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Abstract—We consider an interference network tapped by
external eavesdropper(s) in which each legitimate transmit-receive
pair conceals its communications by using joint transmit-based
friendly jamming (TxFJ) and receiver-based friendly jamming
(RxFJ). Specifically, TxFJ is realized at the transmit side using
MIMO precoding while RxFJ is achieved at the receiver side
of each link by leveraging the state-of-the-art self-interference-
suppression techniques (allowing a radio to cancel the self-
interference effect of its transmit signal). We show that with
a careful power allocation between the information signal and
TxFJ at the transmit side of each link, the corresponding receiver
is able decide on using RxFJ independent of any multi-user
interference factor. This ability sets the receivers free from having
to measure multi-user interference at eavesdropper(s). With every
link following such strategy, we model this interaction as a non-
cooperative game. We derive sufficient conditions under which
the game admits a unique Nash equilibrium. We then propose a
robust version of the game that requires only statistical knowledge
of eavesdropping channel.

Keywords—Wiretap interference network, friendly jamming,
full-duplex, Nash equilibrium, contraction mapping, receiver-based
jamming.

I. INTRODUCTION

Among the proposed methods for physical-layer (PHY-
layer) security,the use of artificial noise (or friendly jamming)
is shown to be the closest to a practical implementation. In
this method (proposed in [1]), along with the information
signal, a transmitter, called Alice, uses multiple antennas and a
portion of total transmit power to inject a bogus signal, known
as transmit-based friendly jamming (TxFJ), into the channel
to confuse the nearby eavesdropper(s). Assuming that Alice
knows the channel state information between herself and the
legitimate receiver, called Bob, she constructs the TxFJ signal
(using precoding techniques) that falls in the null-space of
Alice-Bob channel, hence not affecting Bob’s reception.

It is possible that an eavesdropper, called Eve, appears
very close to Bob, making Alice-Bob channel and Alice-Eve
channel highly correlated, thus increasing the possibility that
the TxFJ signal to also become nullified at Eve. With recent
advances in self-interference suppression (SIS) that allows a
radio to cancel the self-interference effect of its own transmit
signal, Bob can enhance its secrecy by emitting a jamming
signal while he is receiving information from Alice [2]. Note
that the latest attempt in realizing full-duplex radios [3] allows
a radio to transmit and receive using the same antenna array
and on the same frequency (i.e., in-band full-duplex MIMO).

In this paper, we study an interference channel that is
tapped by external eavesdropper(s). The legitimate links in
the network are all equipped with multiple antennas at both
transmitter and receiver side, and can use both TxFJ and RxFJ.
Our design parameters are the power of RxFJ signal and the
power allocation (PA) between information signal and TxFJ
signal of all links.

We assume that legitimate links do not cooperate with each
other to decide on design parameters, and there is no central-
ized authority responsible for computations and optimizations.
Hence, links have to make decisions in a distributed fashion.
Of course, such design inevitably produces interference at
several links, but since Eve(s) is also receiving the interference
from all of the links, a careful design can guarantee that the
interference at the legitimate links is properly managed while
the interference at Eve is kept high as much as possible. We
model such an interaction between the legitimate links using
non-cooperative games. We then relax the requirement of the
eavesdropping channel in our optimizations to propose the
robust version of our game.

The works in [4] and [5] are the closest studies to our
work. However, both of the aforementioned works consider full
knowledge of eavesdropping channel which is not a practical
assumption. Regarding the PA between information signal and
TxFJ signal, the works in [6] and [7] focused only on the
single-link scenario, making their approaches not extendable
to the case of multiple links. Furthermore, the authors in [8]
investigate optimal PA in a broadcast channel. Here, we inves-
tigate the more challenging scenario (i.e., interference channel)
where distributed optimization approaches are required.

