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ABSTRACT
To overcome the high propagation loss and satisfy a given link bud-

get, millimeter wave (mmW) communication systems rely on highly

directional antennas, both at the base station (BS) and the user

equipment (UE). Due to this directionality, initial access (IA) and

association can be particularly challenging. Existing approaches for

IA in directional networks suffer from long discovery time and/or

high misdetection probability of the UE. In this paper, we propose

FastLink, an efficient IA protocol for mmW systems with electroni-

cally steerable antennas. FastLink always transmits/receives using

the narrowest possible beam, allowing high beamforming gains

and low misdetection rate. It uses a unique binary-search-based

algorithm, called 3DPF, to scan only a small subset of the angular

space and find in logarithmic time the best transmit-receive beam

pair. We formulate the beam-finding process as a sparse problem,

exploiting the poor scattering nature of mmW channels. Compres-

sive sensing is then used to determine the minimum number of

measurements needed to reconstruct the sparse channel. 3DPF is

incorporated into FastLink to establish the directional link, and

the required messaging between the BS and the UE is explained

in detail. For performance evaluation purposes, we first conduct

simulations based on NYU mmW channel model and then experi-

ment with a custom mmW testbed utilizing uniform planar arrays

and operating at 29 GHz frequency. Our extensive simulations and

hardware experiments verify the efficiency of FastLink, and show

that 3DPF can reduce the search time by 65 − 99% compared to

802.11ad-like beam finding scheme.
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1 INTRODUCTION
The abundant mmW spectrum is vital to meeting the high demands

of next-generation wireless technologies, including 5G cellular sys-

tems [1], WLANs (e.g., WiGig [16]), internet of things (IoT), and

connected and autonomous vehicles. However, extending wireless

communications to mmW bands faces many challenges, such as

high channel losses [6, 18], poor penetration through dry walls

and human body, and atmospheric absorption at certain mmW

frequencies [19]. These challenges limit signal coverage and hin-

der communications. On the other hand, due to the much smaller

wavelengths at mmW frequencies, many antenna elements can be

packed into a single device without increasing its form factor. With

proper processing of signals fed into these antennas, transmissions

can be beamed along a desired direction. The severe signal atten-

uation in the mmW bands can then be compensated for by the

beamforming gain obtained with the use of antenna arrays [4].

Depending on the beamforming architecture, the beamforming

weights that are used to focus the signal in a desired direction could

be applied in the digital and/or analog domain. Digital beamform-

ing multiplies a particular coefficient (i.e., beamforming weights)

by the modulated baseband signal of a given RF chain. Analog

beamforming, on the other hand, applies complex coefficients to

alter the RF signals by controlling phase shifters [20]. Finally, in hy-

brid (analog/digital) beamforming, the signal processing is divided

between the analog and digital domains, allowing a comparable

performance to digital beamforming but with fewer RF chains [12].

The high cost and power consumption of having multiple RF chains

force mmW systems to rely heavily on analog beamforming.

However, the increase in the spatial reuse due to highly direc-

tional communications comes at the cost of complicating various

control functions, including the initial access (IA) procedure [19].

IA allows a user equipment (UE) to establish a connection with a

base station (BS). In current 4G LTE systems, IA is performed in

an omnidirectional fashion, which alleviates the burden of beam

alignment. Beamforming or other directional transmissions can

be performed after initial link establishment. However, in mmW

frequencies, the IA procedure must be done directionally to allow

the UE to determine suitable initial directions for transmission. This

directional search delays the link establishment, lowers throughput

and reduces the bandwidth efficiency of mmW bands [13].

In this paper, we propose an efficient IA protocol called FastLink

for mmW systems. FastLink allows devices to transmit/receive us-

ing the narrowest possible beams, and hence providing the highest

possible beamforming gains. At the same time, the beam directions

are switched in such a way that BS/UE beam alignment can be

achieved in much shorter time compared to other search mech-

anisms used in the 802.11ad standard and 5G New Radio (NR).

https://doi.org/10.1145/3242102.3242105
https://doi.org/10.1145/3242102.3242105
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FastLink aims at identifying the best transmit and receive beams in

an efficient way, exploiting channel sparsity. We first use compres-

sive sensing (CS) to determine the number of measurements (beam

probes) needed to find the “dominant” cluster. Then, using this

insight, we design a binary-search-based algorithm, called 3DPF, to

find the best transmit-receive beam pair in 3D. 3DPF divides the set

of beam directions into equally spaced subsets and then finds the

beam that achieves the maximum received power in each subset.

