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Abstract—The article considers the joint optimization of artificial
noise (AN) and information signal precoders in a MIMO wiretap
interference network where the transmission of each user may be
overheard by several MIMO-capable eavesdroppers. We use the the-
ory of non-cooperative games to propose a distributed framework to
optimize the covariance matrices of the information signal and AN
at each link. To tackle the non-convexity of each link/player’s opti-
mization problem, we recruit a relaxed equilibrium concept in game
theory, called quasi-Nash equilibrium (QNE). Under the assumption
of no coordination between links, we derive sufficient conditions
for the existence and uniqueness of the resulting QNE. It turns out
that the uniqueness of QNE is not always guaranteed, especially
in the case of high interference. Hence, multiple QNEs might
exist, and an ordinary updating process (e.g., Gauss-Seidel, Jacobi,
or asynchronous update) does not guarantee the convergence to
a QNE. Instead, by using the Tikhonov regularization method
for variational inequality problems, we modify our algorithm to
guarantee the game’s convergence to a QNE even in the case of
having multiple QNEs. The modified algorithm also allows the
links to select between multiple QNEs so as to reduce the received
interference at the legitimate receivers. Simulations are then used
to confirm the above theoretical findings and the efficacy (in terms
of secrecy sum-rate, convergence guarantee, and energy efficiency)
of the latter algorithm.

Index Terms—Wiretap interference network, friendly jamming,
equilibrium selection, MIMO precoders

I. INTRODUCTION

Physical-layer (PHY-layer) security provides cost-effective

solutions in scenarios where the use of cryptography is either

impractical or expensive. Over the last decade, several PHY-layer

security techniques have been proposed. Among them is the use

of artificial noise (AN) as a friendly jamming (FJ) signal [1]. In

this method, along with the information signal, the transmitter

and/or its allying radios generate a FJ signal aiming to increase

the interference at the eavesdropper (to conceal the information

received by the legitimate receiver).

To use AN in a wiretap interference network (e.g. peer-to-

peer networks), it is desirable that the FJ interference from each

transmitter is cancelled or carefully managed to minimize the ef-

fect on other legitimate but unintended receivers in the network.

Furthermore, although network interference is regarded as an

adverse phenomenon at legitimate receivers, it can be exploited

to “blind" eavesdroppers and hence improve the secrecy rate of

legitimate transmissions.

In this paper, we consider a MIMO wiretap interference

network to assess the potential of interference management

in achieving a secrecy target. To that end, we design a non-

cooperative game in which the utility of each player (i.e., link)

is its secrecy rate and the strategy of each player is to optimize

the covariance matrices of information signal and AN. Since

the best-response of each player is a non-convex optimization

problem, traditional analyses and results of convex (concave)

games are not applicable to our game. Instead, we use a relaxed

equilibrium concept, known as quasi-Nash equilibrium (QNE)

[2]. QNE is a solution of the variational inequality (VI) [3]

obtained under the KKT optimality conditions of the players’

problems. We first derive sufficient conditions for the existence

and uniqueness of the resulting QNE. It turns out that under

high network interference, the game might have multiple QNEs.

Consequently, the convergence to a QNE is not guaranteed,

making our algorithm unstable. To overcome this issue, we use

the Tikhonov regularization method used in solving VI problems

[4]. Doing so, we define a modified game in which not only

the game is guaranteed to converge to a QNE, but also the

links are able to choose between the multiple QNEs in the

game such that the interference at the legitimate receivers is

reduced. Simulations show that the modified algorithm results

in more energy efficiency and higher network secrecy rate with

guaranteed convergence.

The rest of this paper is organized as follows. In Section II the

system model is defined. In Section III the transmit optimization

is modeled as a non-cooperative game. The existence and

uniqueness of the QNE are investigated in Section IV. The

analysis of the game in the presence of multiple equilibria, and

theoretical aspects of QNE selection are introduced in Section

V. In Section VI the design and implementation aspects of the

of QNE selection are discussed. Simulation results are presented

in Section VII to verify our theoretical analyses. Finally, Section

VIII concludes the paper.