II. SYSTEM MODEL

Consider Q transmitters (Q ≥ 2), Alice1, . . . , AliceQ that
communicate with their respective receivers, Bob1, . . . , BobQ.
Aliceq , q = 1, . . . , Q, has Nq transmit antennas, and Bobq ,
q = 1, . . . , Q, has Mq antennas. A passive Eve with L antennas
also exists in the range of legitimate links’ communications.
The received signal at Bobq , yq is:

yq = H̃qquq +
√
τqH′qqmq +

Q∑
r=1
r 6=q

(H̃rqur + H′rqmr) + nq

where H̃rq ∈ CMq×Nr , r = 1, . . . , Q, is the Mq×Nr complex
channel matrix between Alicer and Bobq , uq ∈ CNq is the
transmitted signal from Aliceq . τq ∈ R+ and H′qq ∈ CMq×Mq



are respectively the positive-real-valued SIS factor and the
self interference channel at Bobq due to the imperfect SIS
at Bobq . mq ∈ CMq is the RxFJ signal created by Bobq ,
which is a zero mean circularly symmetric complex Gaussian
(ZMCSCG) random variable with variance E[mqm†q] = p′qIMq

where p′q ≤ P ′q with P ′q denoting the total power of Bobq to
be used for RxFJ; IMq

denotes the Mq ×Mq identity matrix;
and E[•] and † respectively denote the expected value and
complex conjugation (with transposition in case of vectors and
matrices). H ′rq ∈ CMq×Mr , r 6= q, is the channel from Bobr
to Bobq because the jamming signals created by other Bobs
interfere with Bobq’s reception. nq ∈ CMq is the complex
AWGN whose power is N0 and whose covariance matrix is
E[nqn†q] = N0IMq

.

We assume that H̃rq = H̄rqd
−η/2
rq where H̄rq ∈ CMq×Nr

represents the small-scale fading, drq is the distance between
Alicer and Bobq in meters and η is the path-loss exponent.
The same equivalent assumption holds for H′rq, r 6= q, i.e.,
H′rq = H̄′rqd′rq

−η/2 where H̄′rq ∈ CMq×Mr and d′rq is the
distance from Bobr to Bobq . The received signal by Eve is

z = G̃quq + G′qmq +

Q∑
r=1
r 6=q

(G̃rur + G′rmr) + e

where G̃q ∈ CL×Nq , q = 1, . . . , Q denotes the complex
channel matrix between Aliceq and Eve, and G̃q = Ḡqd

−η/2
qe

where Ḡq ∈ CL×Nq and dqe is the distance between Aliceq
and Eve; G′q ∈ CL×Mq , q = 1, . . . , Q, is the channel between
Bobq and Eve. G′q = Ḡ′qd′qe

−η/2 where Ḡ′q ∈ CL×Mq and d′qe
is the distance from Bobq to Eve, and finally, e has the same
characteristics as nq . The signal uq = sq + wq consists of the
information signal sq and the TxFJ signal wq . As in [9], we
only consider the case of single stream data transmission using
multiple antennas. That is, we set sq , Tqxq where Tq ∈ CNq

is the precoder and xq ∈ C is the information signal.

Assume that xq is distributed as a ZMCSCG random
variable (i.e., Gaussian codebook) with E[xqx

†
q] = φqPq

where Pq is the total transmit power of Aliceq and 0 ≤ φq ≤ 1
is the portion of transmit power allocated to the information
signal. For the TxFJ signal, we write wq , Zqvq , where
Zq ∈ CNq×(Nq−1) is an orthonormal basis for the null space
of H̃qq (H̃qqwq = 0) and vq ∈ C(Nq−1) is a vector with i.i.d.
ZMCSCG entries and E[vqv†q] = σqI(Nq−1). The scalar value
σq =

(1−φq)Pq

Nq−1 denotes the TxFJ power. Let H̃qq = UqΣqV†q
denote the singular value decomposition (SVD) of H̃qq where
Σq is the diagonal matrix of singular values, and Uq and Vq
are left and right matrices of singular vectors, respectively.
We set Zq = V(2)

q where V(2)
q is the matrix of (Nq − 1)

rightmost columns of Vq . We assume that Aliceq knows the
channel H̃qq. The precoder Tq is set to Tq = V(1)

q , where V(1)
q

is the first column of Vq , to set up transmit beamforming.
Let Hqq , H̃qqV(1)

q , Hjqq , H̃qqV(2)
q , Hqr , H̃qrV(1)

q ,
Hjqr , H̃qrV(2)

q , Gq , G̃qV(1)
q , Gjq , G̃qV(2)

q . The terms
Gq and Gjq denote the eavesdropping channel components.
Hence,

yq = Hqqxq + Hjqqvq+
√
τqH′qqmq+

Q∑
r=1
r 6=q

(Hrqxr + Hjrqvr + H′rqmr) + nq,

z = Gqxq + Gjqvq + G′qmq +

Q∑
r=1
r 6=q

(Grxr + Gjrvr + G′rmr) + e.

