on TxFJ derived from (19), we first introduce a property of

the secrecy rate of Aliceq

Lemma 1. If (19) is satisfied, the secrecy rate Csec
q is a monotonically increasing function of

Pq and φq, respectively.

Proof: The inequality in (19) can be written as

cq = aq + (bq − dq)p′q + δ (20)

where δ > 0 is a positive real value. Replacing the term cq in (10) with the right hand side

(RHS) of (20), and taking the derivative of (10) (without the max{•} operator) w.r.t. Pq and φq,

we have

dCsec
q

dqPq
=

φqδ

(aq + φqPq + bqp′q)(aq + φqPq + bqp′q + δ)
(21a)

dCsec
q

dφq
=

Pqδ

(aq + φqPq + bqp′q)(aq + φqPq + bqp′q + δ)
(21b)

which are both positive and prove the lemma.

Recall that in setting RxFJ, which was done in (15), we observed that the optimal value of

RxFJ (p′q
∗) depends on MUI at Eve and Bobq. In order to mitigate knowledge of MUI at Bobq
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and Eve in (15) (i.e., aq and cq), we examine the following alternative conditions for RxFJ:

p′q
∗

=

P ′q, if bq < dq

0, if bq > dq.
(22)

Using the bound in (19), the following property shows the sufficiency of (22) to conclude (15).

Proposition 1. Provided that the following conditions hold, the RxFJ PA scheme in (22) is

sufficient to conclude (15):

• cq satisfies (19) and cq > 0.

• (bq − dq)P ′q + δ < 0 when bq < dq

Proof: Assume that we use the conditions in (22) to decide on RxFJ power of link q. Hence,

we set p′q
∗ = P ′q when bq < dq. If cq > 0 and cq satisfies (19) (first condition of Proposition

1), then cq = aq + (bq − dq)P
′
q + δ > 0 when bq < dq. Assuming that (bq − dq)P

′
q + δ < 0

(second condition of Proposition 1), one can conclude that aq > cq, or equivalently aq > aq +

(bq − dq)P ′q + δ. Hence, bq < dq is readily sufficient to deduce bq <
aqdq
cq

that appeared in (15).

Similarly, bq > dq can be proven to be sufficient to satisfy bq >
aqdq
cq

. Specifically, we set p′q = 0

according to (22). Hence, cq must satisfy cq = aq + δ. Since δ > 0, aq < cq. Therefore, bq > dq

is sufficient to deduce bq >
aqdq
cq

that appeared in (15).

Remark 1: The key to conclude Proposition 1 are the assumptions cq > 0 and (bq−dq)P ′q+δ <

0. Regarding the importance of cq > 0, if we have bq < dq and cq = aq + (bq − dq)P ′q > 0, then

bq < dq is sufficient to satisfy bq <
aqdq
cq

, so both RxFJ PA schemes in (15) and (22) impose

p′q
∗ = P ′q. However, when bq < dq (suggesting p′∗q = P ′q in (22)) but cq = aq+(bq−dq)P ′q < 0, we

have bq >
aqdq
cq

(suggesting p′∗q = 0 in (15)). Hence, we have conflicting decisions made by (15)

and (22). Condition (bq − dq)P ′q + δ < 0 sets an upper bound on δ, i.e., 0 < δ < (dq − bq)P ′q if

bq < dq
16. According to (6) and (9), the terms bq and dq are in fact functions of self-interference

channel, Alice-Bob channel, Bob-Eve channel, and Alice-Eve channels. Hence, if Proposition 1

holds, Bobq only has to check whether or not

τq <
|d†qHqq|2|r†qG′q|2

|d†qH′qq|2|r
†
qGq|2

(23)

16In the simulation section, we also observe the physical interpretation drawn from these conditions.
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to decide on RxFJ. In other words, (22) is sufficient to set the RxFJ power of Bobq. The intuitive

interpretation from (23) is that the SIS factor needs to be small if the self-interference channel

(i.e., |d†qH′qq|) has a large value, but if the Bob-Eve channel (i.e., |r†qG′q|2) is large enough, it can

cancel out the effect of self-interference channel. In other words, Bobq must not use RxFJ if the

self interference is not removed well enough. However, if Eve suffers more from the generated

RxFJ, then Bobq can use it. Compared to (15), condition (22) is more desirable, as it does not

impose real-time tracking of MUI (at Eve) to Bobq, thus simplifying the design. Combining

(19) and (22), we have  cq > aq + (bq − dq)P ′q, if bq < dq

cq > aq, if bq > dq

. (24)

Since the inequalities in (24) are strict, we write the following: cq = aq + (bq − dq)P ′q + δ, if bq < dq

cq = aq + δ, if bq > dq

. (25)

Overall, by mathematical manipulations done in equations (18)–(25), we convert problem (17)

to the following problem:

maximize
φq , δ

Csec
q

s.t. cq = aq + (bq − dq)p′q
∗

+ δ

cq > 0

0 < δ < (dq − bq)P ′q + J(1− tq)

0 ≤ φq ≤ 1 (26)

where p′q
∗ in the first constraint is set according to (22), J is a sufficiently large positive number,

and

tq =

 1 if bq < dq

0 if bq > dq

. (27)

The first constraint in (83) is a constraint on φq that imposes the optimal solution to yield positive
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secrecy17. In other words, this constraint replaces the more general constraint in (17), such that

we can ignore the max{•} operator in Csec
q = max{Cq − Ceq}. This constraint together with

the second and third constraints in (83) ensure us that setting p′q
∗ according to (22) is sufficient

to satisfy the more general conditions in (15) (but without the need to know MUI at Bobq and

Eve). Note that tq is a binary variable that is not among decision variables of (83), and can be

easily computed by knowing bq and dq.

Because cq is a function of φq, one can simplify the first constraint in (83) to find the value

of φq that yields positive secrecy to the objective of (83). However, we still need to determine

the value of δ to ensure that such value found for φq is the optimal for problem (83). A simple

one-dimensional search in the interval defined by the third constraint in (83) can provide us with

the best value of δ and subsequently the optimal value of φq. To avoid additional computation

imposed by the one-dimensional search process, we propose the following heuristic technique to

set a value for δ. On the one hand, we do not wish to choose δ near its upper bound due to the

fact that the increase in δ also increases the lower bound on TxFJ which subsequently decreases

the amount of power allocated to the information signal. On the other hand, the choice of δ close

to zero is also not desirable, as in (21b) the growth rate of secrecy rate would be decreased.

Hence, we choose δ = 1
2
|dq − bq|P ′q. In simulations, we show that this heuristic choice of δ

yields a relatively close performance to that of the optimal solution found by one-dimensional

search (see Fig. 4). In the next section, we use the derived conditions to model a secure power

control game.

IV. GAME FORMULATION

In this section, using the ideas of Section III, we propose a power control scheme based on

non-cooperative games.

A. Existence and Uniqueness of Nash Equilibrium

The first constraint in (83) can be written in general form as cq ≥ aq + (bq − dq)P ′q + δ, if bq < dq

cq ≥ aq + δ, if bq > dq.
(28)

17Note that the term cq is a function of φq (see (9)). An equivalent expanded version of this constraint is given in equation
(29) later in this paper. In (83), however, for the sake of simplicity, we present this constraint in a more compact form.
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φq ≤ max

{
min

{
1− 1

Pq

Q∑
r=1
r 6=q

{
(Aq,r −Bq,r)φrPr + Cq,rPr +Dq,rp

′
r

}
−
p′q
Pq
Eq −

Fq
Pq
δ, 1

}
, 0

}
(29)

Aq,r =
Nq − 1

Nr − 1

|r†qGq|2

|d†qHqq|2|r†qGjq|2
(
(Nr − 1)|d†qHrq|2 − |d†qHjrq|2

)
(30a)

Bq,r =
Nq − 1

Nr − 1

(Nr − 1)|r†qGr|2 − |r†qGjr|2

|r†qGjq|2
(30b)

Cq,r =
Nq − 1

Nr − 1

|r†qGq|2|d†qHjrq|2 − |d†qHqq|2|r†qGjr|2

|r†qGjq|2|d†qHqq|2
(30c)

Dq,r = (Nq − 1)
|r†qGq|2|d†qH′rq|2 − |d†qHqq|2|r†qG′r|2

|r†qGjq|2|d†qHqq|2
(30d)

Eq = (Nq − 1)
τq|r†qGq|2|d†qH′qq|2 − |d†qHqq|2|r†qG′q|2

|r†qGjq|2|d†qHqq|2
(30e)

Fq = (Nq − 1)
|r†qGq|2

|r†Gjq|2
. (30f)

Simplifying (28) and taking into account other constraints of (83), an upper bound on φq can be

written as (29) where δ = 1
2
|dq − bq|P ′q18 and the newly introduced notations in (29) are given

in (30) at the top of the next page. Hence, link q’s optimization problem in (83), where q ∈ Q,

can be written as

maximize
φq

Csec
q

s.t. (29) (31)

Hence, problem (83) is now reformulated as (31). With every legitimate link following such a

strategy, the resulting interaction between them can be modeled as non-cooperative game [27]

where the players are the links, the strategy set of the qth player is the set of constraints in

(31), and the utility of each player is his secrecy rate. The result of Lemma 1, upon achieving

positive secrecy for link q (i.e., satisfying the first constraint in (83)), the secrecy rate becomes

18Recall that in the discussion after (27), we proposed a heuristic method to determine the value of δ. The efficiency of this
heuristic method is examined in the simulation section (see Fig. 4).
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a monotonically increasing function of φq. Hence, the that the best-response of the qth link,

q ∈ Q, is when φq meets its upper bound in (29) with equality. The Nash equilibrium is a point

at which no player is willing to unilaterally change his strategy given the strategies of other

players [27].