II. SYSTEM MODEL

Let us consider a network where Q transmitters (with NTq

antennas at the qth transmitter) are communicating with their
corresponding receivers (with NRq

antennas at the qth receiver,
q = 1, . . . , Q). There are K eavesdroppers each with Ne,k, k =
1, . . . ,K antennas that can overhear the communications. The
received signal at the qth receiver, yq is

yq = H̃qquq +

Q
∑

r=1
r 6=q

H̃rqur + nq, q = 1, . . . , Q (1)

where H̃rq denotes the NRq
×NTr

channel matrix between the
rth transmitter and the qth receiver, uq is the NTq

× 1 vector
of transmitted signal from the qth transmitter, and nq is the
NRq

× 1 additive noise vector whose elements are i.i.d zero-
mean circularly symmetric complex Gaussian distributed with
unit variance. The received signal at the kth eavesdropper, zk
can be expressed as

zk =

Q
∑

q=1

Gqkuq + ne,k, k = 1, . . . ,K. (2)

where Gqk is the NRe,k
×NTq

channel matrix between the qth
transmitter (q = 1, . . . , Q) and the kth eavesdropper and ne,k is
the NRe,k

× 1 additive noise vector at the receiver of the kth
eavesdropper. The transmitted signal uq is defined as

uq , sq + wq (3)

where sq is the information signal and wq is the AN. We use
the Gaussian codebook for the information signal and a Gaussian
noise for the AN. Let Σq and Wq denote the covariance matrices
of sq and wq , respectively. The qth link (q = 1, . . . , Q) together
with K eavesdroppers form a compound wiretap channel. The
achievable secrecy rate of the qth link (q = 1, . . . , Q) can be
written as [5]

Rs,q(Σq,Wq) , Cq(Σq,Wq)− max
k=1,...,K

Ce,q,k(Σq ,Wq) (4)

where Cq(Σq,Wq) is the information rate and Ce,q,k(Σq,Wq)
is the rate at the kth eavesdropper, k = 1, . . . ,K , while
eavesdropping on the qth link, q = 1, . . . , Q. More specifically:

Cq(Σq ,Wq) , ln
∣

∣

∣
I + M

−1
q HqqΣqH

H
qq

∣

∣

∣
, (5a)

Mq , I + HqqWqH
H
qq +

Q
∑

r=1
r 6=q

Hrq (Σr + Wr)H
H
rq, (5b)

Ce,q,k(Σq,Wq) , ln
∣

∣

∣
I + M

−1
e,q,kGqkΣqG

H
qk

∣

∣

∣
, (5c)

Me,q,k , I + GqkWqG
H
qk +

Q
∑

r=1
r 6=q

Grk (Σr + Wr)G
H
rk, (5d)

In the above, the term Mq is the interference-plus-noise re-

ceived at the qth receiver, and the term Me,q,k is the interference-

plus-noise received at the kth eavesdropper while eavesdropping

on the qth link. Furthermore, we have Tr(Σq + Wq) ≤ Pq, ∀q
indicating the power constraint on each link where Pq > 0.

III. PROBLEM FORMULATION

Due to the lack of coordination amongst links, the dynamics of
interactions between them can be modeled as a non-cooperative

game where each player (i.e., link) maximizes its utility (i.e., se-
crecy rate) independently, given the strategies of other players.1.
The best response problem of each player is formulated as

maximize
Σq ,Wq

Rs,q(Σq,Wq)

s.t. (Σq ,Wq) ∈ Fq, q = 1, . . . , Q (6)

where Fq = {(Σq,Wq)|Tr(Σq + Wq) ≤ Pq, Σq � 0, Wq � 0}
includes all Hermitian positive (semi)definite matrices that
satisfy the power constraint. Problem (6) is in general non-
convex. Following the approach of [6], the objective in (6) can
be written as

maximize
Σq ,Wq ,Sq

fq(Σq,Wq , {Sq,k}
K

k=0),

s.t. (Σq ,Wq) ∈ Fq , Sq,k � 0,

{

q = 1, . . . , Q

k = 0, . . . ,K
(7)

where

fq(Σq,Wq, {Sq,k}
K

k=0) , ϕq(Σq,Wq, Sq,0)−

max
k=1,...,K

ϕe,q,k(Σq,Wq , Sq,k), (8a)

ϕq(Σq ,Wq , Sq,0) , −Tr(Sq,0Mq) + ln |Sq,0|+NRq+

ln
∣

∣

∣Mq + HqqΣqH
H
qq

∣

∣

∣ , (8b)

ϕe,q,k(Σq,Wq, Sq,k) , Tr(Sq,k(Me,q,k + GqkΣqG
H
qk))−

ln |Sq,k| −NRe,k
− ln |Me,q,k| , (8c)

and {Sq,k}
K
k=0 = {Sq,0, . . . , Sq,K} are slack variables defined

to convexify the non-convex part of the secrecy rate. It can be
easily proved that the function fq(Σq,Wq, {Sq,k}