After receiving yq at Bobq , a linear receiver dq ∈ CMq is
applied. Given that d†qHjqqvq = 0, the linear estimate ŷq is

ŷq = d†q(Hqqxq+
√
τqH′qqmq+

Q∑
r=1
r 6=q

(Hrqxr+Hjrqvr+H′rqmr)+nq).

(1)
Hence, the information rate for the qth link can be written as

Cq = log(1 +
φqPq

aq + bqp′q
) (2)

where

aq =

∑Q
r=1
r 6=

(∣∣d†qHrq

∣∣2 φrPr + ∣∣d†qHjrq

∣∣2 (1−φr)Pr

Nr−1
+ |d†qH′rq|2p′r

)
+N0∣∣d†qHqq

∣∣2 ,

(3a)

bq = τq
|d†qH′qq|2

|d†qHqq|2
. (3b)

Eve also applies the linear receiver rq ∈ CL while eavesdrop-
ping on qth link’s signal to obtain

ẑq = r†q(Gqxq+Gjqvq+G′qmq+

Q∑
r=1
r 6=q

(Grxr+Gjrvr+G′rmr)+e).

(4)
Thus, the rate at Eve while eavesdropping on Aliceq (i.e.,

leaked rate of Aliceq) is

Ceq = log(1 +
φqPq

cq + dqp′q
) (5)

where

cq =

∣∣r†qGjq

∣∣ (1−φq)Pq

Nq−1∣∣∣r†qGq

∣∣∣2 +

∑Q
r=1
r 6=

(∣∣r†qGr

∣∣2 φrPr + ∣∣r†qGjr

∣∣2 (1−φr)Pr

Nr−1
+ |r†qG′r|2p′r

)
+N0∣∣∣r†qGq

∣∣∣2 ,

(6a)

dq =
|r†qG′q|2

|r†qGq|2
. (6b)

Finally, the secrecy rate of Aliceq can be written as

Csecq = max{Cq − Ceq, 0}. (7)

The linear receivers dq and rq , q = 1, . . . , Q, are assumed to
be chosen according maximal ratio combining (MRC) method.
Hence, dq = U(1)

q where U(1)
q is the first column of Uq . Let

the SVD of G̃q be denoted as G̃q = LqDqRq where Lq and
Rq are matrices of left and right singular vectors, respectively
and Dq is the diagonal matrix of singular values. Thus, while
eavesdropping on qth link, rq = L(1)

q where L(1)
q is the first



column of matrix Lq .

III. PROBLEM FORMULATION

In this section, we state the main objectives and present
the necessary bounds to guarantee positive secrecy. From here
on, wherever we use RxFJ, we are referring to the power of
RxFJ, and wherever TxFJ is mentioned, we are referring to the
power of TxFJ signal.

The main objective for each link q is as follows

maximize
φq,p′q

Csecq

s.t. 0 ≤ φq ≤ 1,

0 ≤ p′q ≤ P ′q. (8)

Due to the non-concavity of the objective function in (8) w.r.t.
decision variables, the optimization in (8) is non-convex. To
find a tractable (and yet suboptimal) solution, we decompose
the analysis of RxFJ and PA into two sub-problems. We
first propose a tractable solution for RxFJ that results in
not only maintaining positive secrecy, but also alleviating the
need for the knowledge of interference at Eve. The secrecy
maximization w.r.t. only p′q can be written as

maximize
p′q

1 +
φqPq

aq+bqp′q

1 +
φqPq

cq+dqp′q

s.t. 0 ≤ p′q ≤ P ′q. (9)

Positive secrecy in (7), imposed via the max{•} function, can
be equivalently achieved in (9) iff the objective in (9) is larger
than 1. A sufficient condition to achieve positive secrecy is to
solve the following optimization:

maximize
p′q

f(p′q) ,

φqPq

aq+bqp′q
φqPq

cq+dqp′q

=
cq + dqp

′
q

aq + bqp′q

s.t. 0 ≤ p′q ≤ P ′q. (10)

Specifically, if the solution to (10) is greater than 1 then this
solution guarantees the positive secrecy. The first and second
derivatives of f(p′q) are as follows

df(p′q)

dp′q
= − bqcq − aqdq

(aq + bqp′q)2
, (11a)

d2f(p′q)

dp′q
2 = 2bq

bqcq − aqdq
(a+ bp′q)3

. (11b)