Before going forward with our analysis, we need to emphasize that so far, our derivations

were based on the assumption that link q, q ∈ Q, knows the MUI at Eve. In fact, although we

were able to make RxFJ PA independent of MUI at Eve (by using (22)), setting the PA between

TxFJ and information signal of Aliceq as in (29) still requires knowledge of MUI at Eve. Such

knowledge is possible if, for example, Eve feeds back the interference she is receiving to link q.

However, this is an unrealistic assumption. Another possibility is when Eve is an active node,

so link q can acquire Gq and Gjq from Eve’s activity. Then, the legitimate links can coordinate

with each other and exchange these acquired channel gains along with their RxFJ powers and

their PAs between TxFJ and information signals, so that link q can use the best response in

(29). While exchanging power levels can be possible via suitable control signaling schemes19,

knowledge of E-CSI (i.e., Gq and Gjq , ∀q ∈ Q) at each link is a restricting assumption if not

impossible, especially when Eve is a passive device. Nevertheless, we continue to analyze the

game under full E-CSI in this section of the paper. This way, we can proceed with our analysis

more easily. It also serves us as a benchmark to our next proposed scheme which is robust to

uncertainties in knowledge of E-CSI. In other words, the robust scheme uses the same basic

ideas behind the analysis under full E-CSI. The robust design is introduced in the next section

of the paper.

The first game-theoretic analysis that we perform is to examine whether the game characterized

by the optimization (31) admits a NE. Using the NE existence conditions of concave games, an

NE exists if the strategy set of each player is non-empty, compact, and convex, and the utility

function of each player is a continuous and (quasi-)concave function of its action, i.e., Csec
q is

concave w.r.t. φq [30]. Convexity of each player’s strategy set in our game is easy to prove, thus

omitted for the sake of brevity. Replacing the term cq with aq+(bq−dq)P ′q (as the first constraint

in (83) suggests) and plugging it in (10), we take the second derivative of (10) w.r.t. φq, which

19Examples of such signaling protocols can be found in [28], [29].
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can be expressed as

d2Csec
q

dφ2
q

= P 2
q

(
1

aq + δ + φqPq + bp′q
− 1

aq + φqPq + bp′q

)
(32)

which is always negative indicating that Csec
q is concave w.r.t. φq.

A necessary and sufficient condition for the uniqueness of NE is proven in the following

theorem.

Theorem 1. The game defined in (31) for all q ∈ Q for which the best response of each player

is set according to (29) (inequality (29) holds with equality), has a unique NE iff the following

condition is satisfied:

ρ(A + B) < 1 (33)

where ρ(•) indicates the spectral radius of a matrix (i.e., largest absolute value of eigenvalues

of a matrix), A is a Q-by-Q matrix whose entries are written as

A =


−Pr
Pq
Aq,r , r 6= q

0 , r = q

,∀(r, q) ∈ Q (34)

and B is as follows:

B =


Pr
Pq
Bq,r , r 6= q

0 , r = q

,∀(r, q) ∈ Q. (35)

with Aq,r and Bq,r defined in (30).

Proof: The uniqueness of NE can be proven by leveraging the concept of fixed-point

theorem. In fact, if the iterative computation of each player’s best-response (i.e., φq meeting

its upper bound in (29) with equality for all q) has a fixed point, the convergence point is

the NE of the game [31]. We first analyze the existence of a fixed point for the argument

inside max{min{•, 1}, 0} in (29). Then, we extend the analysis to include max{min{•, 1}, 0}.

Concatenating the constraint in (29) for all q (without considering max{min{•, 1}, 0}), the

following fixed-point problem in its t−th iteration can be established:

Φ(t+1) = T (Φ(t)) = 1 + (A + B)Φ(t) + f (36)

where Φ = [φ1, . . . , φQ]T , 1 is a vector of appropriate size whose entries are all 1, and f is
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a vector constructed by concatenating other terms in (29) for all q. The rest of the proof is

presented in Appendix A.

Remark 2: Using the condition in (33), the convergence of Jacobi iterative algorithm in

the sense of [31, Ch. 2, Proposition 6.8] is guaranteed. In fact, at every iteration, all players

simultaneously update their actions. Later on, we prove the convergence of our secure power

control game under totally asynchronous updates (in the sense of [31, Ch. 6])20.

B. Algorithm Design

We now design an algorithm to implement the proposed power control game. Let Tq, ∀q ∈

Q, be the set of iteration numbers when the qth link updates its action. For example, Tq =

{1, 3, 5} indicates that the qth links performs the update in (31) in first, third and fifth iterations.

Furthermore, Let Θ
(n)
q = {θ(n)

1,q , . . . , θ
(n)
Q,q} denote the set of most recent times that the interference

coming from each link is measured at Bobq in the nth iteration. Hence, θ(n)
r,q is the most recent

iteration in which the interference from the rth link, r 6= q is captured/updated, and θ(n)
r,q ≤ n−1.

Therefore, in the nth iteration, the qth link, q ∈ Q, performs the update in (31) based on Θ
(n)
q if

n ∈ Tq. Using these definitions, we can now present an asynchronous algorithm that implements

our proposed game, which is shown in Algorithm 1. Other suitable termination criteria can be

used instead of the maximum iteration number. Special cases of the asynchronous scheme include

Jacobi (or simultaneous) and

Algorithm 1 Asynchronous Iterative Secure Power Allocation (full E-CSI version)

1: Set p′q and δ according to (22) and Proposition 1 (see Section III).
2: for n=1 to maximum iteration do

3: Set φ(n)
q =

{
Equal to RHS of (29), if n ∈ Tq
φ

(n−1)
q otherwise

, ∀(q) ∈ Q.

4: end for

Gauss-Seidel (or sequential) scheme [31]. The Jacobi scheme can be described as follows (q ∈

Q):

Tq = {1, 2, ..., itmax}

Θ(n)
q = {n− 1, ..., n− 1}

20In [1], we only proved the convergence under Jacobi scheme.
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where itmax is the maximum iteration number. In other words, in the Jacobi scheme, all links

simultaneously update their action at each iteration. The Gauss-Seidel scheme can be described

as follows:

Tq = {q, q +Q, q + 2Q, ..., q +

(
itmax
Q
− 1

)
Q}

Θ
(n)
j =

{n− (q − 1), ..., n− 1} if j = 1, . . . , q − 1

{n, n− (Q− 1), ..., n− q} if j = q, . . . , Q

which means that in each iteration, only one link updates its action, while all other links use

their previously chosen actions. The following theorem guarantees the feasibility of asynchronous

implementation of our proposed game:

Theorem 2. Algorithm 1 converges to the unique NE of the proposed game if Theorem 1 holds.

Proof: See Appendix B.

Note that (29) was derived only to proceed with the game-theoretic analysis of the problem.

A detailed procedure to find the optimal value of φq in a node is as follows. At a given iteration

of our algorithm, say the nth iteration, after setting the optimal value of RxFJ, in order to

determine the optimal PA, Bobq needs to first measure the interference at his receive chain, i.e.,

a
(n−1)
q + b

(n−1)
q p′q

∗ must be measured, where a(n−1)
q and b(n−1)

q indicate the values of aq and bq at

the previous iteration. Assuming that full knowledge of E-CSI is available, Bobq also knows the

MUI at Eve in the previous iteration, i.e., c(n−1)
q + d

(n−1)
q p′q

∗ is known21. Hence, Bobq does the

following: 1) He subtracts the term |r
†
qGjq|σq
|r†qGq|2

from c
(n−1)
q ; 2) He adds the result of subtraction

to d
(n−1)
q p′q

∗. Denote the result of this addition as gq; 3) He finds the optimal PA in the nth

iteration, which can be described as:

φ∗q = max

{
min

{
1−

∣∣r†qGq

∣∣2∣∣∣r†qGjq

∣∣∣Pq (a(n−1)
q + b(n−1)

q p′q − gq), 1
}
, 0

}
. (37)

It can be seen that setting the optimal PA involves simple addition, subtraction and division of

scalar values. Moreover, there is no need to know all interference terms at Bobq and Eve, but

only the aggregate of these terms (i.e., aq and cq) need to be known. Knowing the noise floor

21Notice that throughout the iterations of our algorithm, b(n−1)
q = b

(n)
q and d(n−1)

q = d
(n)
q . However, the values of aq and cq

can vary across iterations.
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at Bobq can be helpful to measure the interference level. For example, in 802.11 systems, the

noise level usually stays at −90 dBm [32].