K
k=0) is convex

w.r.t. either (Σq,Wq) or {Sq,k}
K
k=0. Therefore, according to

[7, Section IV.B], it can be shown that a stationary point to
problem (6) that satisfies KKT conditions can be found. That
is, in one iteration, problem (7) is solved w.r.t. {Sq,k}

K
k=0 to

find an optimal solution {S∗
q,k}

K
k=0. Next, while {S∗

q,k}
K
k=0 is

plugged in, problem (7) is solved w.r.t. (Σq,Wq) to find an
optimal solution (Σ∗

q ,W∗
q), and this Alternating Optimization

(AO) continues until convergence. The nth iteration of AO can
be written as

(Σn
q,Wn

q) = arg max
(Σq ,Wq)∈Fq

fq(Σq ,Wq,
{

S
n−1
q,k

}K

k=0
), (9a)

Sn
q,0 , arg max

Sq,0�0
ϕq(Σ

n
q ,Wn

q , Sq,0) = (Mn
q )

−1 (9b)

Sn
q,k , arg max

Sq,k�0
ϕe,q,k(Σ

n
q ,Wn

q , Sq,k) =
(

Mn
e,q,k + GqkΣq

nGH
qk

)−1

(9c)

where n = 1, 2, . . . . Incorporating (9b) and (9c) in (9a), the
solution to the convex problem (9a) can be found using a convex
optimization solver (e.g., cvx). According to [8, chapter 3.1.5],
the smooth approximation of (6) is

R̄s,q(Σq,Wq) = Cq(Σq,Wq)−

1

β
ln(

K
∑

k=1

exp {βCe,q,k(Σq,Wq)}), q = 1, . . . , Q (10)

where β > 0. Hence, we can change (6) to (10) and then do
the same reformulation that resulted in (7) to end up with the
following smooth reformulation [7]:

1Treating the strategies of other players as given corresponds to measuring
the interference at the receiver side.



maximize
Σq ,Wq ,Sq

f̄q(Σq,Wq, {Sq,k}
K

k=0),

s.t. (Σq,Wq) ∈ Fq , Sk � 0,

{

q = 1, . . . , Q

k = 0, . . . ,K
(11)

where

f̄q(Σq,Wq, {Sq,k}
K

k=0) , ϕq(Σq ,Wq , Sq,0)−

1

β
ln(

K
∑

k=1

e
βϕe,q,k(Σq ,Wq ,Sq,k)) (12)

with ϕq and ϕe,q,k defined in (8b) and (8c), respectively. Hence,
the AO iteration in (9a) changes to

(Σn
q,W

n
q) = arg max

(Σq ,Wq)∈Fq

f̄q(Σq,Wq,
{

S
n−1
q,k

}K

k=0
), (13)

while the solutions for
{

Sn−1
q,k

}K

k=0
(i.e., equations (9b) and

(9c)) are already plugged in. The solution to (13) while being
at the nth iteration is computed using Projected Gradient (PG)
algorithm. The lth iteration of PG algorithm while at the nth
iteration of (13) is as follows.

(

Σ̂
n,l+1
q

Ŵ
n,l+1

q

)

= ProjFq

(

Σ
n,l
q + αl∇Σq f̄

n,l
q

Wn,l
q + αl∇Wq f̄

n,l
q

)

, (14)

(

Σ
n,l+1
q

Wn,l+1
q

)

=

(

Σ
n,l
q

Wn,l
q

)

+ εl

(

Σ̂
n,l+1
q −Σ

n,l
q

Ŵ
n,l+1

q − Wn,l
q

)

, (15)

where αl and εl are step sizes that can be determined using
Wolfe conditions for PG method; ProjFq

is the projection
operator to the set Fq which can be written as

ProjFq

(

Σ̃

W̃

)

= min
W,Σ∈Fq

||W − W̃||2F + ||Σ − Σ̃||2F ; (16)

and

∇Σq f̄
n,l
q = ∇Σq f̄q(Σ

n,l
q ,W

n,l
q ,
{

S
n−1
q,k

}K

k=0
), (17a)

∇Wq f̄
n,l
q = ∇Wq f̄q(Σ

n,l
q ,W

n,l
q ,
{

S
n−1
q,k

}K

k=0
). (17b)

The pseudocode of this game is shown in Algorithm 1.