Hence, the optimal value of p′q , i.e., p′q
∗, is as follows:

p′q
∗
=


P ′q if bq <

aqdq
cq

,

0 if bq >
aqdq
cq

.
(12)

Simplifying the first condition of (12), a threshold for SIS
factor is as follows

τq <
|d†qHqq|2

|d†qH′qq|2
aqdq
cq

. (13)

Hence, (12) offers an on-off method that can maintain positive
secrecy (if f(p′q

∗
) > 1). It can be seen in (12) that the

optimal value of RxFJ that solves (10) is dependent on two
factors: the multi-user interference that Bobq is receiving (i.e.,
aq) and the interference that the eavesdropper is receiving

while eavesdropping the qth link (i.e., cq). Because multi-
user interference is subject to vary (due to the behavior of
other links), it is not usually desirable to change the RxFJ
accordingly, as it imposes additional computations on Bob.

Another way to achieve positive secrecy is to allocate a fair
amount of power at the transmit side to TxFJ and information
signal. Thus, the objective in (8) is assumed to be larger than
one, which reduces to

φqPq
aq + bqp′q

>
φqPq

cq + dqp′q
. (14)

Simplifying this inequality, we end up with the following

cq > aq + (bq − dq)p′q. (15)

The inequality in (15) is a preliminary bound on the PA factor
φq because the term cq includes φq and reducing (15) gives
us a bound for φq . Combining (15) and (12) we have

cq > aq + (bq − dq)P ′q, if bq <
aqdq
cq

,

cq > aq, if bq >
aqdq
cq

.
(16)

Since the inequalities in (16) are strict, we write the following:
cq = aq + (bq − dq)P ′q + δ, if bq <

aqdq
cq

,

cq = aq + δ, if bq >
aqdq
cq

(17)

where δ ≥ 0 is a small value that Aliceq can allocate to TxFJ
such that (16) is satisfied. Note that (according to (6a)), the
term cq includes the TxFJ of Aliceq . Hence, simplifying the
left hand sides (LHS) of equalities in (17), one can find a
lower bound on TxFJ, or equivalently on (1−φq)Pq . To make
use of the lower bound on TxFJ derived from (17), we first
introduce a property of the secrecy rate of Aliceq
Lemma 1. If positive secrecy is achieved, the secrecy rate
Csecq is a monotonically increasing function of Pq and φq ,
respectively.

Proof: See [10].

In order to mitigate the knowledge of multi-user interference
(i.e., aq and cq) in evaluating aqdq

cq
in (13), we examine the

following alternative conditions for TxFJ, or equivalently the
term cq: {

cq = aq + (bq − dq)P ′q + δ, if bq < dq,

cq = aq + δ, if bq > dq.
(18)

The following property shows the sufficiency of (18) for
concluding (17).
Lemma 2. Provided that (bq − dq)P ′q + δ < 0 and δ > 0, the
condition in (18) is sufficient for satisfying (17).

Proof: See [10].

Using Lemma 2, one can conclude that in calculating the value
of RxFJ in (18), contrary to (17), there is no requirement to
know the multi-user interference at Bobq (i.e., aq) or at Eve
(i.e., cq). Specifically, Bobq only has to check whether or not
bq < dq , or equivalently

τq <
|d†qHqq|2|r†qG′q|2

|d†qH′qq|2|r†qGq|2
. (19)



The assumption (bq − dq)P ′q + δ < 0 sets an upper bound
on δ, i.e., 0 < δ < (dq− bq)P ′q . We choose δ = 1

2 |dq − bq|P
′
q

for both when bq < dq and when bq > dq . In the next section,
we use the derived conditions to model a power control game.

IV. GAME FORMULATION

The condition in (18) can be written in general form as{
cq ≥ aq + (bq − dq)P ′q + δ, if bq < dq,

cq ≥ aq + δ, if bq > dq.