C. Discussion on Sufficient Conditions for NE Uniqueness

Although (33) is a tight condition, evaluating it requires knowledge of the whole matrix A+B,

which is not desirable for distributed implementation. We introduce a sufficient condition which

can be evaluated in distributed fashion. It is shown in [31, Proposition A.20] that for any induced

matrix norm22 || • || and any square matrix M we have ρ(M) ≤ ||M||. Using this property, we

consider the induced norm || • || to be || • ||∞, which is the infinity norm. Hence, assuming that

M is a Q-by-Q matrix, a sufficient condition for ρ(M) < 1 is whether ||M||∞ < 1. Using this

property in our game, a sufficient condition for our game to have a unique NE is whether

||A + B||∞ = max
q

Q∑
r=1

Pr
Pq
|Aq,r −Bq,r| < 1. (38)

The physical intuition drawn from the condition in (38) is not straightforward. One way to

interpret this condition is to decompose this condition as follows: The term Aq,r in (38) is

mostly related to the MUI at each Bob which should be low enough, i.e., |d†qHqq|, ∀q ∈ Q in

Aq,r should be large enough to guarantee the uniqueness of NE (see (30)). A sufficient separation

between the links can satisfy this condition. The term Bq,r in (38) is related to E-CSI components

(see (30)). At first, it may seem that this condition requires each link to be the dominant interferer

at Eve w.r.t. other links (i.e., |r†qGjq|, ∀q ∈ Q in Bq,r should be large enough). However, this

is physically not possible. Instead, a more reasonable interpretation is that the NE is unique

if every link has equal contribution in interfering with Eve’s reception. This way, the second

summation in (38) would be constant which only depends on the number of interfering links,

and the analysis of uniqueness is done via only the first summation. Since the nodes are not

guaranteed to be positioned in a way that facilitates equal contribution in interfering with Eve,

the only possibility is when Eve is far from all links. More discussion on this interpretation is

given in the simulations section (see Fig. 5).

It can be seen that the uniqueness condition depends on the location of Eve because both

Aq,r and Bq,r depend on Eve’s channels. Other studies such as [6], [9], [11] have also confirmed

22The induced norm of matrix M is defined as ||M|| , max||x||=1 ||Mx|| where x is a vector and both norms on the RHS
are vector norms.
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the dependency of the unique NE (of non-cooperative secure power control games) on Eve’s

channels. Such a coupling is neither practical (because E-CSI must be known) nor favorable

(because Eve plays a role in the stability of the game). In what follows, we aim to mitigate

knowledge of E-CSI and set both the NE uniqueness (derived in Theorem 1) free of Eve’s role.

None of the approaches in [6], [9]–[11] were shown to be extendable to the case of unknown E-

CSI. However, we show that our approach can be simply extended to cover the case of unknown

E-CSI.

V. ROBUST POWER ALLOCATION GAME

In this section, we incorporate the assumption of unknown E-CSI in our game.

A. Computing the Best Response Under E-CSI Uncertainties

As knowledge of E-CSI becomes unknown, each legitimate link needs to ensure that positive

secrecy is still preserved. Recalling the inequalities in (28) and (29), positive secrecy happens

when cq > aq + (bq − dq)p′q or equivalently

(1− φq)Pq > ψq + τqp
′
qEq (39)

where

ψq ,
Q∑
r=1
r 6=q

{(Aq,r −Bq,r)φrPr + Cq,rPr +Dq,rp
′
r} .

Under unknown E-CSI, for a given probability value ε, the qth link needs to satisfy the following:

Pr{(1− φq)Pq > ψq + τqp
′
qEq} ≥ ε. (40)

Using (22) and the Bayes law of total probability, we have

Pr{(1− φq)Pq > ψq + τqp
′
qEq} =

Pr{bq < dq}(1− Pr{(1− φq)Pq ≤ ψq + τqP
′
qEq})+

Pr{bq > dq}(1− Pr{(1− φq)Pq ≤ ψq}). (41)
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φq ≤ max

{
min

{
1− Pr{bq < dq}

E[ψq + τqP
′
qEq]

(1− ε)Pq
− Pr{bq > dq}

E[ψq]

(1− ε)Pq
, 1

}
, 0

}
. (44)

We assume that ψq+τqp′qEq is a non-negative number for both values of p′q, i.e., Pr{ψq+τqp′qEq >

0} = 1, otherwise (40) is always satisfied when ψq+τqp
′
qEq < 0, and Aliceq can spend all of the

transmit power on information signal23. Using Markov inequality in (41), the following holds

Pr{bq < dq}(1− Pr{(1− φq)Pq < ψq + τqP
′
qEq})+

Pr{bq > dq}(1− Pr{(1− φq)Pq < ψq}) >

Pr{bq < dq}(1−
E[ψq + τqP

′
qEq]

(1− φq)Pq
)+

Pr{bq > dq}(1−
E[ψq]

(1− φq)Pq
). (42)

Hence, (40) remains true as long as we have

Pr{bq < dq}(1−
E[ψq + τqP

′
qEq]

(1− φq)Pq
)+

Pr{bq > dq}(1−
E[ψq]

(1− φq)Pq
) ≥ ε. (43)

Simplifying this inequality, we end up with (44) shown at the top of the next page. For the

rest of this section, we explain how different terms in (44) can be computed. We first focus on

computing Pr{bq < dq}. Using (6) and (9), we simplify bq < dq, which is as follows

bq < dq ⇒ |r†qGq|2 <
|d†qHqq|2

τq|d†qH′qq|2
|r†qG′q|2. (45)

The probability Pr{bq < dq} can be written as

Pr{
|r†qGq|2

|r†qG′q|2
<
|d†qHqq|2

τq|d†qH′qq|2
}. (46)

The small-scale fading components of r†qG
′
q and r†qGq are ZMCSCG-RVs with unit variances.

Hence |r†qGq|2 and |r†qG′q|2 both have chi-square distributions with 2 and 2Nq degrees of freedom,

23Intuitively, if Eve is not close no power needs to be allocated to TxFJ, hence suggesting that ψq + τqp
′
qEq < 0.
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respectively. To tackle the issue of unknown large-scale fading components of r†qG
′
q and r†qGq we

use stochastic geometry [33]. One can model nodes’ positions according to a spatial distribution,

e.g., a Poisson point process (PPP). For instance, stochastic geometry has been used in modeling

eavesdroppers’ positions in several recent works [34], [35]. We model the location(s) of Eve(s)

according to an independent homogenous PPP, namely Ω, with density λ. Such a representation

can be used to model single or multiple Eves depending on the choice of λ24. Let Γγ , |r†qGq |2

|r†qG′q |2

where Γ and γ are RVs that represent large-scale and small-scale fading components of |r
†
qGq |2

|r†qG′q |2
,

respectively. Furthermore, let ν , |d†qHqq |2

τq |d†qH′qq |2
. Using stochastic geometry and F-distribution, we

have the following theorem25:

Theorem 3. An analytical solution for (46) that is used in (44) is as follows:

Pr{Γγ < ν} = exp

(
− λ

∫ d0

0

∫ 2π

0

Pr
{
§qγ > ν

}
β dβdϕ

)
(47)

where §q ,
(

β√
dqq

2+β2−2dqqβcosϕ

)η
and Pr{§qγ > ν} = (1 + ν

§q )−Nq .

Proof: See Appendix C.

We now turn our attention to E[ψq + τqP
′
qEq] and E[ψq] in (44). We propagate the expectation

in E[ψq + τqP
′
qEq] to each term inside ψq using (30). Hence, the expectation of the terms in (30)

can be written as (48) shown at the top of the next page. Because the expectation terms in (48)

contain non-negative RVs we can use the following identity:

E

[
|r†qGq|2

|r†qG′q|2

]
=

∫ ∞
0

Pr{Γγ > ν}dν (49)

where Pr{Γγ > ν} can be derived from Theorem 3. Other expectation terms that include E-CSI

components can be treated the same as how we treat E
[
|r†qGq |2

|r†qG′q |2

]
.

While in the simulation section, we focus on the case where no knowledge on E-CSI compo-

nents is available to links (i.e., both large-scale and small-scale fading parts of E-CSI components

are not known), we can extract more insights from the derivations for unknown E-CSI by

24For example, if Eve is known to be distributed inside a certain region, we can find a suitable λ (that represents the density
as λ Eves per unit of the surface area) such that the PPP matches our settings.

25In [1], we assumed that the large-scale fading component of eavesdropper’s channels were known. However, in Theorem 3,
we provided an analytical approach to cover the case of unknown large-scale fading components of E-CSI in our power control
game.
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E[Aq,r] =
Nq − 1

Nr − 1

(
(Nr − 1)|d†qHrq|2 − |d†qHjrq|2

|d†qHqq|2

)
E

[
|r†qGq|2

|r†qGjq|2

]
(48a)

E[Bq,r] =
Nq − 1

Nr − 1
E

[
(Nr − 1)|r†qGr|2 − |r†qGjr|2

|r†qGjq|2

]
(48b)

E[Cq,r] =
Nq − 1

Nr − 1
E

[
|r†qGq|2|d†qHjrq|2 − |d†qHqq|2|r†qGjr|2

|r†qGjq|2|d†qHqq|2

]
(48c)

E[Dq,r] = (Nq − 1)E

[
|r†qGq|2|d†qH′rq|2 − |d†qHqq|2|r†qG′r|2

|r†qGjq|2|d†qHqq|2

]
(48d)

E[Eq] = (Nq − 1)E

[
τq|r†qGq|2|d†qH′qq|2 − |d†qHqq|2|r†qG′q|2

|r†qGjq|2|d†qHqq|2

]
(48e)

considering the case where large-scale fading part of E-CSI is available. Hence, we can give a

close-form representation to (44). Knowledge of large-scale fading of Alice-Eve and Bob-Eve

channel is not new and has been assumed to be known for various scenarios. One example is

when Eve is acting as a reactive jammer. That is to say after some eavesdropping on the current

transmissions, Eve injects her jamming signal to disrupt the ongoing communications. In such a

case when jamming happens, assuming that the jamming power of Eve and the statistical features

of the jamming signal are previously known (e.g., PDF, mean), the legitimate links can measure

the jamming signal strength when it interferes with their transmissions. Hence, the approximate

location of Eve can be estimated. Moreover, in [36], it was shown that in a massive MIMO

scenario, a passive Eve might not be very dangerous and must therefore be active and attack

the training phase. This active attack can make Eve exposed, and hence the legitimate links can

acquire some knowledge about her location. Recently, the authors in [37] proposed a method

with which the legitimate nodes can detect the passive eavesdropper from the local oscillator

power leaked from its RF front end. Hence, an approximation on the location of Eve can be

acquired. Furthermore, the knowledge of large-scale fading was recently analyzed in [38] where

the directional properties (i.e., small-scale fading) of Eve(s) are unknown to Alice.

