
An E�cient Algorithm for

Finding a Path Subject to Two Additive Constraints

�

Turgay Korkmaz

Dept. of Elec. & Comp. Eng.

University of Arizona

Tucson, AZ 85721

turgay@ece.arizona.edu

Marwan Krunz

Dept. of Elec. & Comp. Eng.

University of Arizona

Tucson, AZ 85721

krunz@ece.arizona.edu

Spyros Tragoudas

Dept. of Elec. & Comp. Eng.

University of Illinois

Carbondale, IL

spyros@engr.siu.edu

Abstract

One of the key issues in providing end-to-end quality-of-

service (QoS) guarantees in packet networks is how to de-

termine a feasible route that satis�es a set of constraints

while simultaneously maintaining high utilization of net-

work resources. In general, �nding a path subject to mul-

tiple additive constraints (e.g., delay, delay-jitter) is an NP-

complete problem that cannot be exactly solved in polyno-

mial time. Accordingly, heuristic and approximation algo-

rithms are proposed to this problem. However, these algo-

rithms su�er from either excessive computational cost or low

performance. In this paper, we provide an e�cient approxi-

mation algorithm for �nding a path subject to two additive

constraints. The worst-case computational complexity of

this algorithm is within a logarithmic number of calls to Di-

jkstra's shortest path algorithm. In practice, the average

complexity of the algorithm is even much lower, since the

worst-case complexity is rarely needed. The performance of

the proposed algorithm is justi�ed via theoretical bounds

that are provided for the optimal version of the path selec-

tion problem. To achieve further performance improvement,

several extensions to the basic algorithm are also provided

at very low computational cost. Extensive simulations are

used to demonstrate the high performance of the proposed

algorithm and to contrast it with other path selection algo-

rithms.

keywords: Multiple constrained path selection, QoS-based

routing, scalable routing.

1 Introduction

Integrated network services (e.g., ATM, Intserv, Di�serv)

are being designed to provide quality-of-service (QoS) guar-

antees to various applications such as audio, video, and

�

This work was supported by the National Science Foundation

under Grant ANI 9733143 and Grant CCR 9815229. Authors names

are listed in alphabetical order.

data. Many of these applications have multiple QoS re-

quirements in terms of bandwidth, delay, delay-jitter, loss,

etc. One of the important problems in QoS-based service

o�erings is how to determine a route that satis�es multi-

ple constraints (or QoS requirements) while simultaneously

achieving e�cient utilization of network resources. This

problem is known as QoS-based (or constraint-based) rout-

ing, and is being extensively investigated in the research

community [8, 25, 13, 4, 37, 33, 22, 24].

In general, routing consists of two basic tasks: distribut-

ing the state information of the network and searching this

information for a feasible path with respect to (w.r.t.) given

constraints. In this paper, we focus on the second task, and

assume that the true state of the network is available to

every node (e.g., via link-state routing) and that nodes use

this state information to determine an end-to-end feasible

path (see [17] for QoS routing under inaccurate informa-

tion). Each link in the network is associated with multiple

QoS parameters. These parameters can be classi�ed into

additive and non-additive [2, 34]. For additive constraints

(e.g., delay), the cost of an end-to-end path is given, exactly

or approximately, by the sum of the individual link param-

eters (or weights) along that path. In contrast, the cost of a

path w.r.t. a non-additive constraint (such as bandwidth) is

determined by the value of that constraint at the bottleneck

link. Non-additive constraints can be easily dealt with as a

preprocessing step by pruning all links that do not satisfy

the requested non-additive QoS values [35]. Hence, in this

paper we will mainly focus on additive constraints. The un-

derlying problem of path selection subject to two additive

constraints can be stated as follows.

De�nition 1 Multiple Constrained Path Selection (MCP):

Consider a network that is represented by a directed graph

G = (V; E), where V is the set of nodes and E is the

set of links. Each link (u; v) 2 E is associated with two

non-negative additive QoS values: w

1

(u; v) and w

2

(u; v).

Given two constraints c

1

and c

2

, the problem is to �nd

a path p from a source node s to a destination node t

such that w

1

(p) � c

1

and w

2

(p) � c

2

, where w

1

(p)

def

=

P

(u;v)2p

w

1

(u; v) and w

2

(p)

def

=

P

(u;v)2p

w

2

(u; v).

The MCP decision problem is known to be NP-complete

[16, 23]. In other words, there is no e�cient (polynomial-

time) algorithm that can surely �nd a feasible path which si-

multaneously satis�es both constraints. A related yet slightly

di�erent problem is known as the restricted shortest path

(RSP) problem, in which the returned path is required to

satisfy one constraint while being optimal w.r.t. another pa-

rameter. Any solution to the RSP problem can be also ap-

plied to the MCP problem. However, the RSP problem is

also known to be NP-complete [16, 1]. Both the MCP and

RSP problems can be solved via pseudo-polynomial-time al-

gorithms in which the complexity depends on the actual

values of the link weights (e.g., maximum link weight) in

addition to the size of the network [23, 20]. However, these

algorithms are computationally expensive if the values of the

link weights and the size of network are large. To cope with

the NP-completeness of these problems, researchers have re-

sorted to several heuristics and approximation algorithms.

One common approach to the RSP problem is to �nd

the k-shortest paths w.r.t. a cost function de�ned based on

the link weights and the given constraint, hoping that one

of these paths is feasible and near-optimal [19, 31, 15, 18].

The value of k determines the performance and overhead of

this approach; if k is large, the algorithm has good perfor-

mance but its computational cost is prohibitive. A similar

approach to the k-shortest paths is to implicitly enumerate

all feasible paths [3], but this approach is also computation-

ally expensive. In [36] the author proposed the Constrained

Bellman-Ford (CBF) algorithm. Although this algorithm

exactly solves the RSP problem, its running time grows ex-

ponentially in the worst-case. The authors in [30] proposed

a distributed heuristic solution for RSP with message com-

plexity of O(n

3

), where n is the number of nodes. This

complexity was improved in [38, 21]. In [20] the author

presented two �-optimal approximation algorithms for RSP

with complexities of O(log logB(m(n=�) + log logB)) and

O(m(n

2

=�) log(n=�)), where B is an upper bound on the so-

lution (e.g., the longest path), m is the number of links, and

� is a quantity that reects how far the solution is from the

optimal one. Although the complexities of these �-optimal

algorithms are polynomial, they are still computationally

expensive in large networks [28]. Accordingly, the author

in [28] investigated the hierarchical structure of such net-

works and provided a new approximation algorithm with

better scalability.