(22)

Using (3) and (6), an upper bound on φq is shown in (23)
at the top of the next page where

Aq,r =
Nq − 1

Nr − 1

|r†qGq|2

|d†qHqq|2|r†qGjq|2
(
(Nr − 1)|d†qHrq|2 − |d†qHjr|2

)
,

(24a)

Bq,r =
Nq − 1

Nr − 1

|d†qHqq|2

|d†qHqq|2|r†qGjq|2
(
(Nr − 1)|r†qGr|2 − |r†qGjr|2

)
,

(24b)

Cq,r =
Nq − 1

Nr − 1

|r†qGq|2|d†qHjr|2 − |d†qHqq|2|r†qGjr|2

|r†qGjq|2|d†qHqq|2
, (24c)

Dq,r = (Nq − 1)
|r†qGq|2|d†qH′rq|2 − |d†qHqq|2|r†qG′r|2

|r†qGjq|2|d†qHqq|2
, (24d)

Eq = (Nq − 1)
τq|r†qGq|2|d†qH′qq|2 − |d†qHqq|2|r†qG′q|2

|r†qGjq|2|d†qHqq|2
. (24e)

Hence, link q’s optimization problem, where q = 1, . . . , Q, is

maximize
φq

Csecq

s.t. (23). (25)

Notice that in establishing (25), the value of cq (or equivalently
power of TxFJ) is already set according to (18). Hence, in
(25), only those φq’s that exist in the numerators of Cq and
Ceq are treated as variables. The condition in (18) guarantees
the secrecy rate being a monotonically increasing function of
φq (cf. Lemma 1). Hence, the best-response of the qth link,
q = 1, . . . , Q, is when φq meets its upper bound in (23) with
equality. Otherwise, the secrecy rate is not maximized. With
every link following such strategy, the interaction between the
legitimate links can be modeled as non-cooperative game [11].
A NE exists if the strategy set of each player is non-empty,
compact and convex, and the utility function of each player
is a continuous and (quasi-)concave function of its action.
Replacing cq with RHS of (18), Csecq becomes concave w.r.t
φq . Specifically,

d2Csecq

dφ2
q

= P 2
q

(
1

a+ δ + φqPq + bp′q
− 1

a+ φqPq + bp′q

)
(26)

which is always negative indicating that Csecq is concave w.r.t.
φq . The compactness of strategy sets is also obvious. Hence,
at least one NE exists in this game. A necessary and sufficient
condition for the uniqueness of NE is proven in the following
theorem.

Theorem 1. The game defined in (25) for all q = 1, . . . , Q
has a unique NE iff the following condition is satisfied:

ρ(A+B) < 1 (27)

where ρ(•) indicates the spectral radius of a matrix, A is a
Q×Q matrix whose entires are written as

A =

−
Pr
Pq
Aq,r , r 6= q,

0 , r = q
, ∀q ∈ {1, . . . , Q}, (28)

and B is as follows:

B =


Pr
Pq
Bq,r , r 6= q,

0 , r = q
, ∀q ∈ {1, . . . , Q}. (29)

Proof: See [10].

Although (27) is a tight condition, evaluating it requires the
knowledge of the whole matrix A+B which is not desirable for
distributed implementation. We introduce a sufficient condition
which can be evaluated in distributed fashion. It is shown in
[12, Proposition A.20] that for any induced matrix norm || • ||
and any square matrix M we have ρ(M) ≤ ||M||. Using this
property, we consider the induced norm || • || to be || • ||∞
which is the infinity norm. Hence, assuming that M is a Q×Q
matrix, a sufficient condition for ρ(M) < 1 is that whether
||M||∞ < 1. Hence, in our game, we must have

||A+B||∞ = max
q

Q∑
r=1

Pr
Pq
|Aq,r −Bq,r| < 1. (30)

In other words, every player should check whether

Nq − 1

Nr − 1
(

Q∑
r=1

∣∣∣∣∣ |r†qGq|2((Nr − 1)|d†qHrq|2 − |d†qHjr|2)
|r†qGjq|2|d†qHqq|2

−
Q∑
r=1

|d†qHqq|2((Nr − 1)|r†qGr|2 − |r†qGjr|2)
|r†qGjq|2|d†qHqq|2

∣∣∣∣∣) < 1, ∀q. (31)

The physical intuition drawn from the condition in (30) is
not straightforward. However, we see in the next section that
the robust approach introduces simpler and more applicable
physical interpretations to predict a unique NE.