Regarding the calculation of Pr{bq < dq} in (44), the small-scale part of X , |r†qGq |2

|r†qG′q |2
in (46)

is equivalent to the SINR of a one-branch diversity combiner with Nq interferers [39, eq. (19)].
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Thus,

FX(§) = 1− 1

(1 + §)Nq
. (50)

Using (50) in (46), we end up with26

Pr{bq < dq} = 1−

(
1 +

(dqe
d′qe

)η |d†qHqq|2

τq|d†qH′qq|2

)−Nq

. (51)

To compute E[ψq+τqP
′
qEq] and E[ψq] in (44), we know that the small-scale fading part of random

variables |r†qGjq|2, |r†qGjr|2, |r†qGr|2, and |r†qG′r|2 have chi-square distributions with 2(Nq − 1),

2(Nr − 1), 2, and Nr degrees of freedom, respectively [13, Lemma 2]. Note that all of the

aforementioned RVs are independent from each other because the precoding matrices V(1)
q and

V(2)
q , ∀q are unitary and orthogonal to each other (see Section II). The division of a (central)

chi-square random variable by another independent (central) chi-square random variable has

F-distribution [40]. Hence,

E[Aq,r] =
Nq − 1

(Nr − 1)(Nq − 3)

(Nr − 1)|d†qHrq|2 − |d†qHjrq|2

|d†qHqq|2
(52a)

E[Bq,r] = 0 (52b)

E[Cq,r] =
Nq − 1

(Nr − 1)(Nq − 3)

|d†qHjrq|2

|d†qHqq|2
− Nq − 1

Nq − 3

(dre
dqe

)(−η) (52c)

E[Dq,r] =
Nq − 1

Nq − 3

(
|d†qH′rq|2

|d†qHqq|2
−
(d′re
dqe

)(−η)

)
(52d)

E[Eq] =
Nq − 1

Nq − 3

(
τq|d†qH′qq|2

|d†qHqq|2
− (

d′qe
dqe

)(−η)

)
. (52e)

E[Fq] =
Nq − 1

Nq − 3
. (52f)

The last issue is related to the on-off scheme proposed earlier for the RxFJ. As it was shown

in Section III, the choice of RxFJ depends on whether bq < dq or bq > dq. When bq < dq

becomes a random variable in the case of unknown E-CSI, we choose to use RxFJ whenever

Pr{bq < dq} > 0.5.

26Note that it is assumed that the knowledge of Alice-Bob channel, self-interference, and multi-user interference still hold.
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B. Distributed Power Control Under E-CSI Uncertainties

With the derivations in (44)-(49), we can construct a game with the same structure as in

Section IV where each link’s best response is computed from (44). Using the same logic behind

Theorem 1, the following must hold to ensure a unique NE for the robust game:

ρ

(
E[A + B]

1− ε

)
< 1 (53)

where the expected value is element-wise. Note that E[Bq,r] = 0, so one can see that the analysis

of the matrix E [A + B] (see Section IV and Theorem 1), is simplified to E [A]. Therefore, the

E-CSI is no longer present in NE uniqueness conditions. Moreover, for the qth link, q ∈ Q to

perform the PA scheme in (44), it requires the PA’s set by other links (i.e., φr, ∀r ∈ Q, r 6= q),

as well as the interfering channels between other legitimate links and Bobq (i.e., Hrq and Hjrq,

∀r ∈ Q, r 6= q). Hence, no knowledge of MUI at Eve or E-CSI components is needed27. Same

as the previous section, an alternative condition to (53) is to replace the spectral radius with the

infinity norm according to (38). Interestingly, the alternative condition for the robust game has

a nice interpretation. Specifically, (53) is deduced if

||E[A]

1− ε
||∞ = max

q

Q∑
r=1

1

1− ε
|E[Aq,r]| < 1. (54)

Intuitively, if the interfering channels are small enough, a unique NE exists. Thus, the uniqueness

conditions in the robust schemes are not dependent on E-CSI. The following asynchronous

algorithm implements the robust version of our game:

Algorithm 2 Asynchronous Iterative Secure Power Allocation (robust version)

1: Given ε, calculate (46) and set p′q = P ′q if Pr{bq < cq} ≥ 0.5, or p′q = 0 if Pr{bq < cq} < 0.5.
2: for n=1 to maximum iteration do

3: Set φ(n)
q =

{
Equal to RHS of (44), if n ∈ Tq
φ

(n−1)
q otherwise

, ∀(q) ∈ Q.

4: end for

27Note that the case where large-scale fading part of E-CSI is known was only mentioned to give intuitions on the behavior
of the robust scheme. In simulations, we only consider the case where neither the large-scale nor the small-scale fading parts
of E-CSI are known.
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VI. NUMERICAL RESULTS

In this section, we verify our theoretical analyses. We show our results for a four-link network28.

Eve is located at (Xe, Ye) on a 2-D coordinate system. Alices are randomly placed on the boundary

of a circle, known as simulation region, with radius rcirc whose center is at the origin of the

coordinate system. Specifically, only the phase of Alices’ placements has uniform distribution.

Each Alice has a fixed distance (communication range) with her corresponding Bob denoted

as dlink29. Each Bob is placed randomly around his corresponding Alice on the boundary of a

circle whose center is the location of Bob’s corresponding Alice with radius dlink. Again, only

the phase of Bobs’ placements has uniform distribution. The noise level is set to 0 dBm. Unless

stated otherwise, the power constraint for each legitimate link is set to Pq = 20 dBm, ∀q, the

maximum RxFJ power at each Bob is P ′q = 15 dBm, η = 2.5, τq = −100 dB30, dlink = 10 m,

and finally Jacobi algorithm is used in all simulations. Regarding the unknown location for Eve,

Bobq assumes that Eve is distributed in a circle around him with radius r0 = 5 m according to

a PPP with λ = 1
25π

Eve/m2, q ∈ Q.

For the first numerical result, We set up our system model in the presence of an eavesdropper

where the PA between TxFJ and information signal for all links is set to φ = 0.5. We aim to find

out if the RxFJ PA scheme in (15) is sufficiently close to an optimal scheme to solve (12). To do

so, we perform the optimal assignment of RxFJ power for (12) with a simple one-dimensional

search method for several channel realizations and count the times when the solution found from

one-dimensional search reduces to the solution in (15). In Fig. 2, we plot the probability of

having both positive secrecy and the optimal value of RxFJ power for problem (12) (found from

a one-dimensional search) being either the maximum or zero according to the scheme in (15) for

all links. Such probability shows how frequent the scheme in (15) gives us the optimal value of

RxFJ power. It can be seen in Fig. 2 that this probability is very high even for the cases where

the power budget for RxFJ is high. Also, it can be seen that the size of simulation region has a

negligible effect on this probability.

Fig. 3 (a)-(c) show the number of links that use RxFJ in the network for the two RxFJ PA

schemes derived in (15) and (22) where in (15), cq is set according to (25). We assumed that

28The results for this case can be generalized to arbitrarily larger number of links.
29Using a common communication range is a generic assumption in wireless ad hoc networks [34], [35].
30Such an SIS factor was reported in recent practical implementations of full-duplex radios [17].
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Fig. 2: Probability of having both positive secrecy and the assignment in (15) as the optimal
solution for a single-link scenario (Xe= Ye= 0, Nq = 8,Mq = L = 5, Pq = 25 dBm,∀q,Q = 4)
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Fig. 3: Number of links using fixed-power RxFJ under full knwoledge of E-CSI (i.e., rule (15))
or no knwoledge of E-CSI (i.e., rule (22)) vs. (a) transmit powers (P ′q = 15 dBm) (b) RxFJ
powers (Pq = 25 dBm) (c) number of links given that per-link secrecy is guaranteed (Xe= Ye=
0, rcirc = 20 m, Nq = 8,Mq = L = 5,∀q,Q = 4).

all links use φq = 0.5 as the PA for information and TxFJ signals. It can be seen from these

figures that using the RxFJ PA in (22) has a close performance to (15) whenever Alices’ power

budgets are high enough (see Fig. 3(a)) or when Bobs’ RxFJ power budgets are low enough (see

Fig. 3(b)). Examining cq in (25), one can easily see that low transmit powers would decrease aq

and high RxFJ powers would increase (bq−dq)P ′q. Both of these situations are detrimental to the

scheme in (22), as they violate the condition cq > 0 which is a requirement for sufficiency of the

scheme in (22) (See Proposition 1 and Remark 1). Using high enough power budgets at Alices

(i.e., Pq, ∀q ∈ Q) and low enough RxFJ powers at Bobs (P ′q, ∀q ∈ Q) for all links can ensure

that cq will remain positive. As it can be seen in Fig. 3 (c), for a suitable choice of transmit

power and RxFJ power, both conditions stay close to each other regardless of number of links

in the network. Overall, under high enough transmit power budget and low enough RxFJ power

budget, the sufficient condition (22) yield a performance equivalent to (15) and sets Aliceq free

of having to track the MUI at Bobq and Eve.