Algorithm 1 Best-Response Based Secure Transmit Optimization

Initialize: Σ
1,1
q , W1,1

q , Tr(Σ1,1
q + W1,1

q ) < Pq , ∀q = 1, . . . , Q.

1: repeat

2: Each link q computes Mq , Me,q,k locally, ∀k = 1, . . . ,K.

3: for q = 1,. . . ,Q do

4: for n = 1,. . . do

5: Compute S
n−1
q,k

, k = 0, . . . ,K.

6: for l = 1,. . . do

7: Compute ϕe,q,k , Mn,l
q , and M

n,l

e,q,k
, ∀(q, k).

8: Compute (Σn,l+1
q , Wn,l+1

q ) using (14) and (15).

9: end for

10: end for

11: end for

12: until Convergence to QNE.

IV. EXISTENCE AND UNIQUENESS OF THE QNE

Before studying the existence and uniqueness of NE, we

review the fundamentals of variational inequality theory [3]:
Variational Inequality (VI) Theory: Let F : Q → Rn be

a vector-valued continuous real function, where Q ⊆ Rn is
a nonempty, closed, and convex set. The variational inequality
VI(F,Q) is the problem of finding a vector x∗ such that

(x− x
∗)TF (x∗) ≥ 0, ∀x ∈ Q. (18)

The NE for a non-cooperative game can be introduced as the

solution of a VI [4, Chapter 2].

The optimization problem of each player mentioned in (10)

is non-convex. Hence, the solution found for each link at line

10 of Algorithm 1 is only a stationary point of problem (10).

As a consequence, the traditional concepts introduced in concave

(convex) games to prove the existence of a NE are not applicable

here. Instead, we analyze the proposed (non-convex) smooth

game based on the relaxed equilibrium concept of QNE [2]. The

QNE is by definition a tuple that satisfies the KKT conditions

of all players’ optimization problems. Under a constraint quali-

fication, stationary points of each player’s optimization problem

satisfies its KKT conditions. To begin the analysis of the QNE,

we first show an important property of the stationary point found

using the AO technique (i.e., line 4-10 of Algorithm 1).

Proposition 1. The stationary point of problem (11) found using
Algorithm 1 satisfies the KKT conditions of

maximize
Σq ,Wq

R̄s,q(Σq,Wq)

s.t. (Σq,Wq) ∈ Fq , q = 1, . . . , Q. (19)

Proof: See [6, Appendix A].

Converting the game in (11) to a VI is skipped for brevity
(see [6, Section IV]). Consider the following function:

FC =
[

FC
1 (Σ1,W1, {S1,k}

K
k=0)

T , . . . , FC

Q(ΣQ,WQ, {SQ,k}
K
k=0)

T
]

,
[

[

−(∇Σ1
f̄1)

T ,−(∇W1
f̄1)

T
]T

, . . . ,
[

−(∇ΣQ
f̄Q)T ,−(∇WQ

f̄Q)T
]T

]

.

(20)

Furthermore, let vec(Z) = [(Z:,1)
T , . . . , (Z:,N)T ]T be the

vectorized version of the complex matrix Z , where Z:,n indi-

cates the nth column of matrix Z . Assuming that (Σ̄, W̄) ,
(

Σ̄1, W̄1, . . . , Σ̄Q, W̄Q

)

is the QNE to the transmit optimization
game, the equivalent VI is as follows
([

Σ
RT

,W
RT
]

−
[

Σ̄R
T
, W̄R

T
])

F
R ≥ 0, ∀(ΣR

,W
R) ∈ KR

, (21)

where

Σ̄R , [Re{vec(Σ̄)}T , Im{vec(Σ̄)}T ]T , (22)

W̄R , [Re{vec(W̄)}T , Im{vec(W̄}T ]T , (23)

F
R
, [Re{vec(F C)}T , Im{vec(F C}T ]T (24)

and Re{} and Im{} indicating the real and imaginary parts,

respectively. The terms FR, Σ̄R, and W̄R are the vectorized

versions of FC, Σ̄, and W̄, respectively. The set KR includes

the vectorized versions of (Σ̄, W̄) ,
(

Σ̄1, W̄1, . . . , Σ̄Q, W̄Q

)

.

In the following theorem, the existence of QNE is proved.

Theorem 1. The proposed game, where the actions of each

player is given by (11) admits at least one QNE.

Proof: See [6, Appendix B].