Although both the RSP and MCP problems are NP-

complete, the latter problem seems to be easier than the

former in the context of devising approximate solutions. Ac-

cordingly, in [23] Ja�e considered the MCP problem and pro-

posed an intuitive approximation algorithm to it based on

minimizing a linear combination of the link weights. More

speci�cally, this algorithm returns the best path w.r.t. l(e)

def

=

�w

1

(p)+�w

2

(p) by using Dijkstra's shortest path algorithm,

where �; � 2 Z

+

. The key issue here is to determine the

appropriate � and � such that an optimal path w.r.t. l(e) is

likely to satisfy the individual constraints. In [23] Ja�e de-

termined two sets of values for � and � based on minimizing

an objective function of the form f(p) = maxfw

1

(p); c

1

g +

maxfw

2

(p); c

2

g. For the RSP problem, the authors in [6]

proposed a similar approximation algorithm that dynami-

cally adjusts the values of � and �. However, the compu-

tational complexity of this algorithm grows exponentially

with the size of the network. Chen and Nahrstedt proposed

another heuristic algorithm that modi�es the problem by

scaling down the values of one link weights to bounded in-

tegers [7]. They showed that the modi�ed problem can be

solved by using Dijkstra's (or Bellman-Ford) shortest path

algorithm and that the solution to the modi�ed problem

is also a solution to the original one. When Dijkstra's al-

gorithm is used, the computational complexity of their al-

gorithm is O(x

2

n

2

); when Bellman-Ford algorithm is used,

the complexity is O(xnm), where x is an adjustable pos-

itive integer whose value determines the performance and

overhead of the algorithm. To achieve a high probability of

�nding a feasible path, x needs to be as large as 10n, re-

sulting in computational complexity of O(n

4

). In [14] Neve

and Mieghem used the k-shortest paths algorithm in [9] with

a nonlinear cost function to solve the MCP problem. The

resulting algorithm, called TAMCRA, has the complexity

of O(kn log(kn) + k

3

Km), where K is the number of con-

straints. As mentioned above, the performance and over-

head of this algorithm depend on k.

Other works in the literature were aimed at addressing

special yet important cases of the QoS routing problem. For

example, some researchers focused on an important subset of

QoS requirements (e.g., bandwidth and delay) [35]. Several

path selection algorithms based on di�erent combinations of

bandwidth, delay, and hop-count were discussed in [27, 26, 5]

(e.g., widest-shortest path, shortest-widest path). In addi-

tion, new algorithms were proposed to �nd more than one

feasible path w.r.t. bandwidth and delay (e.g., Maximally

Disjoint Shortest and Widest Paths) [32]. Another approach

to QoS routing is to exploit the dependencies between the

QoS parameters and solve the path selection problem assum-

ing speci�c scheduling schemes at network routers [26, 29].

Speci�cally, if Weighted Fair Queueing (WFQ) scheduling

is being used and the constraints are bandwidth, queueing

delay, jitter, and loss, then the problem can be reduced to

standard shortest path problem by representing all the con-

straints in terms of bandwidth. Although queueing delay

can be formulated as a function of bandwidth, this is not

the case for the propagation delay, which is the dominant

delay component in high-speed networks [10].

Contributions and Organization of the Paper

Previously proposed algorithms su�er from either excessive

computational complexities or low performance in �nding

feasible paths. We �rst provide an e�cient approximation

algorithm for the MCP problem under two additive con-

straints in Section 3. Indeed, our algorithm is based on

the minimization of the same linear cost function �w

1

(p) +

�w

2

(p) presented in [23]. This formulation is similar to that

used in the Lagrange relaxation technique. However, this

technique provides a general platform, rather than a solu-

tion, by formulating constrained optimization problems as

a linear composition of constraints. The solution to the La-

grange problem requires searching for the appropriate linear

composition (Lagrange multipliers); the appropriate values

of � and � in our case. Any combinatorial algorithm (heuris-

tic) that has been or will be proposed for linear optimization

problems is a careful re�nement of the search for the appro-

priate multipliers in the Lagrangian problem. When formu-

lated as a Lagrangian multipliers problem, the search would

typically be based on computationally expensive methods,

such as enumeration, linear programming, and subgradient

optimization [1]. Instead, we provide a binary search strategy

to �nd the appropriate value of k in the composite function

w

1

(p)+kw

2

(p) or kw

1

(p)+w

2

(p) within a logarithmic num-

ber of calls to Dijkstra's algorithm. This fast search is one of

the main contributions in the paper. The algorithm always

returns a path p. If p is not feasible, then it has the following

properties: (a) w

j

(p) � c

j

, and (b) w

i

(p) is within a given

factor from a feasible path f for which w

i

(f) is minimum,

where (i; j) are either (1; 2) or (2; 1). Our basic algorithm

performs a binary search in the range [1;B] by calling a hier-

archical version of Dijkstra's algorithm, which is described in

Section 2. Using an e�cient implementation of Dijkstra's al-

gorithm with complexity ofO(m+n log n) [1], the worst-case

complexity of our basic algorithm is O(logB(m+ n log n)).

Its average complexity is observed to be much less than that.

The space complexity is O(n). By proper interpretation of

the bounds in (a) and (b), we also present two extensions to

our basic algorithm in Section 4 to achieve further improve-

ment in routing performance at small extra computational

cost. Simulation results, which are provided in Section 5,

demonstrate the high performance of our algorithm and con-

trast it with other path selection algorithms. Conclusions

and future work are presented in Section 6.

2 Hierarchical Shortest Path Algorithm

In this section, we describe a hierarchical version of Dijk-

stra's shortest path algorithm that is used iteratively in our

algorithm with a composite link weight l(e)

def

= �w

1

(e) +

�w

2

(e). In addition to �nding one of the shortest paths

w.r.t. l(e), the hierarchical version of Dijkstra's algorithm

determines the minimum w

1

() and w

2

() among all short-

est paths. To carry out these tasks, some modi�cations are

needed in the relaxation process of the standard Dijkstra's

algorithm (lines 4{14 in Figure 1). The standard Dijkstra's

Relax(u,v)

1 if d[v] > d[u] + l(u; v) then

2 d[v] := d[u] + l(u; v)

3 �[v] := u

4 w

1

[v] := w

1

[u] + w

1

(u; v)

5 w

2

[v] := w

2

[u] + w

2

(u; v)

6 min w

1

[v] := w

1

[v]

7 min w

2

[v] := w

2

[v]

8 else if d[v] = d[u] + l(u; v) then

9 if min w

1

[v] > min w

1

[u] +w

1

(u; v) then

10 min w

1

[v] := min w

1

[u] + w

1

(u; v)

11 end if

12 if min w

2

[v] > min w

2

[u] +w

2

(u; v) then

13 min w

2

[v] := min w

2

[u] + w

2

(u; v)

14 end if

15 end if

Figure 1: New relaxation procedure for the hierarchical ver-

sion of Dijkstra's algorithm.

algorithm maintains two labels for each node [12]: d[u] to

represent the estimated total cost of the shortest path from

the source node s to node u w.r.t. the composed weight l(e),

and �[u] to represent the predecessor of node u along the

shortest path. The hierarchical version of Dijkstra's algo-

rithm maintains additional labels: w

1

[u] and w

2

[u] to rep-

resent the cost of the shortest path w.r.t. the individual

weights, and labels min w

1

[u] and min w

2

[u] to represent

the minimum w

1

and w

2

weights among all shortest paths.