Next, we compare the performance of our proposed methods for PA between TxFJ and

information signals. Specifically, in one method, we use one-dimensional search to find the
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best value of δ in (83). In the other method, we use our proposed heuristic method for finding

δ, i.e., δ = 1
2
|dq − bq|P ′q. We compare the resulting secrecy sum-rate of these two methods in

Fig. 431. It can be seen that the proposed heuristic method has a very close performance to that

of the one-dimensional search, suggesting that we can use the heuristic method for assigning δ

without imposing the relatively larger computational complexity of the one-dimensional search

method.

Fig. 5 shows the probability of satisfying the uniqueness conditions derived in (33) and (38) for

a two-link scenario with full knowledge of E-CSI. The vertical axis at the left of each subfigure

indicates the probability of satisfying (33), i.e., ρ(A + B) < 1. Specifically, each point on the

curve related to (33) (indicated by n1) is the result of averaging the number of times (33) holds

over 100 network topologies where in each topology 500 channel realizations are simulated and

averaged. Thus, the probability of convergence for (33) is n1/(100 ∗ 500) where n1 denotes the

number of times that (33) is satisfied over all network topologies and channel realizations. Let

n2 denote the number of times that condition (38) is satisfied given that (33) is already satisfied.

Hence, the vertical axis at the right of each subfigure indicates the ratio n2/n1 for which we

have n2/n1 < 1, since n2 counts the times (38) is true among the times (33) holds.

The horizontal axis in Fig. 5 indicates the value of Xe. While the value of Ye is fixed for a

subfigure, it is different from one subfigure to another. For the two-link case, condition (33) is

highly probable in all scenarios. The practical condition in (38), however, is only good when Eve

is relatively far from the network, but as Eve becomes closer to the network this condition is less

efficient. Interestingly, as Eve approaches the origin, for Ye = 0 in Fig. 5 (a), the probability of

satisfying (38) increases. The reason for such a result is because of the simulation model, which

31Note that the one-dimensional search is in fact the optimal approach in solving (83).
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verifies the physical interpretation given for (38). In fact, the origin is where the distance of all

links to Eve is the same because the simulation model puts all of Alices in the boundary of the

simulation region which is a circle. One can see that when the y-coordinate of Eve changes in

Fig. 5 (b) and Fig. 5 (c), the location Xe = 0 becomes more similar to other points inside the

simulation region. We did not however, see this phenomenon for higher number of links, which

is attributed to the fact that the second summation in (38) becomes too large with high number

of links, even though it is a constant for when (Xe,Ye) = (0, 0).

Fig. 6 (a) shows the variation of convergence probabilities of robust and full E-CSI methods

w.r.t rcirc for the four-link case. The convergence probability is calculated as number of times

the conditions in (33) and (38) (indicated by “full E-CSI, n1”and “full E-CSI, n2”, respectively,

in Fig. 6 (a)), and their equivalents for the robust game (i.e., (53) indicated by “Robust, n1”and

(54) indicated by “Robust, n2”) hold true divided by the number of channel realizations. It can

be seen that for the case of full E-CSI, probability of uniqueness of NE using (38) is very low.

However, in the case of unknown E-CSI, since the nodes are indifferent w.r.t. E-CSI, far less

restrictive conditions than that of full E-CSI scenario can be achieved. In fact, although the

distances between links and Eve become larger as rcirc grows, the uniqueness of NE in the

full E-CSI case still remains unpredictable. Specifically, in (29) it can be seen that the distances

between legitimate links and Eve exist in both nominator and denominators of the terms described

in (30). This is the main reason that by increasing rcirc, the convergence of our algorithm in the

full E-CSI case is not significantly affected. On the contrary, in the robust method, by increasing

the radius of simulation region, interference at each Bob becomes weaker. So, as the physical

interpretation mentioned for (54) suggested, the NE uniqueness becomes more often. Moreover,

in robust version, as ε becomes larger, the uniqueness conditions become more restrictive, which

is in line with the derivation in (53).

Fig. 6 (b) shows the convergence probability versus number of transmit antennas at each

link. It can be seen that the probability of NE uniqueness becomes higher with more transmit

antennas. The reason is that as the number of antennas grows, the communication channels

become almost deterministic and only dependent on large-scale fading components. Specifically,

looking at (29), (30), (44), it can be shown that for large number of antennas, the values of

|r†qGq|2, |d†qHqq|2 and |d†qHrq|2 would be close to their large-scale fading components multiplied

by 2, as their distributions are chi-squares with two degrees of freedom [13, Lemma 3]. Using

the same argument, the values of |r
†
qGjq |2
Nq−1

, |d
†
qHjrq |2
Nr−1

, and |r†qGjr|2
Nr−1

will be asymptotically close
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Fig. 5: Probability of convergence vs. eavesdropper’s location for the full E-CSI case: (a) Ye=0,
(b) Ye=10m, (c) Ye=40 m, (rcirc=30m , Nq = 8,Mq = L = 1,∀q,Q = 2).

to their large-scale fading component multiplied by certain factors, as |r†qGjq|2, |d†qHjrq|2, and

|r†qGjr|2 have chi-square distributions with 2(Nq − 1), 2(Nr − 1) and 2(Nr − 1) degrees of

freedom, respectively. Hence, the values of Aq,r and Bq,r are both close to zero which result in

small eigenvalues and thus satisfying the convergence condition in (33) more often. The same

argument holds for conditions in (38), (54), i.e., they become more probable as the number of

transmit antennas grow.

Fig. 7 (a)-(c) show the achieved secrecy sum-rate of robust and full E-CSI methods as well

as the globally optimal solutions of the secrecy sum-rate maximization vs. the radius of our

simulation region. Furthermore, Fig. 7 (d)-(f) show the resulting sum of information and leaked

rates of our methods vs. the radius of our simulation region. The maximum amount of iterations

for Algorithm 1 and 2 are set to 50 iterations. We conducted this simulation for two scenarios: 1)

when Eve uses MRC decoder, and 2) when Eve uses MMSE decoder32. We also have two baseline

schemes in Fig. 7(a)-(c). First, the scheme where no RxFJ is used at Bob, and second, the scheme

where no TxFJ is used at Alices. From Fig. 7 (a)-(c), it can be seen that our apporaches have

less secrecy compared to globally optimal solutions. The reason is that the NEs of our proposed

game are not necessarily guaranteed to be globally optimum for the secrecy sum-rate. NE is

a stable point where no link can gain more secrecy given the interference received from other

nodes. In other words, the NE of our game is unilaterally optimum for each link. Furthermore,

both cases of the robust method have less secrecy sum-rates than that of the full E-CSI method.

Furthermore, it can be seen that both no RxFJ and no TxFJ schemes have significantly less

32Although our analysis was limited to the case of using MRC decoder at Eve, we still observed the convergence of our
algorithm for the case of MMSE decoder.
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secrecy sum-rate compared to our approaches, which signifies the importance of FJ. Lastly, in

our model, it seems that using no TxFJ affects the secrecy sum-rate more than using no RxFJ.

The performance of both of these gets worse when Eve employs MMSE receiver, which is not

shown here due to space limitations.

Although our analysis was limited to the case of using MRC decoder at Eve (see Section II),

we still observed the convergence of our algorithm for the case of MMSE decoder. One reason

that we did not analyze the case of MMSE receivers at legitimate links or Eve is that MMSE

receivers add to the complexity of links’ best responses. In fact, in addition to the TxFJ and RxFJ

powers being updated at each iteration of the game, the MMSE receiver needs to be updated at

each iteration of the game as well, thus increasing the complexity of a link’s actions. In contrast,

using the MRC decoder employed at Eve/Bobs allows us to only focus on TxFJ and RxFJ PA.

Another reason for choosing MRC over MMSE receivers is the amount of computational

complexity that MMSE imposes on legitimate nodes which can be significant depending on the

number of Alice’s/Bob’s antennas. The first step to compute an MMSE receiver at each Bob is

to calculate the covariance matrix of the interference at the receive chain of each Bob, which

is basically a vector multiplication operation. Then, each Bob needs to measure the channel

between himself and his corresponding Alice and multiply it to the inverse of the interference’s

covariance matrix to establish the MMSE receiver. Compared to the MRC receiver, which only

requires the channel between Bob and his corresponding Alice, the MMSE receiver requires

three more operations (two matrix multiplications and one inverse) to be established33.

According to Fig. 7 (d)-(e), for a given ε in the robust method, regardless of the decoder

33We skipped the detailed description of an MMSE method of reception for the sake of brevity. The fundamentals of MMSE
receivers can be found at [22, chapter 6]. More comparison between MRC and MMSE receivers is given in the rest of this
section.
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at Eve, the sum of information rates remains the same, which indicates that the interference

management between legitimate links in the robust method is completely decoupled from Eve

characteristics. In other words, in the robust method, the nodes are indifferent to E-CSI. Moreover,

for when ε = 0.9, the leaked rate is significantly reduced compared to when ε = 0.1 because

the probability of achieving positive secrecy is set to be higher for when ε = 0.9. However,

the penalty for achieving positive secrecy with high probability (in the robust method) is that

the nodes cannot manage interference between themselves as efficiently as in the full E-CSI

case or the case where ε = 0.1. This leads to having lower sum of information rates when

ε = 0.9. Another penalty of choosing ε to be too high is that the uniqueness of NE becomes

less often. As it was shown in Fig. 6 (a), by increasing ε, the probability of NE uniqueness

in the robust scheme decreases. The issue of not having a unique NE can lead to instability
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of our power control algorithm, as this algorithm is not guaranteed to converge to any point

if the NE uniqueness conditions are violated. Hence, the iterations of our algorithm must be

manually terminated with no sign of convergence. It can also be seen in Fig. 7 (a)-(c) that when

Eve employs MMSE decoder, the secrecy sum-rate decreases more than when MRC decoder is

adopted. The reason is that the MMSE receiver takes into account the effect of interference, so

Eve is able to mitigate a part of interference on herself. According to (29), in the full E-CSI case,

the action of a link depends on the decoder that Eve uses. Therefore, we can see in Fig. 7 (f) that

the sum of information rates for the full E-CSI case is affected when Eve uses MMSE decoder.