The uniqueness of QNE is discussed in the following:

Theorem 2. A sufficient condition for the game described by
the VI in (21) to have a unique QNE is

λq,min >

Q
∑

q=1
q 6=l

|||DZl
F

C

q (Zq)|||2, q = 1, . . . , Q (25)



where λq,min is the smallest eigenvalue of DZq
FC
q (Zq), Zq =

(Σq,Wq), and DZl
FC
q (Zq) ,

∂ vec(FC

q (Zq))
∂ vec(Zl)T

for all q, l ∈

{1, ..., Q}2 or alternatively

DZl
F

C

q (Zq) ,

[

DΣl
(−∇Σq f̄q) DWl

(−∇Σq f̄q)
DΣl

(−∇Wq f̄q) DWl
(−∇Wq f̄q)

]

. (26)

Proof: See [6, Appendix C].

V. TRANSMIT OPTIMIZATION GAME WITH MULTIPLE

EQUILIBRIA

For the cases where the QNE is not unique (e.g., high

interference), Theorem 2 may not hold, and the performance

of the network varies significantly over the set of quasi-Nash

equilibria. Because of this reason, we propose an alternative

algorithm so as to not only guarantee the convergence to a QNE,

but also pave the way for further performance improvements.

A. Gradient Response Algorithm

A solution to the VI in (21) can be characterized by the
following iteration [4, Chapter 12]:

x
(i+1) = ΠKR

(

x
(i) − γF

R(x(i)
, {S

(i)
q,k}

K
k=0)

)

(27)

where ΠKR is the projection to set KR, x =
[

Σ
RT

,WRT
]T

,

the superscript (i) is the number of iterations, and γ =
diag([γ1, . . . , γN ]T ) is a diagonal matrix which indicates the
step-size each player takes in the improving direction of its utility

function. The solutions to {S
(i)
q,k}

K
k=0 are as follows:

S
(i)
q,0 , (M(i)

q )−1 =

(I + HqqW
(i)
q H

H
qq +

Q
∑

r=1
r 6=q

Hrq(Σ
(i−1)
r + W

(i−1)
r )HH

rq)
−1

, (28a)

S
(i)
q,k , (M

(i)
e,q,k + GqkΣq

(i)
G

H
qk)

−1 =

(I + Gqk(Σ
(i)
q +W

(i)
q )GH

qk +

Q
∑

r=1
r 6=q

Grk(Σ
(i−1)
r + W

(i−1)
r )GH

rk)
−1

.

(28b)

The only difference of the iteration in (27) from Algorithm 1 is

that at each round of the game, instead of iteratively performing

the AO iterations until the optimum point, each user only does

one iteration of the PG method and one iteration of AO, meaning

that once one iteration of PG method is done, the values of

{S
(i)
q,k}

K
k=0 will be updated according to (28a) and (28b), and

the links start transmission. Notice that since the values of

{S
(i)
q,k}

K
k=0 are uniquely determined for a given x(i), we drop

the term {S
(i)
q,k}

K
k=0 from the argument of FR.

Assuming that FR is strongly monotone2 (with a modu-

lus csm/2) and Lipschitz continuous (with constant L) w.r.t.

(Σq,Wq)
3, the convergence follows (i.e., QNE is reached) if

γi′ = d < csm
L2 , ∀i′ = 1, . . . , N . Hence, the mapping in (27)

2The notion of (strong) monotonicity is a basic definition in the topic of VI,
which is skipped due to space limitations (see [9] and [4]).

3It can be seen from (14) and (15) that the power constraint of each user
makes the gradients bounded. Hence, FR is Lipschitz continuous on KR .

becomes a contraction mapping and the fixed points of this map

are solutions of the VI in (21) [4, Chapter 12].

The iteration proposed in (27) has two major issues. First, the

Lipschitz constant of FR(x) has to be known. Apart from being

difficult to derive, the knowledge of Lipschitz constant requires

the global knowledge of best responses in the network. Second,

the strong monotonicity of FR cannot be always guaranteed,

meaning that at some point, the game might have more than one

equilibria, and the iteration in (27) might not converge. These

issues are addressed in the next subsections.

B. Tikhonov Regularization

In Tikhonov regularization, the process of regularizing
VI(FR,KR) involves solving a sequence of VIs, where the
following is characterized for a given ǫ [4, chapter 12]:

x
(i+1) = ΠKR

(

x
(i) − γ

(

F
R(x(i)) + ǫx

(i)
))

. (29)

The solution to this iteration when i → ∞ is denoted as x(ǫ).
The limit point of a sequence of solutions for the modified VI

will converge to some solution of the original VI as ǫ → 0,

hence guiding the game to a single QNE among multiple QNEs.