1

The standard relaxation process (lines 1{3 in Figure 1) tests

whether the shortest path found so far from source node s

to node v can be improved by passing through node u. If so,

d[v] and �[v] are updated [12]. Under this condition, we add

the update of w

1

[v],w

2

[v],min w

1

[v], andmin w

2

[v]. In ad-

dition, if the cost of the shortest path found so far from node

1

Notice that w

i

[:] is a node label, whereas w

i

(:) indicates the

weight of a link or the cost of a path.

s to node v is the same as that of the path passing through

node u, then min w

1

[v] and min w

2

[v] are also updated if

passing through node u would improve their values.

3 Basic Approximation Algorithm For MCP

Our algorithm, shown in Figure 2, �rst executes the hi-

erarchical version of Dijkstra's algorithm with link weight

l(e) = w

1

(e) + w

2

(e), i.e., � = 1 and � = 1. If p is fea-

BasicApproximation(G(V;E); s; t; c

1

; c

2

)

// Find a path p from s to t in the network G = (V;E)

// such that w

1

(p) = w

1

[t] � c

1

and w

2

(p) = w

2

[t] � c

2

.

1 Set l(e) := w

1

(e) + w

2

(e) 8e 2 E

2 Execute hierarchical Dijkstra's algorithm

with link weights fl(e) : e 2 Eg

3 if w

2

[t] � c

2

and w

1

[t] � c

1

then

4 return SUCCESS

5 end if

6 if w

1

[t] > c

1

and w

2

[t] > c

2

then

7 return FAILURE

8 end if

9 if min w

2

[t] � c

2

then

10 Execute Binary Search(i = 1, j = 2) /* Phase 1 */

11 else if min w

1

[t] � c

1

then

12 Execute Binary Search(i = 2, j = 1) /* Phase 2 */

13 end if

end BasicApproximation

Figure 2: Approximation algorithm for �nding a feasible

path subject to two additive constraints.

sible, then the algorithm terminates. Otherwise, p is not

feasible and several other cases need to be considered. If

both w

1

(p) > c

1

and w

2

(p) > c

2

, then it is guaranteed that

there is no feasible path [23], so the algorithm terminates. If

min w

1

[t] � c

1

ormin w

2

[t] � c

2

, then there might be a fea-

sible path that can be found using di�erent values of � and

�. The challenging problem is how to determine appropriate

values for � and � as fast as possible so that a feasible path

can be identi�ed quickly. Finding the appropriate values for

� and � can also be formulated as a Lagrangian multipliers

problem. But in this case, �nding the Lagrange multipliers

would typically be done using computationally expensive

methods (e.g., enumeration, linear programming, subgradi-

ent optimization technique) [1]. Instead, we carefully re�ne

the search required by the Lagrangian problem and provide

a binary search strategy for � and � that is guaranteed to

terminate within a logarithmic number of calls to Dijkstra's

algorithm.

If min w

1

[t] � c

1

or min w

2

[t] � c

2

, then the algorithm

executes the binary search presented in Figure 3 with (i =

1; j = 2) or (i = 2; j = 1). These two cases are called

Phase 1 and Phase 2. In Phase 1, the algorithm executes

the binary search using link weight l(e) = kw

1

(e) + w

2

(e),

i.e., � = k and � = 1. In Phase 2, the algorithm executes the

binary search using link weight l(e) = w

1

(e) + kw

2

(e), i.e.,

� = 1 and � = k. If the returned shortest path w.r.t. l(e) is

not feasible, the algorithm repeats the hierarchical Dijkstra's

algorithm up to a logarithmic number of di�erent values of

k in the range [1;B], where B = n � maxfw

j

(e) j e 2 Eg,

Binary Search(i; j)

1 k min := 1

2 k max := n �maxfw

j

(e) j e 2 Eg

3 while(k min <= k max) do

4 k :=

�
p

k min � k max

�

5 Set l(e) := kw

i

(e) +w

j

(e) 8e 2 E

6 Execute hierarchical Dijkstra's algorithm

with link weights fl(e) : e 2 Eg

7 if w

1

[t] � c

1

and w

2

[t]� c

2

then

8 return SUCCESS

9 end if

10 if min w

j

[t] � c

j

then

11 k min := k + 1 /* k will be increased */

12 else

13 k max := k� 1 /* k will be decreased */

14 end if

15 end while

end Binary Search

Figure 3: Binary search for our approximation algorithm.

which is an upper bound on the total cost of the longest path

w.r.t. link weight w

j

. Lemma 1 in Section 3.2 shows that

a binary search argument in the above range can be used

to determine an appropriate value for k. Furthermore, we

show (in Lemma 2) that if the binary search fails to return a

feasible path, then it returns a path p such that w

j

(p) � c

j

and w

i

(p) � w

i

(f) + (w

j

(f) � w

j

(p))=k, where f is some

feasible path and (i; j) are either (1; 2) or (2; 1). This is

a reasonable scenario for searching fast for a feasible path

that satis�es one of the constraints and that is very likely

to satisfy the other constraint. According to this bound,

k needs to be maximized; the above binary search tries to

achieve this goal. In addition to maximizing k, the algorithm

may attempt to minimize the di�erence (w

j

(f)�w

j

(p)) to

make the approximation bound tighter. This is an extension

to the basic algorithm that is presented in Section 4.

3.1 How the Basic Algorithm Works

The systematic adjustment of k is illustrated in the exam-

ples in Figures 4 and 5 for two di�erent phases. The shaded

area indicates the feasibility region. Black dots represent

the costs of di�erent paths from source node s to destination

node t. Each line in the �gure shows the equivalence class

of equal-cost paths w.r.t. the composed weight. The ap-

proximation algorithm determines a line for the given value

of k, and then moves this line outward from the origin in

the direction of the arrow. Whenever this line hits a path

(i.e., black dot in the �gure), the algorithm returns this path

which is the shortest w.r.t. the composed weight at the given

k. The approximation algorithm in [23] makes a good guess

for k (e.g., k = 1) and returns a path based on this k. How-

ever, if this path is infeasible the algorithm in [23] cannot

proceed. As shown in Figures 4 and 5, the likelihood of

�nding a feasible path is much higher if one tries di�erent

values of k (e.g., k = 4 in these examples results in a feasible

path). The advantage of our algorithm over the one in [23]

is that ours searches systematically for a good value for k

instead of �xing it in advance. If the returned path p is not

feasible, then the algorithm decides to increase or decrease

the value of k based on whether min w

j

(p) � c

j

or not.