The number of subsets is a parameter that we determine using CS.

The contributions of this paper can be summarized as follows:

• Utilizing CS methods, we show how to obtain the optimal

beam direction using a small number of measurements that

is logarithmic in the total number of possible beams.

• We develop a novel 3D beam scanning algorithm, 3DPF,

based on beam subset partitioning and binary search, which

allows mmW devices to discover each other directionally

while keeping the discovery time and the UE misdetection

probability low.

• We integrate the proposed beam-finding algorithm into an

IA protocol, called FastLink, and we explain the required

control messages that need to be exchanged between the BS

and the UE.

• We verify the efficiency of 3DPF by conducting extensive

MATLAB simulations as well as hardware experiments on a

custom-built testbed. Our simulations implement the NYU

channel model [4] with modifications to account for more

realistic small scale effects. Our hardware setup is comprised

of a mmW signal generator, vector signal analyzer, and 4× 4

cross-cross polarized uniform planar arrays. We run the

experiments in the 29 GHz band, collecting the received

signal strength (RSS) measurements and timing results.

The experiments are conducted in an indoor office environment,

testing both line-of-sight (LOS) and non-line-of-sight (NLOS) con-

ditions. Our hardware experiments and simulation results indicate

that 3DPF reduces the search time by more than 65% compared to

802.11ad-like beam search, and yet achieves the same misdetection

probability.

2 RELATEDWORK
For mmW systems that rely on analog beamforming, three main

approaches for IA have been discussed in the literature: Exhaus-

tive search [1], two-stage hierarchical search [16], and context-

information-based (CI-based) search [3]. Exhaustive search is a

brute-force sequential beam searching technique that is proposed

for 5G NR [14]. In the 5G IA, the BS sequentially transmits synchro-

nization signals along different directions to allow undiscovered

UEs to detect one of the BS’s transmit beams [1]. This exhaus-

tive search comes at the cost of significant discovery time, as each

transmit/receive pair must be probed sequentially. On the other

hand, two-stage scanning used in the 802.11ad standard employs a

hierarchical multi-resolution beamforming codebook to expedite

IA. In the first phase, the access point (AP) sequentially transmits

synchronization signals over wider (quasi-omnidirectional) sectors

and tries to determine the best coarse direction. In the second phase

(beam refinement), the AP refines its search within the best coarse

sector by switching to narrow beams [16]. Although this approach

reduces the IA delay, the search time still scales linearly with the

number of narrow beams. Finally, in CI-based search, the UE simply

selects the optimal beam direction based on GPS information [13].

Alternative IA approaches to the above have been proposed in

the literature. The authors in [2] used a unique approach based on

hashing functions to identify the best beam. Although the hash

functions reduce the search time, the resulting beamforming gains

are lower than that of a single beam, leading to a higher misde-

tection probability. In [15], the authors proposed a beamforming

scheme that exploits the correlation between the sub-6 GHz and

the mmW interfaces to provide efficient beam alignment. Although

they improve the performance, their scheme requires a dedicated

sub-6 GHz channel, which may not be feasible for all mmW systems.

Finally, the authors in [22] proposed a model-driven beam-steering

scheme called OScan, which reduces the search latency. However,

their design is based on mmW channel measurements obtained

using horn antennas. In reality, horn antennas have significantly

different characteristics than phased-array antennas.

The aforementioned techniques present different tradeoffs be-

tween discovery time (time to establish directional communication

between the BS and the UE) andmisdetection probability. The misde-

tection probability is the probability that a UE is not being detected

by the BS. In its first phase, the 802.11ad scheme scans the space us-

ing wide beams, and thus achieves a low discovery time. However,

it also has a high chance of missing users due to low beamforming

gains. With the beam refinement phase (phase 2), 802.11ad scheme

attains better coverage and can even reach users located at the cell

edge, but this comes at the expense of much higher discovery time.

Recently, CS has gained great attention as a means to exploit

the sparsity of mmW channels [5, 11]. Essentially, CS is a signal

processing technique that can be used to efficiently reconstruct

a signal by solving an underdetermined set of linear equations.