As the radius of simulation region increases, the SINR at Eve decreases, so it is well-known

that for the low SINR regime, the MMSE receiver must reduce to the MRC receiver [22]. This

phenomenon can be seen in Fig. 7 (d)-(f) where the leaked rate at Eve is the same for both

decoders for a large enough rcirc.

Fig. 7 (g)-(i) show that in all approaches secrecy sum-rate grows as Pq increases. Hence,

by using RxFJ and TxFJ, positive secrecy and arbitrary secrecy levels (by changing the links’

transmit powers) are achievable, thus extending the same property that existed in the single-

user scenario [2]. We also verified such a scaling at the per-link level. Same as what was

discussed above, the secrecy sum-rate achieved for the full E-CSI method is larger than that

of the robust methods. Also when ε is chosen to be too large, the nodes are not able to do

an efficient interference management. This could sound as a counter-intuitive result. In fact,

a low value of ε increases the probability of having zero secrecy (see SectionV). However,

one can see that the performance of the robust approach is still acceptable for when ε = 0.1.

We conjecture that this could be due to the F-distrbution, which was the distribution involved in

reducing the best responses in (29) to (44). The F-distribution is a positively skewed distribution.

Hence, most of the density of the distribution of best response is concentrated at the left of the

median, and the mean is most likely at the left of the median. This means that to ensure that

(1 − φq) > Pr{bq < dq}
E[ψq+τqP ′qEq}]

(1−ε)Pq
+ Pr{bq > dq} E[ψq ]

(1−ε)Pq
, the density of the values above the

mean is relatively low, suggesting that the PA factor in (44) will be most likely providing positive

secrecy.

Fig. 8 shows the convergence of the proposed asynchronous algorithm under different update

schemes for a sample settings where the NE is unique. All update schemes converge to the same

point, indicating the uniqueness of NE. The Jacobi method converges faster due to simultaneous

updates for all users at each iteration. Fig. 8 (c) also shows convergence under random updates
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Fig. 8: Convergence of asynchronous algorithm for different update schemes: (a) Jacobi, (b)
Gauss-Seidel, (c) Random updates.

for each link. Each link generates a random integer in interval [2, 6] that specifies the number

of iterations after the current iteration when the link updates his action (i.e., the update pattern

denoted by Tq, see Section IV.B). Clearly, introducing asynchronism in the system degrades

the convergence speed, but the system will eventually converge to the NE. It can also be seen

from the figures of the bottom and above rows that the convergence occurs with and without

min{max{•, 0}, 1} operator. Clearly, such an operator does not impact the convergence.

VII. CONCLUSIONS

In this paper, we proposed a game-theoretic approach for power control in an interference

network tapped by an external eavesdropper. We proposed a framework under which every

link can utilize both RxFJ and TxFJ to achieve a positive secrecy rate. Next, we modeled the

interaction between the players as a game and derived sufficient conditions for the uniqueness of

the resulting NE. We also proposed an asynchronous algorithm that can implement the proposed

game and is robust to practical issues in the network such as transmission delays. Next, we

proposed another version of our game that is robust to when the eavesdropping channels are

unknown. We showed in simulation that our proposed approach for achieving positive secrecy

using TxFJ and RxFJ are efficient enough to be considered as best responses for legitimate

links. Moreover, the performance of robust schemes are close to the one that assumes knowledge

of E-CSI. Lastly, the secrecy sum-rate scales with the power budget at legitimate transmitters,

regardless of the knowledge of E-CSI. Analytical characterization of the proposed game when

Eve uses MMSE decoder could be an interesting subject of future research.
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APPENDIX A

PROOF OF THEOREM 1

Using [31, Proposition 6.1], the fixed point iteration in (36) converges to a point φ∗ from any

initial point iff ρ(A + B) < 1. We now introduce the following theorem
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Theorem 4. [31, Ch. 2, Proposition 6.6] For any square matrix M and any ε > 0, there exists

an induced norm, || • || such that ρ(M) ≤ ||M|| ≤ ρ(M) + ε34.

Using the above theorem, since ρ(A + B) < 1, we can choose ε > 0 arbitrarily close to

zero such that ρ(A + B) + ε < 1. Hence, we can find a an induced norm ||A + B|| such that

||A + B|| ≤ ρ(A + B) + ε. Therefore, we are able to convert the condition ρ(A + B) to an

equivalent condition based on an induced norm, i.e., ||A + B||. We use this result later during

this proof. To proceed with further analysis, we need the following definition:

Definition 1. [31] Consider the following iteration:

Φ(t+1) = T
(
Φ(t)
)
, t = 1, 2, ..., (55)

where T is a mapping from A (a subset of RQ) to itself, and t indicates the index of iterations.

If T is continuous and

||T (Φ(1))− T (Φ(2))|| ≤ Ω||Φ(1) − Φ(2)|| , ∀{Φ(1),Φ(2)} ∈ A2, (56)

where ||.|| is a norm in A and Ω ∈ [0, 1), then the mapping T is a contraction mapping with

Ω as the contraction modulus, and sequence
{
φ(t)
}

generated by iterations in (55) converges to

the fixed point φ∗.

Using this definition and the result of Theorem 4, we can show the iteration in (36) as a

contraction mapping, i.e.,

||T (Φ(1))− T (Φ(2))|| ≤ ||(A + B)(Φ(1) − Φ(2))|| (57)

≤ ||A + B|| ||Φ(1) − Φ(2)|| (58)

where ||A + B|| < 1, (58) is due to Cauchy-Schwartz inequality, and the induced norm || • || is

chosen such that for some ε > 0 we have ||A + B|| ≤ ρ(A + B) + ε < 1 (cf. Theorem 4). This

result will be used later in this proof.

We now focus on min{•} and max{•} functions. The operator max{min{φ0, 1}, 0}, for

some φ0 > 0, can be equivalently shown as a Euclidean projection. Specifically, the Euclidean

34For the sake easy presentation, we omitted introducing the weighted norm, while this is the type of norm used in [31, Ch.
2, Proposition 6.6]. Nevertheless, all of our analyses can be extended to the case of weighted norms as well.
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projection of a scalar φ0, denoted as [φ0]+, can be written as the following optimization problem

minimize
φ̄

||φ̄− φ0||2

s.t. 0 ≤ φ̄ ≤ 1. (59)

The KKT conditions of this problem are written as follows:

φ̄− φ0 − ν + λ = 0, (60)

ν ≥ 0, φ̄ ≥ 0, νφ = 0 (61)

λ ≥ 0, φ̄ ≤ 1, λ(φ− 1) = 0; (62)

If ν > 0, then φ̄ = 0. Hence, λ = 0 and we have ν = −φ0, or equivalently φ0 ≤ 0. If λ > 0,

then φ̄ = 1. Hence, ν = 0, and we have 1 +λ = φ0, or equivalently φ0 ≥ 1. If λ = 0 and ν = 0,

then 0 ≤ φ̄ ≤ 1. Hence, φ̄ = φ0. Summarizing these conditions, we have

φ̄∗ = argmax
0≤φ̄≤1

||φ̄− φ0||2 =


0, if φ0 ≤ 0,

1, if φ0 ≥ 1,

φ0, if 0 ≤ φ0 ≤ 1.

(63)

The right hand side of (63) is exactly the definition of the operator max{min{•, 1}, 0}.

Converting max{min{•, 1}, 0} to Euclidean projection, we use the non-expansive property of

Euclidean projection which is as follows [31, Ch. 3, Proposition 3.2]:∣∣∣∣∣∣[T (Φ(1))
]+ − [T (Φ(2))

]+∣∣∣∣∣∣ ≤ ∣∣∣∣T (Φ(1))− T (Φ(2))
∣∣∣∣ (64)

The non-expansive property of Euclidean projectors can be generalized to all vector norms

because all vector norms (i.e., norms in Rn) are equivalent, i.e., for any two different norm

|| • ||1 and || • ||2 ∃ α1 ∈ R and α2 ∈ R such that α1||x||1 ≤ ||x||2 ≤ α2||x||1, ∀x ∈ Rn [41].

Hence, we have the following chain of inequalities∣∣∣∣∣∣[T (Φ(1))
]+ − [T (Φ(2))

]+∣∣∣∣∣∣ ≤ ∣∣∣∣T (Φ(1))− T (Φ(2))
∣∣∣∣ (65)

≤ ||(A + B)(Φ(1) − Φ(2))|| ≤ ||A + B|| ||Φ(1) − Φ(2)|| (66)
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Hence, ∣∣∣∣∣∣[T (Φ(1))
]+ − [T (Φ(2))

]+∣∣∣∣∣∣ ≤ ||A + B||
∣∣∣∣Φ(1) − Φ(2)

∣∣∣∣ . (67)

Setting the norm in (67) as the same norm in (58), the best response of each player is a

contraction map, and thus has a unique fixed point (NE).