Figure 4 illustrates Phase 1 where the returned path with

c2

c1

w
2
(p

)

w1(p)
0

0
k=1

(a)

c2

c1

w
2
(p

)

w1(p)
0

0
k=4

(b)

Figure 4: Searching for a feasible path in Phase 2.

k = 1 satis�es c

2

but not c

1

. The algorithm executes the

binary search with i = 1 and j = 2 and returns a feasible

path when k = 4, as shown in Figure 4(b). Figure 5 illus-

trates Phase 2 where the returned path with k = 1 satis�es

c

1

but not c

2

. In this case, the algorithm executes the binary

c2

c1

w
2
(p

)

w1(p)
0

0
k=1

(a)

c2

c1

w
2
(p

)

w1(p)
0

0
k=4

(b)

Figure 5: Searching for a feasible path in Phase 2.

search with i = 2 and j = 1, and �nally returns a feasible

path when k = 4. If the binary search fails, then the basic

algorithm stops even though there might be a feasible path

in the network. In Section 4, we illustrate such a case and

provide possible remedies to it based on a scaling extension.

3.2 Binary Search

Lemma 1 Suppose that each link e 2 E is assigned a weight

l(e) = kw

i

(e) + w

j

(e), where k is an integer, and the pair

(i; j) is either (1; 2) or (2; 1), depending on the phase. Dur-

ing the execution of the binary search, if the algorithm can-

not �nd a path p for which l(p) is minimum and w

j

(p) � c

j

,

then such a path p cannot be found with larger values of k.

Proof of Lemma 1: The binary search is applied to

�nd the largest k such that there exists a shortest path p

w.r.t. l(e) = kw

i

(e) + w

j

(e) with w

j

(p) � c

j

. Assume that

k = 2r for some integer r. Let P be the set of all paths

from s to t w.r.t. l(e) and let p be a path that the algorithm

selects during the binary search. When k = 2r, since all

edges are assigned weights l(e) = 2rw

i

(e) +w

j

(e), we have

l(p) = min

q2P

f

X

e2q

2rw

i

(e) + w

j

(e)g:

In order to prove the lemma, it su�ces to show that if

X

e2p

w

j

(e) > c

j

then the algorithm should never search for a path p

0

that

satis�es the c

j

constraint by assigning l(e) = rw

i

(e)+w

j

(e).

By explicitly checking min w

j

[t] in line 10 of Figure 3,

the algorithm guarantees that

P

e2q

w

j

(e) > c

j

for all short-

est paths q 2 P, where l(q) = l(p). Thus, it su�ces to show

that if the algorithm assigns weights l(e) = 2rw

i

(e) +w

j

(e)

and fails to �nd a feasible path w.r.t. constraint c

j

, then no

path p

0

for which

X

e2p

0

2rw

i

(e) + w

j

(e) >

X

e2p

2rw

i

(e) + w

j

(e) (1)

will satisfy both

X

e2p

0

rw

i

(e) +w

j

(e) <

X

e2p

rw

i

(e) +w

j

(e)

and

X

e2p

0

w

j

(e) < c

j

when the value of k is reduced to r. In other words, it is

useless to weight with the rule l(e) = rw

i

(e)+w

j

(e) in order

to search for a path p

0

whose

P

e2p

0

2rw

i

(e) + w

j

(e) is not

minimum but satis�es the c

j

constraint.

Since path p violates the c

j

constraint, in order for path

p

0

to satisfy this constraint, we must have:

X

e2p

w

j

(e)�

X

e2p

0

w

j

(e) > 0: (2)

Observe that Equation (1) can be rewritten as

2r

X

e2p

0

w

i

(e)�

X

e2p

w

i

(e)

!

>

X

e2p

w

j

(e)�

X

e2p

0

w

j

(e)) (3)

From (3) and (2), we have

X

e2p

0

w

i

(e)�

X

e2p

w

i

(e) > 0: (4)

Based on (2) and (4), we know that the right-hand side and

the left-hand side of the inequality (3) are positive. Thus,

it can be implied that

r

X

e2p

0

w

i

(e)�

X

e2p

w

i

(e)

!

>

X

e2p

w

j

(e)�

X

e2p

0

w

j

(e)) (5)

from which we conclude that

X

e2p

0

rw

i

(e) + w

j

(e) >

X

e2p

rw

i

(e) +w

j

(e)

This, in turn, implies that p

0

will not be selected by the

algorithm, and thus the claim about the optimality of the

proposed binary search scheme is true.

3.3 Performance Bounds

Lemma 2 If the binary search fails to return a feasible path

w.r.t. both constraints, then it returns a path p that satis�es

the c

j

constraint and whose w

i

() cost is upper bounded as

follows:

w

i

(p) � w

i

(f) + (w

j

(f)�w

j

(p))=k

where f is a feasible path, k is the maximum value that the

binary search determines at the termination, and the pair

(i; j) is either (1; 2) or (2; 1), depending on the phase.

Note that the worst-case approximation bound for Lemma 2

is obtained when k = 1 and w

j

(p) = 0. In this case, the

bound will be

w

i

(p) � w

i

(f) + w

j

(f) � c

1

+ c

2

(6)

Clearly, since this bound is obtained in the �rst step where

the algorithm starts with k = 1 and decides which composite

cost function needs to be used in the binary search, this

bound holds for the overall algorithm. Note that in this

case the only feasible path happens to be on the far corner

of the feasibility region and the other paths have w

i

(p) =

c

1

+ c

2

and w

j

(p) = 0. In most cases, feasible paths are

scattered all around in the feasibility region, allowing the

algorithm to return a larger k, which in turn results in a

tighter bound than (6). In addition, w

j

(p) is often greater

than zero, further tightening the bound.

Proof of Lemma 2: Let f be a feasible path for which

w

i

(f) is the smallest possible among all feasible paths, where

i is either 1 or 2, depending on the phase. Furthermore,

assume that f is not dominated by any other feasible path.

(We say that a feasible path dominates another path if it

has shorter costs w.r.t. both w

1

() and w

2

() weights.) This

implies that w

j

(f) > w

j

(f

0

) for any other feasible path f

0

.

We know that w

j

(f

0

) cannot be more than c

j

and it is less

than w

j

(p); otherwise, the algorithm would have returned

f

0

. Assume that the path p is infeasible. Since it is the

shortest path, we have

kw

i

(p) + w

j

(p) � kw

i

(f) +w

j

(f): (7)

In addition, the path p satis�es the constraint c

j

. From (7),

we can write a bound on w

i

(p) as follows

w

i

(p) � w

i

(f) + (w

j

(f)�w

j

(p))=k

4 Extensions of the Basic Algorithm

4.1 Finding a Path with the Closest Cost to a Con-

straint

From Lemma 2, it is clear that one way to improve the per-

formance of the basic algorithm is to minimize the di�erence

(w

j

(f)�w

j

(p)). This minimization can be achieved by ob-

taining a path p for which w

j

(p) is as close as possible to

c

j

. This can be done with the following modi�cation to the

basic algorithm of Section 3. Without loss generality, we

assume that i = 1 and j = 2. Note that this extension

must be used if the returned path is not feasible but both

min w

1

[t] � c

1

and min w

2

[t] � c

2

.

For the given k, a DAG (directed acyclic graph) that

contains all possible shortest paths w.r.t l(e) is constructed.