It is based on the principle that signal sparsity can be exploited

to recover the signal using far fewer samples than required by

the Shannon-Nyquist sampling theorem [10]. This idea has been

applied in [5] for mmW channel estimation, where the authors

used it to design analog beamformers. Similarly, the authors in

[8] described a CS-based approach to estimate multipath channels

(not necessarily mmW) that have a sparse representation, without

imposing analog beamforming constraints. In [11], the authors also

utilized CS in a multiuser MIMO system to design beamformers in

a way that effectively mitigates interference. While these analyses

corroborate the significance of CS for channel estimation, they do

not specify a practical way for collecting the requiredmeasurements

and consider the algorithmic aspect of IA.

To obviate the shortcomings mentioned above, here we develop a

practical algorithm based on CS, which reduces the beam searching

delay while achieving a very lowmisdetection probability. Our algo-

rithm handles the IA completely in mmW bands. In addition, both

the analysis and the experiments utilize phased-array antennas,

which is the enabling technology for mmW communications.

3 BEAMFORMING IN ANTENNA ARRAYS
We consider the IA process between a BS and a single UE, with elec-

tronically steerable phased-array antennas at both ends. In addition,

we assume analog beamforming for both the BS and the UE, as it is
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the most energy-efficient beamforming solution currently available.

Without loss of generality, we let the BS be the transmitter (Tx) and

UE be the receiver (Rx). In this section, we focus on the UE side

(Rx). Extension to the BS is straightforward. For simplicity, we do

not use subscripts to denote BS and UE.

Before we invoke on the algorithmic details of our IA design, we

first explain how phased-array antennas can be steered towards a

desired direction. To electronically steer the beam, complex weights

should be applied to each antenna element in the array. To deter-

mine these weights, we first calculate the array factors (AFs) of the

BS and UE antenna arrays. AF is the factor by which the element

factor of an individual antenna is multiplied to get the firing pattern

of the entire array. We start by analyzing a uniform linear array

(ULA) and then extend the analysis to a uniform planar array (UPA).

Let N and F
ULA

denote the number of antennas and the array

factor for a ULA, where the array receives a signal from a plane

wave at an incident angle θ (relative to the plane of the array).

Because the transmission paths are not equal, the received signal

has different phase shifts at different antenna elements. For a ULA,

adjacent elements are separated by the same distance d , leading
to a linear array of total length (N − 1)d . Note that the phase of
antenna element n leads the phase of element n − 1 by 2π

λ d cosθ ,
where λ is the wavelength of the signal. Thus, we can write the

received signal at antenna n, n ∈ {1, · · · ,N }, as:

sn = R In e jdn
2π
λ cos θ

(1)

where In is the amplitude excitation of the nth element and R is the

radiation pattern of each antenna element. As In does not affect

the analog beamforming weights, for simplicity, we assume In = 1.

Let the output of the antenna array, s , be a weighted sum of sn ’s,
with each term sn multiplied by a complex weightwn :

s = R
N∑
n=1

wne
jdn 2π

λ cos θ = R F
ULA
. (2)

Assuming the same signal magnitude at each antenna, F
ULA

can be

maximized by selectingwn in a way to ensure that the received sig-

nals are in phase, i.e., by settingwn = e−jdn
2π
λ cos θ

. To achieve that,

the phase of the signal received by theN th antenna is kept the same,

and the phase of the signal received by every other antenna element

n, n = 1, · · · ,N − 1, is shifted by (N − n)γ = (N − n) 2πλ d cosθ .
Now consider a UPA with a horizontal inter-element distance

dx , vertical inter-element distance dy , and the AF denoted as F
UPA

.

Suppose that the incident wave of the received signal arrives from

polar angle θ and azimuth angle α , and the antennas are placed on

anM × N 2D grid. Following a similar analysis, we can write the

received signal at antenna element (m,n), sm,n as:

sm,n = R e j
2π
λ (dxm cosα sin θ+dyn sinα sin θ )

(3)

wherem ∈ {1, · · · ,M} and n ∈ {1, · · · ,N }. Similarly, the received

signal s after beamforming with complex phase-shift weightswm,n
can be written as:

s = R
M∑

m=1

N∑
n=1

wm,ne
j 2πλ (dxm cosα sin θ+dyn sinα sin θ ) = R F

UPA
(4)

Complex beamformer weights can then be calculated as wm,n =

e−j
2π
λ (dxm cosα sin θ+dyn sinα sin θ )

.