APPENDIX B

PROOF OF THEOREM 2

Similar to the proof of Theorem 1, consider the following iteration:

Φ(t+1) = T
(
Φ(t)
)
, t = 1, 2, ..., . (68)

We use the asynchronous convergence theorem [31], which is as follows:

Theorem 5. The iteration in (68) converges asynchronously if the following conditions are

satisfied:

1) There exists a sequence of nonempty sets X (t) such that

· · · ⊂ X (t+ 1) ⊂ X (t) ⊂ · · · ⊂ X . (69)

2) The iteration T (•) must satisfy T (Φ(t)) ∈ (t + 1). Furthermore, every limit point of Φ(t)

must be a fixed point of T (•).

3) For every t, we must have X (t) = X1(t)× · · · × XQ(t) where Xq(t) ⊂ Xq, q ∈ Q.

The first item of Theorem 5 can be proven as follows. let Φ∗ = [Φ∗1, . . . ,Φ
∗
Q]T be the fixed

point of the iteration in (68). Consider the following set

Xq(t) = {Φ ∈ A : ||Φ− Φ∗||2,block ≤ αt||Φ(0) − Φ∗||2,block} ⊂ A (70)

where A = {Φ ∈ RQ : 0 ≤ Φ ≤ 1}, ||a||2,block = max
q∈Q
||aq||2 is the vector block-maximum norm

for a = [a1, . . . , aQ]T with || • ||2 defined as the Euclidean norm, and α = ||A + B|| with A and

B defined in (34) and (35). It can be easily seen that iff α < 1 we have

αt+1||Φ(0) − Φ∗||2,block < αt||Φ(0) − Φ∗||2,block, ∀n = 0, 1, . . . . (71)
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Hence, we can conclude that

X (t+ 1) ⊂ X (t) ⊂ A, t = 1, 2, . . . . (72)

The second item of Theorem 5 can be concluded from Theorem 1. As for the third item of

Theorem 5, consider the following. The set X (t) = X1(t)× · · · × XQ(t) can be decomposed as

follows for all t:

Xq(t) = {0 ≤ Φq ≤ 1 : ||Φq − Φ∗q|| ≤ αt||Φ(0) − Φ∗||2,block}. (73)

Hence, all three conditions required for asynchronous convergence of Algorithm 1 can be satisfied

provided that Theorem 1 holds.

APPENDIX C

PROOF OF THEOREM 3

Without loss of generality assume that Ω represents a set of multiple independent (fictitious)

Eves, whose locations (inside a given area) follows the PPP distribution with density λ. Obviously,

these multiple Eves can be simplified to one Eve provided that a certain density and a certain area

are given. Denote e ∈ Ω as an arbitrary Eve. Using expectation by conditioning, the probability

in (46) can be written as

Pr{Γγ < ν} = E
Ω

[∏
e∈Ω

Pr{Γeγe < ν|Ω}

]
(74a)

= E
Ω

[
exp

(∑
e∈Ω

log
(

Pr{Γeγe < ν|Ω}
))]

. (74b)

In our scenario, each Bob assumes Eves are distributed according to the PPP Ω in a cir-

cle around him with radius d0. The relation between dqe and d′qe can be written as dqe =√
dqq

2 + d′qe
2 − 2dqqd′qecosϕ, where ϕ is the angle between d′qe and dqq that is uniformly dis-

tributed in the range [0, 2π]. Thus,

Γ =
( β√

dqq
2 + β2 − 2dqqβcosϕ

)η
. (75)
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Let d′qe = β. The expectation in (74b) is equivalent to Laplace functional of a point process, so

(74a) can be reduced to [33, Ch. 7]

Pr{Γγ < ν} = exp

(
− λ

∫ d0

0

∫ 2π

0

Pr
{( β√

dqq
2 + β2 − 2dqqβcosϕ

)η
γ > ν

}
βdβdϕ

)
. (76)

Let §q ,
(

β√
dqq

2+β2−2dqqβcosϕ

)η
, q ∈ Q. The quantity γ in (76) is the SINR of a one-branch

diversity combiner with Nq interferers whose CDF is [39]

FX(γ) = 1− 1

1 + γ
. (77)

Using (77) in (76), we end up with

Pr{§qγ > ν} = (1 +
|d†qHqq|2

§qτq|d†qH′qq|2
)

−Nq

. (78)

APPENDIX D

COMPARISON OF COMPLEXITY AND SIGNALING OVERHEAD BETWEEN MRC AND MMSE

RECEIVERS

We first would like to mention that our work may not be applicable to devices with low

computing capabilities like sensors or IoT devices. Note that these devices likely do not have

multiple antennas anyway. However, our solution is in fact meant/designed for multiple antenna

systems, e.g., smart phone, laptops, BSs whose computing powers are reasonably strong. We also

avoided imposing additional computations on nodes in our proposed algorithms. For example,

in the linear receiver stage, we chose MRC receivers instead of the MMSE receivers, as the

MMSE method poses negligible performance improvement at the cost of additional complexity.

In the following, a brief comparison between MMSE and MRC receivers in terms of number of

operations is given35.

The first step to compute an MMSE receiver at each Bob is to calculate the covariance matrix

of the interference at the receive chain of each Bob, which is basically a vector multiplication

operation. Then, each Bob needs to measure the channel between himself and his corresponding

35We skipped the detailed description of an MMSE method of reception for the sake of brevity. The fundamentals of MMSE
receivers can be found at [22, chapter 6]. For more comparison between MRC and MMSE receivers, please see our response to
comment 3 of reviewer 1, or see the simulation section of our manuscript.
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Alice and multiply it to the inverse of the interference’s covariance matrix to establish the

MMSE receiver. Compared to the MRC receiver, which only requires the channel between Bob

and his corresponding Alice, the MMSE receiver requires three more operations (two matrix

multiplications and one inverse) to be established, which can be significant depending on the

number of Alice’s/Bob’s antennas.

Regarding the calculation of TxFJ and RxFJ powers, we first need to reintroduce the following

definitions. The secrecy rate of Aliceq is denoted as Csec
q , and can be defined as

Csec
q , max{Cq − Ceq, 0} (79)

where Cq and Ceq are the information rate at Bobq and the leaked rate at Eve from Aliceq,

respectively. Cq is defined as

Cq , log(1 +
φqPq

aq + bqp′q
) (80)

where φq is the power assignment (PA) for the information signal at Aliceq, Pq is Aliceq’s transmit

power, aq is the normalized multi-user interference received at Bobq, bq is the normalized self-

interference channel at Bobq and p′q is the power of RxFJ. Ceq is defined as

Ceq , log(1 +
φqPq

cq + dqp′q
) (81)

where cq is the normalized interference received at Eve (except the interference received from

the RxFJ of Bobq), dq is the normalized interference received from RxFJ of Bobq. To analyze the

complexity of our power allocation algorithm, we first focus on the case where full knowledge

of E-CSI is available36.

A. Computing the Optimal RxFJ Power

It was shown in the paper that the optimal value of RxFJ can be derived as follows:

p′q
∗

=

P ′q, if bq < dq

0, if bq > dq.
(82)

where P ′q is the total power available at Bobq for RxFJ. It can be sen from (82) that setting the

optimal amount of RxFJ only involves a comparator to judge on the values of bq and dq. Again,

36We need to emphasize that we use the full-ECSI scenario to build foundation for our scheme to handle the case where
knowledge of E-CSI is not available. The procedure for designing the scheme that is robust to E-CSI uncertainties is given in
Section V.
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we assume that in the full-ECSI scenario Aliceq knows the channel between herself and Eve;

Moreover, MUI at Eve (i.e., cq + dqp
′
q
∗) is also known at Aliceq, q ∈ Q.

B. Computing the Optimal Power Allocation between Information and TxFJ Signals

The optimal PA (i.e., φq, ∀q) can be found from the following optimization problem37:

maximize
φq , δ

Csec
q

s.t. cq = aq + (bq − dq)p′q
∗

+ δ

cq > 0

0 < δ < (dq − bq)P ′q + J(1− tq)

0 ≤ φq ≤ 1. (83)

The optimal solution for PA (i.e., φq) can be found by simplifying the following equality:

cq = aq + (bq − dq)p′q
∗

+ δ∗. (84)

Notice that the term cq includes φq, i.e.,

cq ,

∣∣r†qGjq

∣∣σq∣∣∣r†qGq

∣∣∣2 +O (85)

where
∣∣r†qGjq

∣∣ and
∣∣r†qGq

∣∣2 are the E-CSI components, σq = (1 − φq)Pq is the power allocated

to TxFJ and O covers other interference terms at Eve (see Eq. (9) of the paper). Hence, the

simplification of the above equality w.r.t. φq can be easily done. Note that (29) was derived only

to proceed with the game-theoretic analysis of the problem. A detailed procedure to find the

optimal value of φq in a node is as follows.

At a given iteration of our algorithm, say the nth iteration, after setting the optimal value of

RxFJ, in order to determine the optimal PA, Bobq needs to first measure the interference at his

receive chain, i.e., a(n−1)
q + b

(n−1)
q p′q

∗ must be measured, where a
(n−1)
q and b

(n−1)
q indicate the

values of aq and bq at the previous iteration. Assuming that full knowledge of E-CSI is available,

Bobq also knows the MUI at Eve in the previous iteration, i.e., c(n−1)
q + d

(n−1)
q p′q

∗ is known38.