That is, we can construct a nested algorithm in which for the

jth iteration of outer loop we choose ǫ(j). Then, we use (29) as

the inner loop iteration. The solution of inner loop for a given

ǫ(j) is denoted by x(ǫ(j)) which is the jth member of sequence

of solutions to V I(FR(x(i)) + ǫ(j)x,KR). The sequence of

ǫj’s satisfy limj→∞ ǫ(j) = 0. Assuming that FR is monotone,

solving a sequence of V I(FR(x) + ǫx,KR)’s (via (29)) has

a limit point (i.e., limǫ→0 x(ǫ) exists) which is the least-norm

solution of the VI(FR,KR) [4, Theorem 12.2.3].

C. Equilibrium Selection using Tikhonov Regularization

We wish to select a QNE that optimizes a particular cri-
terion. Let the set of solutions of VI(FR,KR) be denoted as
SOL(FR,KR). The selected QNE minimizes a strongly convex
function4 Φ(x) : KR → R, i.e., the selected QNE solves

minimize Φ(x) (30)

s.t. x ∈ SOL(F R
,KR).

The unique point that solves the optimization in (30), is the
solution to VI(∇Φ(x), SOL(FR,KR)). As there is no prior
knowledge of the set SOL(FR,KR) (i.e., no access to all of
QNEs), the optimization in (30) cannot be solved easily. Hence,
we make the following modification to VI(FR,KR):

F
R

ǫ , F
R + ǫ∇Φ(x). (31)

Since Φ(x) is a strongly convex function, its derivative w.r.t. x
is strongly monotone. If FR is monotone5, then FR

ǫ is strongly

monotone and the solution to VI(FR
ǫ ,K

R), namely, x(ǫ), is

unique ∀ǫ > 0. Now, we can use the following iteration

x(i+1) = ΠKR

(

x(i) − γ
(

FR(x(i)) + ǫ∇Φ(x(i))
))

(32)

4A strongly convex function is a function whose derivative is strongly
monotone (see [3]).

5Throughout the simulations, it turns out that FR is always monotone (see
[6, Section VII.C]).



where the only difference with (29) is that the multiplier of ǫ in

(29) is replaced by ∇Φ(x(i)). The following theorem shows the

potential of using (32) in QNE selection.

Theorem 3. [4, pp. 1128 and Theorem 12.2.5] Consider the VI

problem VI(FR
ǫ ,K

R) with x(ǫ) as its solution. Assume that the

set KR is closed and convex, and SOL(FR,KR) is nonempty.

Hence, the limit point of the solutions found via (32) (i.e.,

limǫ→0 x(ǫ) where x(ǫ) is found by iteratively using (32) for i →
∞) is the unique solution of VI(∇Φ(x), SOL(FR,KR)).

D. Distributed Tikhonov Regularization

QNE selection requires to be done in two nested loops. In
the inner loop, for a given ǫ(j), the solution to VI(FR

ǫ ,K
R)

will be found from the iteration in (32). In the outer loop,
the next value of ǫ(j) will be chosen (where limj→∞ ǫ(j) = 0)
until the solution to VI(∇Φ(x), SOL(FR,KR)) is reached. We
introduce another method of regularization, namely, proximal
point regularization, as the next level of perturbation done on
the users’ utility functions. The basic perturbation that is done
here is to add a term θ(i)(x(i) − x(i−1)) to the function FR

ǫ (x)
to build a function FR

ǫ,θ(x) , FR
ǫ (x)+θ(i)(x(i)−x(i−1)) where

θ(i) is a diagonal matrix. Notice that the superscript (i) indicates
the iterations of gradient response algorithm in (27) (or (32)).
Hence, the iterates of x(i) can be written as

x
(i+1) = Π

KR

(

x
(i) − γ

(i)
(

F
R(x(i)) + ǫ

(j)∇Φ(x) + θ
(i)(x(i) − x

(i−1)
))

(33)

Furthermore, the following property can be proved:

Proposition 2. [10, Proposition 3.4] Consider the mapping
FR
ǫ (x) to be a strictly monotone and Lipschitz continuous map-

ping6; maxz∈KR ||x|| ≤ C and maxz∈KR ||FR
ǫ || ≤ B. Further-

more, suppose that for a given ǫ(j), the solution to VI(FR
ǫ ,K

R)
is denoted as x(ǫ(j)). Let x(i) denote the set of iterates defined

by equation (33) where the step-size matrix γ(i) is changing
with the iterations. Lastly, set γ(i)θ(i) = c = diag([c1, . . . , cN ])
where ci′ ∈ (0, 1), ∀i′ = 1, . . . , N is a constant, and let the
following hold:

∑

i=1

γ
(i)
max = ∞,

∞
∑

i=1

(

γ
(i)
max

)2

< ∞,

∞
∑

i=1

(γ(i)
max − γ

(i)
min) < ∞ (34)

where γ
(i)
max and γ

(i)
min are respectively the maximum and min-

imum diagonal elements of the matrix γ(i). Therefore, we have

limi→∞ x(i) = x(ǫ(j)).
Note that the strict monotonicity of FR

ǫ (x) is satisfied as

FR
ǫ (x) is already strongly monotone (cf. (31)). By having

power constraints on the users’ beamformers, the conditions

maxz∈KR ||x|| ≤ C and maxz∈KR ||FR
ǫ || ≤ B can also be

satisfied. According to [10, Proposition 3.4], the step-size γ(i)

can be chosen as γ
(i)
m = (i + αm)−ω, where αm is a positive

integer for m = 1, . . . , N , and 0 < ω < 1. With Proposition 2,

the Lipschitz constant and strong monotonicity modulus of FR
ǫ

are not needed to be known.

VI. ALGORITHM DESIGN

The pseudocode for the QNE selection algorithm is shown in

Algorithm 2.

6Note that Lipschitz continuity of FR
ǫ (x) requires both FR(x) and ∇Φ(x)

to be Lipschitz continuous. Hence, the criterion function that we choose in the
next section is also Lipschitz continuous.

Algorithm 2 QNE Selection Algorithm

Initialize: Σ
(1)
q , W(1)

q , Tr(Σ(1)
q + W(1)

q ) < Pq , ∀q, and j = 1.

1: repeat % Outer loop: superscript (j) indicates the iterations starting from here.

2: Choose the jth member of the sequence ǫ(j) .

3: repeat % Inner Loop: superscript (i) indicates the iterations starting from here.

4: Compute M(i)
q , M

(i)
e,q,k

, ∀(q, k) ∈ {1, . . . , Q} × {1, . . . ,K}.

5: Compute S
(i)
q,k

, ∀(q, k) ∈ {1, . . . , Q} × {1, . . . ,K}.

6: Compute ϕe,q,k(Σ
(i)
q , W(i)

q , S
(i)
q,k

), ∀(q, k) ∈ {1, . . . , Q} × {1, . . . ,K}.

7: for q = 1,. . . ,Q do

8: Replace ∇Σq f̄q with ∇Σq f̄q + ǫ(j)∇ΣqΦ(x) −

θ(i)
q

(

Σ
(i)
q − Σ

(i−1)
q

)

.

9: Replace ∇Wq f̄q with ∇Wq f̄q + ǫ(j)∇WqΦ(x) −

θ(i)
q

(

W(i)
q − W(i−1)

q

)

.

10: Compute (Σ(i+1)
q , W(i+1)

q ) using (14)-(15). % Drop the superscript

n and replace the superscript l with (i). The computation is done the same as (27).

Also, in (14) and (15), set αl = γ(i)
q and εl = 1.

11: end for

12: until Convergence to NE. % x(ǫj) is found.

13: j = j+1.

14: until Convergence to limit point of x(ǫj).

In the following, we explain the terms ∇Σq
Φ(x) and

∇Wq
Φ(x) in lines 8 and 9 of Algorithm 2.