4 CS-BASED BEAM FINDING
Because of the few reflections in mmW communications, the chan-

nel matrix between the BS and the UE is sparse [4, 7]. More specifi-

cally, a transmitted signal reaches the Rx along a few AoA clusters,

depending on the environment (see for example, the received power

profile in Fig. 5 in Section 7.1). CS has been widely used in the liter-

ature to capture and represent sparse signals at a rate significantly

below the Nyquist rate [5, 10]. Considering the limited scattering

nature of the mmW channel, in this section, we formulate the chan-

nel estimation problem as a sparse problem. We then show how CS

can be used to find the optimal beam direction.

First, we express the channel between a BS and a UE under UPAs.

To denote a matrix of x rows and y columns, we use the notation

x × y. Let the total number of antennas at the BS and the UE be

A
BS
= M

BS
N

BS
and A

UE
= M

UE
N

UE
, respectively. Here, Mi and Ni ,

i ∈ {BS,UE}, refer to the number of rows and columns in the UPA.

Let aB (θ ′p ,α
′
p ) denote theABS

×1 array response vector (ARV) of the

BS antenna system and aU (θp ,αp ) denote theAUE
×1ARV of the UE

antenna system for a given cluster p. Here, (θp ,αp ) and (θ
′
p ,α
′
p ) are

the AoA and angle-of-departure (AoD) for cluster p, at the time of

reception or transmission, respectively. Then, theA
UE
×A

BS
channel

matrix H between the BS and the UE can be expressed as:

H =
P∑
p=1

hpaU (θp ,αp )a∗B (θ
′
p ,α
′
p ) (5)

where (.)∗ denotes conjugate transpose operation, P is the number

of clusters, and hp is the gain of the pth cluster (a complex number).

The transmit and receive beamforming vectors for any desired

direction can be computed offline and stored in codebooks at the

Tx and the Rx. At any time during IA, when the BS is using a

transmit beamforming vector fi ∈ CABS×1
and UE is using a receive

beamforming vector qj ∈ CAUE×1
(i and j are the indices of the

beamforming vectors in their codebooks), we can represent the

received signal yi j as:

yi j = q∗j Hfis + q∗j n (6)

where s is the transmitted signal and n ∈ CAUE×1
is a matrix

whose entries are complex circularly-symmetric white Gaussian

noise. Note that a given Tx beamformer fi (also, a given Rx beam-

former qj ) specifies the values for the angles α and θ in the Tx

(also, Rx) antenna weight wm,n , computed in Section 3. Let Q =
{q1, q2, · · · , qD } denote the codebook of the Rx beamformer, where

D is the maximum number of narrow beams that can be generated

at the Rx (depends on the resolution of the phase shifters).

To find the optimal Rx beamformer for a given Tx beamformer,

we define the precoded channel vector gi , Hfi , where gi ∈
CAUE×1

. Then, q∗j gi corresponds to measuring gi with the Rx beam

j. Using the codebook Q, we can form a basis matrix Q whose jth
row is given by q∗j , j = 1, · · · ,D. Then, D measurements for D

different Rx beamformers and a given precoded channel gi can be

collected as v = Qgi , where v is a vector of length D, containing
the channel measurement results. Our aim here is to reconstruct

v by taking only r measurements from gm where r < D, and find

the beam IDs of these r measurements. From (5), the channel has P
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clusters, meaning that v is P-sparse, i.e., it displays P peak values
1
.

Hence, v can be constructed provided that r ≥ P . Let us define Φ
as an r × D compressed measurement matrix. Then, output Ψ of

the compressed measurement process can be represented as:

Ψ = Φv = ΦQgi = Θgi (7)

where Θ is an r × A
UE
matrix and Ψ is a column vector of length

r . The problem is then reduced to designing a stable measurement

matrix Φ such that the key information in any P-sparse or com-

pressible signal is not lost through the dimensionality reduction. In

other words, we would like to reconstruct v by using the available

measurement results Ψ and the known compressed measurement

matrix Φ. A necessary and sufficient condition to find a solution to

our problem for the P-sparse v is the restricted isometry property

(RIP), which is satisfied by a given matrix Θ if [10]