In fact, this can be done during the execution of the hierar-

chical Dijkstra's algorithm at no extra cost. A path p from

this DAG is selected in such a way that w

2

(p) is maximized,

but it is still less than or equal to c

2

. Although, a path p

with the maximum or minimum w

2

() weight can be found

in the DAG, it is not easy to �nd a path p for which w

2

(p) is

as close as possible to c

2

in polynomial-time. However, very

e�cient heuristics can be developed based on the fact that

we can compute the maximum and the minimum w

2

() from

the source to every node and from every node to the desti-

nation. Let the following labels be maintained for each node

u: M [u], m[u],

e

M [u], and em[u]. Labels M [u] and m[u] in-

dicate, respectively, the maximum and minimum w

2

() from

the source to every node u. Labels

e

M [u] and em[u] indicate,

respectively, the maximum and minimum w

2

() from every

node u to the destination. Labels M [u], m[u],

e

M [u] and

em[u] are determined by using a simple forward and back-

ward topological traversal algorithm [1]. Considering the

pairwise sum of these labels as follows, we can estimate a

non-additive weight �(u; v) for every link (u; v) in the DAG

to indicate how close w

2

() of the paths passing through the

link (u; v):

�(u; v) = min non neg

8

>

>

>

<

>

>

>

:

c

2

� (M [u] +w

2

(u; v) +

e

M [u[v]);

c

2

� (M [u] +w

2

(u; v) + em[u[v]);

c

2

� (m[u] + w

2

(u; v) +

e

M [u[v]);

c

2

� (m[u] + w

2

(u; v) + em[u[v]);

+1

9

>

>

>

=

>

>

>

;

where min non neg returns the minimum non-negative value.

Then, the closest path to c

2

can be found via a simple graph

traversal algorithm as follows. Starting from the source node

s, the algorithm selects the link (s; u) with the minimum �.

It then goes to node u and again selects the link (u; v) with

the minimum �. The algorithm keeps selecting links with

minimum � until it hits t.

Figure 6 depicts an example of how a DAG of shortest

paths is constructed. The original network is shown in Fig-

ure 6(a). Suppose a path p is to be found from s to t such

that w

1

(p) � c

1

= 10 and w

2

(p) � c

2

= 10. Consider the

s t

1

2

3,2

3,6

2,2

4,5

9,5

7,8
4,2

5,6

3

(a)

s t

1

2

3,2

3,6

2,29,5

4,5

(b)

Figure 6: An example of a network and the DAG containing

the three shortest paths from s to t.

case when k = 1, i.e., the algorithm minimizes w

1

(p)+w

2

(p).

There are three shortest paths from s to t: p

1

=< s; 1; t >

with w

1

(p

1

) = 7 and w

2

(p

1

) = 11, p

2

=< s; 2; t > with

w

1

(p

2

) = 11 and w

2

(p

2

) = 7, and p

3

=< s; 1; 2; t > with

w

1

(p

3

) = 9 and w

2

(p

3

) = 9. For these shortest path, both

min w

1

[t] = 7 andmin w

2

[t] = 7 are less than the respective

constraints, so we can apply this extension. The correspond-

ing DAG which contains all these shortest paths is shown

in Figure 6(b). By traversing forward and backward on this

DAG, we compute the labels M [u], m[u],

e

M [u], and em[u]

(see Figure 7(a)). After calculating � for each link as shown

in Figure 7(b), the algorithm �rst selects link (s;1), followed

by link (1; 2), and �nally link (2; t). Thus, the closest path

p

3

is found. Since this heuristic step tends to minimize the

additive di�erence in the approximation bound presented in

Lemma 2, the returned path p is very likely to satisfy both

c

1

and c

2

.

M=5
m=5

M=6
m=4

M=7
m=5

M=2
m=2

s t

1

2

w2=2

w2=5

w2=5

w2=2

w2=6
M=0
m=0

M=0
m=0

(a)

s t

1

2

=+

=1

=1

=2

=1

(b)

Figure 7: Finding the closest path to c

2

.

4.2 Scaling

In some pathological cases, any algorithm using the linear

composite cost fails to return a feasible path that does exist.

We illustrate this situation by an example. Again we assume

that i = 1 and j = 2 without loss generality. Consider the

network in Figure 8(a). Suppose a path p is to be found

from s to t such that w

1

(p) � c

1

= 10 and w

2

(p) � c

2

= 10.

As shown in Figure 8(b), there are three paths from s to t:

s t

1

2

3

(5,6)

(4,1)(13,1)

(1,1) (1,14)

(4,3)

(a)

0
0

9

c2=10

w1(p)

w
2

(p
)

2

2 9

c1
=

1
0 17

15

(b)

p1

p2

p3

Figure 8: A scenario in which the basic algorithm fails to

�nd a feasible path from s to t.

p

1

=< s; 1; t > with w

1

(p

1

) = 2 and w

2

(p

1

) = 15, p

2

=<

s; 2; t > with w

1

(p

2

) = 9 and w

2

(p

2

) = 9, and p

3

=< s; 3; t >

with w

1

(p

3

) = 17 and w

2

(p

3

) = 2. Only p

2

is feasible.

The approximation algorithm returns a path based on the

minimization of the composed weight l(p) = w

1

(p)+kw

2

(p).

To return the feasible path p

2

, the algorithm needs to �nd

an appropriate value for k such that l(p

2

) is less than both

l(p

1

) and l(p

3

). Hence, the value of k needs to be greater

than 7=6 to satisfy (l(p

2

) = 9 + 9k) < (l(p

1

) = 2 + 15k)

and also less than 8=7 to satisfy (l(p

2

) = 9 + 9k) < (l(p

3

) =

17+2k). However, it is impossible to �nd a value for k such

that 7=6 < k < 8=7.

To circumvent such pathological cases, we provide an

extension to our basic algorithm based on the scaling in [7].

A new weight w

0

2

(e) is assigned to every link in the original

graph as follows:

w

0

2

(e) =

�

w

2

(e) � x

c

2

�

(8)

where x is an adjustable positive integer in the range [1; c

2

].

The problem reduces to �nding a path in the scaled graph

such that w

1

(p) � c

1

and w

0

2

(p) � x. It has been shown that

a solution in the scaled graph is also a solution in the original

one [7]. If we scale the network in Figure 8(a) by x = 3, the

scaled graph is shown in Figure 9(a). If the approximation

algorithm uses the composed weights l

2

(p) = w

1

(p)+kw

0

2

(p)

s t

1

2

3

(1,1) (1,5)

(5,2)(4,1)

(4,1)(13,1)

(a)

0
0 2 9

c1
=

1
0 17

(b)

p3

p1

p2

w1(p)

2
x=3

7

w
’2

(p
)

Figure 9: Scaling the network in Figure 8 by x = 3 allows

the algorithm to �nd a feasible path.

in the scaled graph with k = 3, it will return the feasible

path p

2

(see Figure 9(b)), since l(p

2

) = 18 is less than both

l(p

1

) = 20 and l(p

3

) = 23.