37We skip details of deriving such optimization problem for the sake of brevity, as they already exist in the paper.
38Notice that throughout the iterations of our algorithm, b(n−1)

q = b
(n)
q and d(n−1)

q = d
(n)
q . However, the values of aq and cq

can vary across iterations.
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Hence, Bobq does the following: 1) He subtracts the term |r
†
qGjq|σ(n−1)

q

|r†qGq|2
from c

(n−1)
q ; 2) He adds

the result of subtraction to d
(n−1)
q p′q

∗. Denote the result of this addition as gq; 3) He finds the

optimal PA in the nth iteration, which can be described as:

φ∗q = max

{
min

{
1−

∣∣r†qGq

∣∣2∣∣∣r†qGjq

∣∣∣Pq (a(n−1)
q + b(n−1)

q p′q − gq), 1
}
, 0

}
. (86)

It can be seen that setting the optimal PA involves simple addition, subtraction and division of

scalar values. Moreover, there is no need to know all interference terms at Bobq and Eve, only

the aggregate of these terms (i.e., aq and cq) needs to be known. Knowing the noise floor at

Bobq can be helpful to measure the interference level. For example, in 802.11 systems, the noise

level usually stays at −90 dBm [32]. The computation of PA when E-CSI and MUI at Eve are

not known still involves simple scalar operations, but is different in terms of the signaling it

needs, i.e., the channels that Bobq needs to know for his computations are different from the

full-ECSI scenario. The signaling overhead associated to the robust scheme was already detailed

in Section V.B of the current manuscript.

Thus, to the best of our knowledge, users with reasonably high computational capability can

still perform the operations required by our algorithms with modest complexity.

APPENDIX E

DETAILED ANALYSIS OF THE ROBUST SCHEME

Note that we focus on no E-CSI knowledge in only Section V. However, for the purpose

of laying a theoretical foundation, until Section V, we assume that E-CSI is available. In the

scenario where knowledge of E-CSI is not available, we are in fact focused on optimizing the

ergodic secrecy rate. In what follows, we give the details of our robust scheme. We first present a

detailed formulation of our robust scheme to show that our robust scheme focuses on optimizing

ergodic secrecy rate. Then, we provide the proofs of existence of NE as well as conditions that

guarantee it uniqueness.
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A. Detailed Formulation of the Robust Scheme

We first need to revisit the main optimization problem in (26). We have

max
φq , δ

Uq(, φq, δ, ξ) = Csec
q

s.t. cq(ξ) = aq + (bq − dq(ξ))p′q
∗

+ δ

cq(ξ) > 0

0 < δ < (dq(ξ)− bq)P ′q + J(1− tq(ξ))

0 ≤ φq ≤ 1. (87)

where ξ is a parameter that indicates all E-CSI components. Note that the terms cq, dq and tq

are shown as functions of ξ, as they depend on E-CSI components. When knowledge of E-CSI

is not available, the parameter ξ can be treated as a random variable, i.e., ξ represents a random

variable that maps the elements of a (continuous) set of random events Ω to a real-valued vector

which is referred to as E-CSI components. Now, we should optimize the expected value of Uq

w.r.t. E-CSI components (i.e., Eξ
[
Uq(φq, δ, ξ)

]
), which is the same as optimizing the ergodic

secrecy rate, (i.e., Eξ
[
Csec
q

]
). However, taking the expected value of the objective in (87) is not

enough to convert problem (87) into a stochastic programming problem because the constraints

of (87) also depend on E-CSI components. Without loss of generality, let Ω be a set of infinitely

many discrete events ωi, i = 1, 2, . . . , which are mapped to random variables ξi, i = 1, 2, . . . .

Thus, the stochastic programming formulation of (87) can be written as [33]

max
φq , δ

Eξ[Uq(, φq, δ, ξ)] =
∑
i=1

Pr(ξi)Uq(, φq, δ, ξi)

s.t. 0 ≤ φq ≤ 1.

cq(ξi) = aq + (bq − dq(ξi))p′q
∗

+ δ

cq(ξi) > 0

0 < δ < (dq(ξi)− bq)P ′q + J(1− tq(ξi))

∀i = 1, 2, . . . . (88)
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Removing the slack variable δ gives us the following formulation:

max
φq

∑
i=1

Pr(ξi)Uq(, φq, ξi)

s.t. 0 ≤ φq ≤ 1.

cq(ξi) ≥ aq + (bq − dq(ξi))p′q
∗

cq(ξi) > 0

 ∀i = 1, 2, . . . . (89)

Notice that in (88), the constraints need to hold for all ξi (i.e., all realization of E-CSI). In the

jargon of stochastic programming, the first constraint in (89) is known as first-stage constraints,

and the set of constraints that depend on ξi are referred to as second-stage constraints. In the case

of finite set of random events (i.e., finite realizations of ξi) or some special types of objective

functions, one can use two-stage stochastic programming approaches to efficiently solve (89)

[33]. However, the set of random events is not finite in our case because the variations of the

wireless environment are usually modeled as continuous distributions. Thus, the formulation in

(89) becomes prohibitively difficult to solve with two-stage stochastic programming approaches.

Therefore, we need to settle with a sub-optimal solution that is easier to achieve. To do this, we

look at (89) again.

Recall that we already explained that the first second-stage constraint is mainly to do with

allocating enough power to TxFJ to achieve positive secrecy. Ensuring that this constraint is

satisfied across all ξi (i.e., all realizations of E-CSI) can be limiting. For example, for some

(less probable) realizations of E-CSI, the channel between Aliceq and Eve can be a lot stronger

than that between Aliceq and Bobq. Thus, ensuring positive secrecy for this realization can force

Aliceq to allocate most of her power to TxFJ, which may be too conservative. We aim to avoid

this issue by ensuring positive secrecy with a certain probability, i.e., positive secrecy is ensured

across a subset of E-CSI realizations. In other words, the qth link needs to satisfy the following:

Pr
(

(cq(ξi) ≥ aq + (bq(ξi)− dq(ξi))p′q
∗
)
≥ ε (90)

where ε is a given probability for ensuring positive secrecy. An equivalent formulation of (90)

already exists in the paper with different notations (see Section V). The probabilistic formulation

in (90) later allowed us in the paper to find out a PA scheme for the case where E-CSI is unknown

(see Section V). We also showed in simulations that a high value of ε although decreases the
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leaked rate at Eve, it does not leave much power for the information signals and much freedom

in interference management between legitimate links (see Section VI).

Overall, we saw that the main objective in our stochastic programming formulation was to

maximize the ergodic secrecy rate. However, because of complexity of the stochastic program-

ming formulation, we had to relax the stochastic programming formulation, which led us to the

robust scheme we proposed in the paper.

The last issue is related to the on-off scheme proposed earlier for the RxFJ. As it was shown

in Section III, the choice of RxFJ depends on whether bq < dq or bq > dq. When bq < dq

becomes a random variable in the case of unknown E-CSI, we choose to use RxFJ whenever

Pr{bq < dq} > 0.5. Computing Pr{bq < dq} was detailed in Theorem 3.

B. Existence and Uniqueness of NE in the Robust Scheme

We previously showed that in our robust scheme, the qth link, q ∈ Q aims satisfy the inequality

in (40) (or equivalently in (90)), which leads to the following solution for the PA between

information and FJ signals.

φq = max

{
min

{
1− Pr{bq < dq}

E[ψq + τqP
′
qEq]

(1− ε)Pq
− Pr{bq > dq}

E[ψq]

(1− ε)Pq
, 1

}
, 0

}
. (91)

Notice that because our aim is to satisfy (90), then the stochastic program in (89) together with

the set of constraints of (89) that hold (as a result of satisfying (90)) constitute a convex program

with a compact and convex set of constraints. Hence, by using this stochastic formulation for

each link, we can make sure that the NE exists in the robust scheme [30]. Now, we need to

integrate the best responses of all links into one vector equation, so that we can establish a

fixed-point problem and use the concepts of fixed-point theory to comment on the uniqueness

of NE. Same as what we did in the proof of Theorem 1, we concatenate the solution in (91) for

all q to establish the following fixed point problem in its t−th iteration

Φ(t+1) = 1 +
1

1− ε

(
E[A + B]Φ(t) + E[f ]

)
(92)

where Φ = [φ1, . . . , φQ]T is the vector of PAs for all links, 1 is a vector of appropriate size

whose entries are all 1, and E[•] is the expectation operator. It can be seen that (92) is similar

to (36) with the only difference that in (92) we applied expectation w.r.t E-CSI to all terms. To

analyze the uniqueness of NE, the fixed-point problem in (92) must be in closed form, i.e., the
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expectation terms in (92) must be computable. Section V gives the close-form representation

of these terms (see (45)–(52) and Theorem 3). Hence, the closed-form representation of links’

best responses can be derived, and all the NE uniqueness analysis that we did for the full-ECSI

scenario in Theorem 1 is applicable in the robust scheme as well.

Using the robust formulation in Section V, the inequality in (53) (which gives us the conditions

on the uniqueness of NE in the robust scheme) can be deduced the same way that we introduced

(33) of the paper (to judge on the uniqueness of NE in the full-ECSI scenario). The difference is

that instead of matrix A + B, we need to analyze the matrix 1
1−εE[A + B], where the expectation

is element-wise and is w.r.t. E-CSI components. Moreover, the same way that we claimed (and

proved) (38) is a sufficient condition to satisfy (33) in the full-ECSI case, (54) can also be

considered as a sufficient condition to satisfy (53).
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