(1 − ϵ) ≤
∥Θz∥2

2

∥z∥2
2

≤ (1 + ϵ) (8)

holds for any arbitrary P-sparse z and for some isometry constant

ϵ > 0. Specifically, the matrix Θ must preserve the length of an

arbitrary P-sparse z. A related condition, referred to as incoherence,
requires that the rows of Φ to not sparsely represent the columns

of Q. Both the RIP and incoherence can be achieved with high prob-

ability simply by selecting Φ as a random matrix [10]. Specifically,

when the entries of Φ are drawn independently from a N(0, 1/r )
distribution, Φ can satisfy RIP and incoherence with high probabil-

ity if r ≥ cP log(D/P), where c is a small constant that depends on

the desired probability of success. This result is summarized in the

following theorem [10]:

Theorem 1. Let r ≥ cP log(D/P) and construct Φ by drawing its
entries independently from a Gaussian distribution N(0, 1/r ). Then,
with probability exceeding 1 − e−cr , it is possible to reconstruct every
P-sparse signal v of length D using Ψ.

Thus, the P-sparse v can be recovered from only r ≥ cP log(D/P)
random measurements. Generally, Φ is constructed iteratively by

adding a new random row at each iteration. However, the mea-

surement matrix Φ constructed with random phase shifts has low

beamforming gains, which will likely not satisfy the link budget

[21]. On the other hand, by selecting the rows of Φ from the code-

book Q, the beamforming gains for any given direction can be

maximized. To find which beamformers to select from Q, Bayesian
compressive sensing can be used [17]. With this approach, Φ can

be constructed such that at each iteration, a new row is selected

from Q with the goal of reducing the uncertainty in the estimated

v. In step n, this is equivalent to selecting a row that maximizes the

variance of the measurement resultψn , whereψn denotes the nth
element of Ψ. In other words, the new row q∗i should be selected to
constitute the measurement for which the data is most uncertain.

Using this, we next describe three algorithms that aim at deter-

mining the best beam directions for the BS and the UE. Because

closeby beams give correlated results (and hence cannot maximize

the variance of a new measurement), in each iteration, the algo-

rithms probe a beam that points at a significantly different angle.

1
In general, the notion of P -sparsity is used for vectors with at most P nonzero entries.

However, as shown in [9], compressive sensing can be used to reconstruct noisy vectors

with P peaks. Therefore, for convenience, we refer to vectors exhibiting P peaks as

P -sparse.

5 PEAK-FINDING ALGORITHMS
In this section, we first develop two algorithms for 2D beam finding,

and then we extend these algorithms to a 3D environment. The

algorithms seek to identify the Rx beam j that yields the largest
|q∗j gi |

2
, i.e, the largest gain for a given precoded channel. In Sec-

tion 5.1, we design an algorithm to find the best beam in the case

of a single cluster. We extend this design to multiple clusters in

Section 5.2. In Section 5.3, we modify the algorithms to work in a

3D environment. Finally, in Section 5.4, we discuss how to select

the optimal design parameter K (number of angular regions).

5.1 Single-peak Finding (SPF) Algorithm
For now, we assume that the Tx is pointing towards a fixed, arbitrar-

ily chosen direction using its beam i and beamformer fi . Rx tries
to find the optimal beam w.r.t the given Tx direction. Extension

to finding the optimal direction in the Tx side will be explained

in Section 6. While pointing in a given direction i , the Tx sends

synchronization signals and Rx measures the received power by

steering its receive beam. For brevity, in this section, we omit the

subscript i from gi . Note that for now, we consider a fixed elevation
angle for both Tx and the Rx, and aim at finding the best azimuth

angle for the Rx.

A typical plot of beam ID vs. SNR displays multiple peaks due

to channel clusters. For now, we consider a single-peak scenario

(see Fig. 1). Note that the graph in Fig. 1 cannot be perfectly recon-

structed without measuring the SNR for each Rx beam. However,

our aim is to find the peak by using only a subset of Rx beams,

exploiting the previously presented CS analysis. Specifically, we

aim at taking r measurements (r < D) such that the optimal Rx

beamformer for a given Tx beamformer can be found with high

probability (see Thm. 1).