Using the above scaling function, one may increase the

number of shortest paths in the scaled graph. If we apply

our basic approximation algorithm to the scaled graph, the

algorithm will consider more shortest paths (in the scaled

graph) in each iteration of the binary search. It is intu-

itively true that the algorithm will terminate with a better

(i.e., larger) value of k. It is important to note that in con-

trast to the algorithm in [7], the value of x does not e�ect

the complexity of our algorithm. Choosing x as small as

possible may increase the number of shortest paths as de-

sired. However, this also decreases the number of paths for

which w

0

2

(p) � x, i.e., the algorithm may not return a fea-

sible path. The tradeo� between the value of x and the

associated performance improvement after scaling by x is

shown in Figure 10. Here, we measure the performance of

the path selection algorithm by the success ratio (more on

that is discussed in Section 5).

0 50 100 150 200 250
0.9205

0.921

0.9215

0.922

S
u
c
s
e
s
s
 r

a
ti
o

x

c
2
=uniform[500,560]

0 100 200 300
0.984

0.9845

0.985

0.9855

0.986

0.9865

0.987

0.9875

S
u
c
s
e
s
s
 r

a
ti
o

x

c
2
=uniform[600,660]

Our algorithm with scaling by x
Optimal algorithm

Our algorithm with scaling by x
Optimal algorithm

Figure 10: Performance of the path selection algorithm for

di�erent values of the scaling factor x.

When the basic algorithm fails to return a feasible path,

we scale the graph using di�erent values of x and run the

algorithm again. Clearly, one needs to select an appropri-

ate value for x to improve the performance. The following

lemma shows that a binary search argument can be used to

determine an appropriate x in the range [1; c

2

].

Lemma 3 If the algorithm cannot �nd a path p for which

w

0

2

(p) � x in the scaled graph by x, then such a path cannot

be found in a graph that is scaled by x

0

< x.

Proof of Lemma 3: Let the graph G be scaled by x = 2r

for some integer r, and let P be the set of all possible paths

in the scaled graph. If the algorithm fails to return a path

p for which

P

e2p

�

w

2

(e)�2r

c

2

�

� 2r, then

X

e2p

�

w

2

(e) � 2r

c

2

�

> 2r 8p 2 P: (9)

In order to prove the lemma, it su�ces to show that if (9)

is true then the algorithm should never search for a path p

0

for which w

0

2

(p

0

)

def

=

P

e2p

0

�

w

2

(e)�r

c

2

�

� r when the links of

the graph are scaled down by x = r. Since we know that

2

�

w

2

(e) � r

c

2

�

�

�

w

2

(e) � 2r

c

2

�

(10)

we can rewrite (9) as

2

X

e2p

0

�

w

2

(e) � r

c

2

�

> 2r 8p

0

2 P (11)

from which we conclude

X

e2p

0

�

w

2

(e) � r

c

2

�

> r 8p

0

2 P: (12)

This, in turn, implies that no path p

0

2 P will be selected

by the algorithm, and the claim is true.

5 Simulation Results and Discussion

In this section, we contrast the performance of our basic al-

gorithm with Ja�e's second approximation algorithm [23],

Chen's heuristic algorithm in [7], and the �rst �-optimal al-

gorithm in [20]. In [23] Ja�e presents two approximation

algorithms for the MCP problem based on the minimization

of w

1

(p) + dw

2

(p), where d = 1 in the �rst algorithm and

d =

p

c

1

=c

2

in the second. Of the two approximations, the

latter one provides better performance, and hence it will be

used in our comparisons. As a point of reference, we also

report the results of the exact (exponential-time) algorithm,

which considers all possible paths in the graph to determine

whether there is a feasible path or not. The performance has

been measured for various network topologies. For brevity,

we report the results for one of these topologies under both

homogeneous and heterogeneous links.

5.1 Simulation Model and Performance Measures

In our simulation model, a network is given as a directed

graph. Link weights, the source and destination of a con-

nection request, and the constraints c

1

and c

2

are all ran-

domly generated. If the path selection algorithm returns a

feasible path for a connection request, we count this request

as a routed connection request. In order to contrast the

performance of various path selection algorithms, we use a

measure called the success ratio (SR), which shows how

often an algorithm �nds a feasible path [7]:

SR =

Total number of routed connection requests

Total number of connection requests

Another important performance aspect is the computational

complexity. In here, we measure the complexity of path se-

lection algorithms by the number of performed Dijkstra's

iterations. While the algorithm in [23] requires only one it-

eration, the algorithm in [7] always requires x

2

iterations,

where x is an adjustable positive integer. The number of it-

erations in our algorithm varies in the range [1; logB], where

B is the upper bound on the longest path according to one

of the link weights. For our algorithm, the average num-

ber of Dijkstra's iterations (ANDI) per connection request

is measured and compared with the deterministic number of

Dijkstra's iterations in the other algorithms.

5.2 Results under Homogeneous Link Weights

We consider the network topology in Figure 11, which has

been modi�ed from ANSNET [11] by inserting additional

links. Link weights are randomly selected with w

1

(u; v) �

uniform[0; 50] and w

2

(u; v) � uniform[0; 200]. The same

network topology was used in [7]. For di�erent ranges of c

1

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
�� �

�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

��������������
��������������
��������������
������������������

����
����
����
����
����

����
����
����
����
����
����

��
��
��
��

��
��
��
��

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����
����
����

����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
���� ����

����
����
����

����
����
����
����

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

����������
����������
����������
����������

����������
����������
����������
����������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�������
�������
�������

�������
�������
�������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

1

2

3

4

5

6

7

9

13 14

16

17

15

12

10 18

19

20

11

8

26

31

32

30

28
29

25

27

24

22
23

21

Figure 11: An irregular network topology.

and c

2

, Table 1 shows the SR of various algorithm based on

twenty runs; each run is based on 2000 randomly generated

connection requests. For our algorithm, the ANDI for

each range in Table 1 is given by 2:49=2:63=2:23=1:61=1:21,

respectively. The number of feasible paths, and thus the

SR, increases as the constraints gets looser in the table. As

this happens, the ANDI in our algorithm goes down. The

overall average complexity per connection request is about

two iterations of Dijkstra's algorithm.

In terms of SR, our algorithm performs as good as the

exact one. The results show that our algorithm provides

signi�cantly superior performance to Ja�e's approximation

algorithm. To compare our algorithm with Chen's heuristic

algorithm [7] and the �-optimal algorithm [20], we need to

properly set the values of x and �, respectively, In theory,

as x goes to in�nity and as � goes to 0, the performance of

the corresponding algorithms approaches that of the exact

one. However, since the complexities of these algorithms de-

pend on x and �, large values for x and small values for �

clearly make the corresponding algorithms impractical. To

get as close as possible to achieving about the same average

computational complexity of our algorithm, we set x = 2

and � = 10. With x = 2, the performance of Chen's al-

gorithm lags signi�cantly behind ours. Even if we increase

x to ten, making the computational requirement of Chen's

algorithm several times that of our algorithm, its perfor-

mance still lags behind ours. For � = 10, both our algorithm

and the �-optimal algorithm have roughly the same aver-

age complexity; with our algorithm providing better per-

formance. More speci�cally, it improves the success rate of

the �-optimal algorithm by about 50%. The �-optimal al-

gorithm uses a dynamic-programming approach that main-

tains a scaled cost array with size of (n=�) at each node and

it can determine paths whose scaled cost is less than (n=�).