V. ROBUST POWER ALLOCATION GAME

So far, we assumed the full knowledge of Alice-Eve and
Bob-Eve channels (i.e., ECSI) in every analysis. However,
the knowledge of ECSI is not practical to achieve in several
scenarios. In this section, we incorporate the assumption of
unknown ECSI in our game. In this analysis we assume that
the value of large-scale fading of the Alice-Eve and Bob-Eve
channels are known and small-scale fading components are
not known. Using the concepts of stochastic geometry, our
analysis can be easily extended to the case where the exact
knowledge of large-scale fading is also not available. As the
knowledge of ECSI becomes unknown, each link needs to
make sure that positive secrecy is still preserved. Recalling the
inequalities in (22) and (23), positive secrecy happens when
cq > aq + (bq − dq)p′q or equivalently

(1− φq)Pq > ψq + p′qEq (32)
where

ψq ,
Q∑
r=1
r 6=q

{
(Aq,r −Bq,r)φrPr + Cq,rPr +Dq,rp

′
r

}
.



φq ≤ max{min{1−
1

Pq

Q∑
r=1
r 6=q

{
(Aq,r −Bq,r)φrPr + Cq,rPr +Dq,rp

′
r

}
−
p′q

Pq
Eq − δ, 1}, 0} (23)

Therefore, for a given probability value ε, the qth link needs
to makes sure that the following inequality is satisfied:

Pr{(1− φq)Pq > ψq + p′qEq} ≥ ε. (33)

Using (18) and the Bayes law of total probability we have

Pr{(1− φq)Pq > ψq + p′qEq} = (34)
Pr{bq < dq}(1− Pr{(1− φq)Pq ≤ ψq + P ′qEq})+
Pr{bq > dq}(1− Pr{(1− φq)Pq ≤ ψq}).

Using Markov inequality in (34), the following holds

Pr{bq < dq}(1− Pr{(1− φq)Pq < ψq + P ′qEq})+
Pr{bq > dq}(1− Pr{(1− φq)Pq < ψq}) > (35)

Pr{bq < dq}(1−
E[ψq + P ′qEq}]
(1− φq)Pq

) + Pr{bq > dq}(1−
E[ψq}]

(1− φq)Pq
).

(36)
Simplifying this inequality, we end up with

φq ≤ max {min { (37)

1− Pr{bq < dq}
E[ψq + P ′qEq}]

(1− ε)Pq
− Pr{bq > dq}

E[ψq}]
(1− ε)Pq

, 1}, 0}.
(38)

The details of deriving E[ψq] and P (bq < dq) are given in
[10], thus skipped here for brevity. It turns out that [10]

Pr{bq < dq} = 1− 1

1 +
|d†qHqq|2

τq|d†qH′
qq|2

. (39)

We now turn our attention to E[ψq + P ′qEq], which can be
simplified using the following

E[Aq,r] =
Nq − 1

(Nr − 1)(Nq − 3)

(Nr − 1)|d†qHrq|2 − |d†qHjr|2

|d†qHqq|2
,

(40a)
E[Bq,r] = 0, (40b)

E[Cq,r] =
Nq − 1

(Nr − 1)(Nq − 3)

|d†qHjr|2

|d†qHqq|2
− Nq − 1

(Nq − 3)

d
(−η)
re

d
(−η)
qe

, (40c)

E[Dq,r] =
Nq − 1

(Nq − 3)

(
|d†qH′rq|2

|d†qHqq|2
− d′re

(−η)

d
(−η)
qe

)
, (40d)

E[Eq] =
Nq − 1

Nq − 3

|d†qH′qq|2 − |d†qHqq|2

|d†qHqq|2
. (40e)

We choose to use RxFJ whenever Pr{bq > dq} > 0.5. With
the derivations in (37) and (40), we can construct a game with
the same structure as in section IV where each link’s best
response is calculated from (37), and the following must hold
to ensure a unique NE:

ρ

(
1

1− εE[A]

)
< 1, (41)

where A is defined in (28) and the expectation is element-
wise. An alternative condition to (41) is to replace the spectral
radius with infinity norm according to (30). Notice that the
absence of B (defined in (29)) in (41) provides less restrictive
NE uniqueness conditions, as we expect that by placing the
legitimate links far enough from each other, a unique NE
exists regardless of Eve’s channels. The following algorithm

summarizes our discussion so far:

Algorithm 1 Iterative Secure Power Allocation
Set p′q and δ according to (18) (cf. Section III).