Assume that the criterion function is described as

∇Φ(x) , [∇R

Σ1 ,W1
Φ(x)T , . . . ,∇ΣQ,WQ

Φ(x)T ]T , (35a)

∇R

Σq ,Wq
Φ(x) , [∇R

Σq
Φ(x)T ,∇R

Wq
Φ(x)T ]T , q = 1, . . . , Q, (35b)

∇R

Σq
Φ(x) , [Re(vec(∇ΣqΦ(x)))

T
, Im(vec(∇ΣqΦ(x)))

T ]T ,
(35c)

∇R

Wq
Φ(x) , [Re(vec(∇WqΦ(x)))

T
, Im(vec(∇WqΦ(x)))

T ]T .
(35d)

We aim to select the QNE that maximizes the sum-rate of the
links. Recalling the reformulated information rate in (8b), Φ(x)
can be described by (with q ∈ Q):

∇ΣqΦ(x) =

Q
∑

r=1
r 6=q

H
H
qr

(

(Mr + HrrΣrH
H
rr)

−1 − Sr,0

)

Hqr, (36a)

∇WqΦ(x) =

Q
∑

r=1
r 6=q

H
H
qr

(

(Mr + HrrΣrH
H
rr)

−1 − Sr,0

)

Hqr. (36b)

Notice that although we wrote Φ as a function of x, one can eas-

ily relate the vector x to the covariance matrices {(Σq,Wq)}
Q
q=1.

We saw in Theorem 3 that the limit point limj→∞ x(ǫ(j)) exists.

Hence, the derivatives of Φ(x) in the limit point of x(ǫ(j)) would
be (with q ∈ Q)

∇ΣqΦ(x) =

Q
∑

r=1
r 6=q

H
H
qr

(

(M⋆
r + HrrΣ

⋆
rHrr)

−1 − S
⋆
r,0

)

Hqr (37a)

∇WqΦ(x) =

Q
∑

r=1
r 6=q

H
H
qr

(

(M⋆
r + HrrΣ

⋆
rHrr)

−1 − S
⋆
r,0

)

Hqr (37b)

where M⋆
r = I + Hrr(W

⋆
r)H

H
rr + Hqr(W

⋆
q + Σ

⋆
q)H

H
qr +

∑Q
l=1
l 6=q,r

Hlr (Σ
⋆
l + W⋆

l )HH
lr , with Σ

⋆
q and W⋆

q being the limit

points of Algorithm 2. Integrating (37a) w.r.t. Σ
⋆
q and

integrating (37b) w.r.t. W⋆
q , we end up with Φ(x) =

∑Q
q=1

∑Q
r=1
r 6=q

ϕr(Σr,Wr, Sr,0) where ϕr(Σr,Wr, Sr,0) is de-

fined in (8b). Hence, in the limit point of Algorithm 2, the

QNE that maximizes sum-rate of other users is selected.



VII. NUMERICAL RESULTS AND DISCUSSION

In this section, we simulate both algorithms presented so far.

We set the noise power to 0 dBm. The links are randomly placed

in a circle, namely, the simulation region, with a radius rcirc.

The eavesdroppers are randomly placed within this circle. The

distance between the transmitter and the receiver of each link

is constant, dlink = 10 m. The path-loss exponent is set to

2.5. For both algorithms, the termination criterion, wherever it

exists, is when the normalized relative difference of each link’s

secrecy rate between two consecutive iterations is less than 10−3.

For the case of QNE selection, we set the parameters according

to the following: γ
(i)
q = diag(γ0i

(−0.01)), γ0 = 20000, c =
0.08× IQ×Q, and ǫ(j) = 1

j
.

Fig. 1 shows the convergence behavior of Algorithm 1 and

Algorithm 2 for the case of high interference. Due to the

existence of multiple QNEs, Algorithm 1 never converges to

a point. We increased the number of iterations to 1000, but did

not see the convergence of Algorithm 1. However, Algorithm 2

converges to a unique QNE.

Fig. 2 compares the secrecy sum-rate of Algorithm 1 and

Algorithm 2 for different number of links. It can be seen that

Algorithm 2 consistently outperforms Algorithm 1 in terms of

secrecy sum-rate. The reduction in the performance of Algo-

rithm 1 is due to high interference which directly affects the

information rate of the legitimate channel.

In Fig. 3, we compare the power efficiency of the proposed

algorithms. The total power and total AN powers consumed

by the links are normalized w.r.t the total power budget of

all links. It can be seen that Algorithm 2 is more energy

efficient. Algorithm 1 is less efficient as the increase in the

power of AN creates interference at other legitimate receivers

which eventually does not lead to a higher secrecy sum-rate7.

VIII. CONCLUSIONS

We designed a game theoretic secure transmit optimiza-

tion framework for a MIMO interference network with several

MIMO-enabled eavesdroppers. To guarantee the convergence

and improve the network secrecy rate in the case of multiple

QNEs, we designed an algorithm based on the concept of

variational inequality with which the links can select the best

QNE according to a criterion function. We also verified the

efficacy of the QNE selection algorithm by simulations.
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