When the values of constraints are increased, more longer

paths becomes feasible, but the �-optimal algorithm can-

not determine them unless � gets very small. For example,

the performance of the �-optimal algorithm becomes close

to that of our algorithm if � is set to 1. However, in that

case, the average complexity of our algorithm is about 10%

of that of the �-optimal algorithm.

5.3 Performance Under Heterogeneous Links

The uniformity of link weights in a network may severely im-

pact the performance of a path selection algorithm. Hence,

before drawing any general conclusions, we need to exam-

ine the performance in a network with heterogeneous links.

For this purpose, we consider the same network topology in

Figure 11. We divide the network into three parts, as shown

in Figure 12. Each link is associated with two weights w

1

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

������������������
������������������
������������������

������������������
������������������
������������������

��������������
��������������
��������������
������������������

����
����
����
����

����
����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����

����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���

���
���
���
���

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

���������
���������
���������
���������

���������
���������
���������
���������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

1

2

3

4

5

6

7

9

13 14

16

17

15

12

10 18

19

20

11

8

26

31

32

30

28
29

25

27

24

22
23

21

Figure 12: Network topology with heterogeneous link

weights.

and w

2

, which are determined as follows: if u is a node that

belongs to the upper part of the network, then w

1

(u; v) �

uniform[70; 85] and w

2

(u; v) � uniform[1; 5]; if u is in the

middle part, then w

1

(u; v) � uniform[45; 55] and w

2

(u; v) �

uniform[45; 55]; and if u is in the lower part, then w

1

(u; v) �

uniform[1; 5] and w

2

(u; v) � uniform[70; 85]. The source

node is randomly chosen from nodes 1 to 5. The destination

node is randomly chosen from nodes 22 to 30.

For di�erent ranges of c

1

and c

2

, Table 2 shows the SR of

various algorithms based on twenty runs; each run is based

on 2000 randomly generated connection requests. For our

algorithm, the ANDI is 4:03=4:59=4:55=4:52=2:75 for each

range in Table 2, respectively. Under heterogeneous link

weights, the performance of approximate or heuristic path

selection algorithms, in general, is not as good as in the case

of homogeneous links. One can attribute this performance

degradation to the \symmetric" nature of the constraint

functions, which favor links with homogeneous character-

istics.

Our algorithm still provides superior performance to Ja�e's

approximation algorithm. To compare our algorithm with

the others, as discussed in the homogeneous case, we need

to properly set the values for x and �. To achieve about the

same computational complexity of our algorithm, x and �

are set to three and ten, respectively. With these values,

these algorithms lag behind our algorithm. Their perfor-

mance gets better as x increases and � decreases. However,

in that case, their computational complexities become at

least ten times that of our algorithm.

6 Conclusions and Future Work

QoS-based routing subject to multiple additive constraints

is an NP-complete problem that cannot be exactly solved

in polynomial time. To this problem, we presented an e�-

cient approximation algorithm using a binary search strat-

Range of c

1

and c

2

Exact Our Alg Ja�e's Chen's �-optimal

(x = 2) (x = 10) (� = 1) (� = 10)

c

1

� uniform[50; 65]

c

2

� uniform[200; 260] 0.2594 0.2590 0.2505 0.1935 0.2554 0.2524 0.2099

c

1

� uniform[75; 90]

c

2

� uniform[300; 360] 0.5220 0.5190 0.4906 0.3004 0.5003 0.5057 0.3479

c

1

� uniform[100; 115]

c

2

� uniform[400; 460] 0.7595 0.7535 0.7088 0.3308 0.7216 0.7430 0.4703

c

1

� uniform[125; 140]

c

2

� uniform[500; 560] 0.9219 0.9145 0.8674 0.3308 0.8787 0.9079 0.5639

c

1

� uniform[150; 165]

c

2

� uniform[600; 660] 0.9868 0.9819 0.9524 0.3308 0.9609 0.9805 0.6281

Table 1: SR performance of several path selection algorithms.

Range of c

1

and c

2

Exact Our Alg Ja�e's Chen's �-optimal

(x = 3) (x = 10) (� = 1) (� = 10)

c

1

� uniform[200; 215]

c

2

� uniform[200; 215] 0.1278 0.1146 0.0829 0.0740 0.0964 0.1276 0.0742

c

1

� uniform[215; 230]

c

2

� uniform[215; 230] 0.1739 0.1568 0.1210 0.0927 0.1494 0.1739 0.1067

c

1

� uniform[230; 250]

c

2

� uniform[230; 250] 0.2841 0.1906 0.1678 0.1081 0.2160 0.2841 0.1508

c

1

� uniform[250; 300]

c

2

� uniform[250; 300] 0.4572 0.3236 0.2771 0.1131 0.4113 0.4559 0.2891

c

1

� uniform[300; 360]

c

2

� uniform[300; 360] 0.8709 0.6704 0.5805 0.1131 0.7590 0.8535 0.6260

Table 2: SR performance of several path selection algorithms.

egy. Our algorithm is supported by performance bounds

that reect the e�ectiveness of the algorithm in �nding a

feasible path. We studied the performance of the algorithm

via simulations under both homogeneous and heterogeneous

link weights. Our results show that the proposed algorithm

outperforms existing ones in complexity, performance, or

both. We also presented two extensions to our basic algo-

rithm that can be used to further improve its performance at

little extra computational cost. The �rst extension, which

is motivated by the presented theoretical bounds, attempts

to �nd the closest feasible path to a constraint. The other

extension, namely scaling, improves the likelihood of �nding

a feasible path by perturbing the linearity of the search pro-

cess (or equivalently, changing the relative locations of the

paths in the parameter space). Our basic approximation al-

gorithm runs hierarchical version of Dijkstra's algorithm up

to logB times, where B is an upper bound on the longest

path w.r.t. one of link weights. When scaling is used, the

algorithm runs Dijkstra's algorithm up to log c

2

logB times.

These are worst-case complexities that are rarely used in

practice. In fact, simulation results indicate much better

average complexities for the basic algorithm and its exten-

sions. The space complexity of our algorithm is O(n).

The proposed algorithm assumes a at network topol-

ogy and complete knowledge of the network state. In prac-

tice, the true state of the network is not available to every

source node at all times due to network dynamics, aggre-

gation of state information (in hierarchical networks), and

latencies in the dissemination of state information. Our fu-

ture work will focus on investigating the MCP problem in

the presence of inaccurate state information and the trade-

o�s between the accuracy of the path selection process and

that of topology aggregation (for spatial scalability) and/or

the frequency of advertisements (for temporal scalability).