1: for n=1 to maximum iteration do
2: repeat ∀(q) ∈ {1, ..., Q} Calculate aq , bq , cq , and dq

according to (3) and (6)
3: Set φq equal to its upper bound according to (23)

(full-ECSI version), or (37) (robust version).
4: until Convergence
5: end for

VI. NUMERICAL RESULTS

In this section, we verify our theoretical analyses. We
show the results for the case of four links. We consider a
deterministic location for Eve denoted as (Xe, Ye). All Alices
are randomly placed on the boundary of a circle, known as
simulation region, with radius rcirc whose center is at the
origin. Each Alice has a fixed distance (communication range)
with her corresponding Bob denoted as dlink. Each Bob
is placed randomly around his corresponding Alice on the
boundary of a circle whose radius is set to dlink with his
corresponding Alice at the center of the circle. We set N0 = 0
dBm; Pq = 25 dBm, ∀q; P ′q = 15 dBm; η = 4; τq = −100 dB;
and dlink = 10 m. Jacobi method is used in all simulations.

Fig. 1 (a) shows the variation of convergence probabilities
of robust and full-ECSI method w.r.t rcirc for the four-link
case. The convergence probability is calculated as number of
times the conditions in (27) (indicated by n1 in Fig. 1 (a)),
(31) (indicated by n2 in Fig. 1 (a)) and their equivalents
for the robust version hold true divided by the number of
channel realizations. It can be seen that for the case of full-
ECSI, probability of uniqueness of NE using (31) is very low.
However, in the case of unknown ECSI, since the nodes are
indifferent w.r.t. ECSI, far less restrictive conditions than that
of full-ECSI scenario can be achieved. Moreover, in robust
version, as ε becomes larger, the uniqueness conditions become
more restrictive, which is in line with the derivation in (41).

Fig. 1 (b) shows the achieved secrecy sum-rate of the pro-
posed non-cooperative game and the globally optimal solutions
of the secrecy sum-rate maximization. The maximum amount
of iterations for Algorithm 1 is set to 50 iterations. It can be
seen that in the full-ECSI case, the secrecy sum-rate is less
than the globally optimal solutions. Surprisingly, the secrecy
sum-rate of robust approach is higher than the full-ECSI case
for rcirc > 10m. This advantage can be seen for both values
of ε. The main reason behind this advantage is that in the
robust approach, the links set their power allocations in a way
to be indifferent w.r.t. ECSI. This provides the links with less
restriction, and thus a wider range of candidate solutions may
exist, allowing the links to manage the interference between
themselves better than the full-ECSI case. Notice that both the
NE uniqueness and convergence of Algorithm 1 are affected
by ECSI when it is known, contributing to more restrictive
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Figure 1: (a) Probability of convergence for full-ECSI and robust version, (b) Comparison of secrecy sum- rate,

(c) Comparison of information/leaked rate (Xe= Ye= 5, Nq = 8,Mq = L = 5,∀q,Q = 4).

tradeoff between links. It can be seen in Fig. 1 (c) that although
the leaked rate for the robust approach is higher than full-
ECSI case –which is the penalty of robust approach– the robust
approach is more efficient in managing interference.

It can be see in Fig. 1 (c) that even for low values of
ε, the performance of robust approach is still superior. We
conjecture that this might be due to the fact the F-distrbution,
which was the distribution involved in best responses in (37)
(see [10]), is a positively skewed distribution. Hence, most of
the density of the distribution of best response and its mean
are concentrated at the left of the median. Thus, to ensure that
(1 − φq) > Pr{bq < dq}

E[ψq+τqP
′
qEq}]

1−ε + Pr{bq > dq}E[ψq ]
1−ε ,

the density of the values above the mean is relatively low.

VII. CONCLUSION

We proposed a joint Tx- and Rx-based friendly jamming
mechanism in a MIMO interference network tapped by ex-
ternal eavesdropper(s). Using a game theoretic approach, we
proposed a framework under which every link can utilize RxFJ
and TxFJ to achieve a positive secrecy rate and relax the knowl-
edge of interference at the external eavesdropper. Sufficient
conditions for the uniqueness of the NE were derived. We also
proposed a robust version of our game when the eavesdropping
channels are unknown. Simulation showed that contrary to
intuition, the robust game achieves higher secrecy sum-rate
compared to the game with full-ECSI, which is mainly due
to less restriction in managing multi-user interference for the
robust approach. The extension of this framework to the case
where MMSE receivers are employed instead of MRC could
be an interesting subject of future research.
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