Another aspect that we plan to investigate is that of renego-

tiation. When our algorithm fails to return a feasible path,

it always returns a path which is close to satisfying the given

constraints. Hence, we plan to investigate how such a path

can be advantageously used in the renegotiation process to

achieve further performance improvements.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network

Flows: Theory, Algorithms, and Applications. Prentice

Hall, Inc., 1993.

[2] A. Alles. ATM internetworking. White Paper, Cisco

Systems, Inc., May 1995.

[3] Y. P. Aneja, V. Aggarwal, and K. P. K. Nair. Shortest

chain subject to side constraints. Networks, 13:295{302,

1983.

[4] G. Apostolopoulos et al. QoS routing mechanisms and

OSPF extensions. Technical Report draft-guerin-qos-

routing-ospf-05.txt, Internet Engineering Task Force,

April 1998.

[5] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tri-

pathi. Quality of service based routing: A performance

perspective. In Proceedings of the ACM SIGCOMM '98

Conference, pages 15{26, Vancouver, British Columbia,

Canada, August-September 1998.

[6] D. Blokh and G. Gutin. An approximation algorithm

for combinatorial optimization problems with two pa-

rameters. IMADA preprint PP-1995-14, May 1995.

[7] S. Chen and K. Nahrstedt. On �nding multi-

constrained paths. In Proceedings of the ICC '98 Con-

ference, pages 874 {879. IEEE, 1998.

[8] S. Chen and K. Nahrstedt. An overview of quality-

of-service routing for the next generation high-speed

networks: Problems and solutions. IEEE Network,

12(6):64{79, Nov-Dec 1998.

[9] E. I. Chong, S. R. Sanjeev Rao Maddila, and S. T.

Morley. On �nding single-source single-destination k

shortest paths. In the Seventh International Conference

on Computing and Information (ICCI '95), pages 40{

47, July 5-8, 1995.

[10] D. Clark et al. Strategic directions in networks

and telecommunications. ACM Computing Surveys,

28(4):579{690, 1996.

[11] D. E. Comer. Internetworking with TCP/IP, volume I.

Prentice Hall, Inc., third edition, 1995.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Intro-

duction to Algorithms. TheMIT press and McGraw-Hill

book company, sixteenth edition, 1996.

[13] E. Crawley et al. A framework for QoS-based routing

in the Internet. Internet draft, IETF, July 10, 1998.

(draft-ietf-qosr-framework-06.txt).

[14] H. De Neve and P. Van Mieghem. A multiple quality of

service routing algorithm for PNNI. In Proceedings of

the ATM Workshop, pages 324 { 328. IEEE, May 1998.

[15] D. Eppstein. Finding the k shortest paths. In Proceed-

ings of the 35th Annual Symposium on Foundations of

Computer Science, pages 154 { 165. IEEE, Nov. 1994.

[16] M. R. Garey and D. S. Johnson. Computers

and Intractability, A Guide to the Theory of NP-

Completeness. Freeman, San Francisco, 1979.

[17] R. Guerin and A. Orda. QoS-based routing in networks

with inaccurate information: Theory and algorithms.

In Proceedings of the INFOCOM '97 Conference, pages

75{83. IEEE, 1997.

[18] L. Guo and I. Matta. Search space reduction in QoS

routing. In Proceedings of the 19th IEEE International

Conference on Distributed Computing Systems, pages

142 { 149. IEEE, May 1999.

[19] G. Y. Handler and I. Zang. A dual algorithm for the

constrained shortest path problem. Networks, 10:293{

310, 1980.

[20] R. Hassin. Approximation schemes for the restricted

shortest path problem. Mathematics of Operations Re-

search, 17(1):36{42, 1992.

[21] K. Ishida, K. Amano, and N. Kannari. A delay-

constrained least-cost path routing protocol and the

synthesis method. In Proceedings of the Fifth Inter-

national Conference on Real-Time Computing Systems

and Applications, pages 58 { 65. IEEE, Oct. 1998.

[22] A. Iwata et al. ATM routing algorithms with multi-

ple QOS requirements for multimedia internetworking.

IEICE Trans. Commun., E79-B(8):999{1006, August

1996.

[23] J. M. Ja�e. Algorithms for �nding paths with multiple

constraints. Networks, 14:95{116, 1984.

[24] K. Lee et al. QoS based routing for integrated multi-

media services. In Proceedings of the GLOBECOM '97

Conference, volume II, pages 1047{1051. IEEE, 1997.

[25] W. C. Lee, M. G. Hluchyi, and P. A. Humblet. Routing

subject to quality of service constraints in integrated

communication networks. IEEE Network, pages 46{55,

July/August 1995.

[26] Q. Ma and P. Steenkiste. On path selection for tra�c

with bandwidth guarantees. In Proceedings of the IEEE

International Conference on Network Protocols (ICNP

'97), pages 191 {202, 1997.

[27] Q. Ma and P. Steenkiste. Routing tra�c with quality-

of-service guarantees in integrated services networks. In

Proceedings of NOSSDAV '98, July 1998.

[28] A. Orda. Routing with end-to-end QoS guarantees in

broadband networks. IEEE/ACM Transactions on Net-

working, 7(3):365{374, 1999.

[29] C. Pornavalai, G. Chakraborty, and N. Shiratori. QoS

based routing algorithm in integrated services packet

networks. In Proceedings of ICNP '97, pages 167{174.

IEEE, 1997.

[30] H. F. Salama, D. S. Reeves, and Y. Viniotis. A dis-

tributed algorithm for delay-constrained unicast rout-

ing. In Proceedings of the INFOCOM '97 Conference,

volume 1, pages 84{91. IEEE, 7-11 April 1997.

[31] C. C. Skiscim and B. L. Golden. Solving k-shortest and

constrained shortest path problems e�ciently. Ann.

Oper. Res., 20(1-4):249{282, 1989.

[32] N. Taft-Plotkin, B. Bellur, and R. Ogier. Quality-

of-service routing using maximally disjoint paths. In

the Seventh International Workshop on Quality of Ser-

vice (IWQoS '99), pages 119 { 128, London, England,

May/June 1999. IEEE.

[33] R. Vogel et al. QoS-based routing of multimedia

streams in computer networks. IEEE Journal on

Selected Areas in Communications, 14(7):1235{1244,

September 1996.

[34] Z. Wang. On the complexity of quality of service rout-

ing. Information Processing Letters, 69(3):111{114,

1999.

[35] Z. Wang and J. Crowcroft. Quality-of-service routing

for supporting multimedia applications. IEEE Jour-

nal on Selected Areas in Communications, 14(7):1228{

1234, September 1996.

[36] R. Widyono. The design and evaluation of routing al-

gorithms for real-time channels. Technical Report TR-

94-024, University of California at Berkeley & Interna-

tional Computer Science Institute, June 1994.

[37] X. Xiao and L. M. Ni. Internet QoS: a big picture.

IEEE Network, 13(2):8{18, March-April 1999.

[38] J. Zhou. A new distributed routing algorithm for sup-

porting delay-sensitive applications. In Proceedings of

ICCT '98, pages S37{06(1{7). IEEE, 22-24 Oct. 1998.