Our proposed algorithm, called SPF, is a variation of binary

search. First, the precoded channel g is measured using an Rx beam-

former qi that generates a starting beam i in the middle of the

Rx field-of-view (FoV). From qi , we obtain vi = q∗i g. Then, i’s left
and right adjacent beams in the azimuth domain, i − 1 and i + 1,
are scanned and vi−1 = q∗i−1g and vi+1 = q∗i+1g are obtained. If

|vi |
2 > |vi−1 |

2
and |vi |

2 > |vi+1 |
2
, where | · | indicates the modulus

of a complex number, then vi is the peak. Otherwise, v is “rising"

towards the left or the right of beam i . Thus, the directions that v
is not rising towards no longer need to be scanned. This leaves us

with the subset of the codebook Q
′

, where Q
′

= Q{1, · · · , i − 1} or
Q
′

= Q{i + 1, · · · ,D}, eliminating the need to probe the directions

in Q/{Q
′

∪ {i}}. Then, the procedure is repeated for the remaining

directions in Q
′

until the peak is reached (see Algorithm 1). An

example is illustrated in Fig. 1, where the numbers below the dots

represent the order by which the beams are scanned.

If v exhibits a single peak, the SPF algorithm finds it in O(logD)
time. However, if v has multiple peaks, SPF finds only one of the

peaks, and not necessarily the optimal. To cope with that, we next

propose the multiple-peak finding (MPF) algorithm.

5.2 Multiple-peak Finding (MPF) Algorithm
To reduce the chances of getting stuck at a local maximum, in

the MPF algorithm, the codebook Q is divided into K equal-size

subsets, each representing an angular region. Here, K is selected
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Algorithm 1 Single-peak Finding Algorithm

1: procedure Single_Peak(Q, g)
2: Initialize:
3: i ← D/2
4: vi ← q∗i g, vi−1 ← q∗i−1g, vi+1 ← q∗i+1g
5: Recursion:
6: if |vi |2 > |vi−1 |2 and |vi |2 > |vi+1 |2 then return |vi |2

7: else if |vi |2 > |vi−1 |2 and |vi |2 < |vi+1 |2 then return
SINGLE_PEAK(Q{i + 1 : D}, g)

8: else return SINGLE_PEAK(Q{1 : i − 1}, g)

Beam ID

R
e

ce
iv

e
d

 P
o

w
e

r

(3) (1)

(2)
(4)

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 1: Received power vs. beam ID (single peak). Num-
bers below the dots represent the order by which the beams
are scanned. Red dots correspond to intermediate beams and
the green dot corresponds to the peak.

Algorithm 2Multi-peak Finding Algorithm

1: procedure Multi_Peak(Q, g, K )
2: Divide Regions:
3: Divide Q into K equal regions Ri
4: Finding Peaks:
5: Candidates Ω ← { }
6: for Each Ri , i ∈ {1, · · ·K} do
7: localMax← SINGLE_PEAK(Ri , g)
8: Ω ← Ω∪ localMax

return max(Ω)

in a way that each region is likely to contain at most one peak.

Then, the SPF algorithm runs within each region. Finally, the local

maxima that are found at different regions are compared, and the

largest among them is selected (see Algorithm 2). The complexity

is O(K log
D
K ), as the SPF algorithm is run in K regions, each of

size
D
K . Clearly, as K approaches D, the MPF algorithm converges

to exhaustive search and the complexity approaches O(D). On the

other hand, if K is chosen very small (e.g., 1), the complexity is

O(logD), but there is a high chance that the global maximum will

be missed. If the local maxima that the algorithm returns cannot

support the link budget, a misdetection is declared; otherwise the

beam is declared “suboptimal” but communications along that beam

can still be established. Thus, by choosing a proper K , we increase
the chances of having at most one peak in each region, which the

algorithm is guaranteed to find.

An example of theMPF algorithm is illustrated in Fig. 2. Here, the

underlying channel has two clusters in the directions indicated by

Figure 2: Example of executing the MPF algorithm. Straight
arrows show clusters and curved arrows show rising direc-
tions. Red indicates that a beam is probed and yellow indi-
cates that a beam is a candidate for the optimal direction.

the arrows. K is selected as 3. The boundaries of the K regions are

indicated with dashed lines, dividing the whole codebook into three

(numbered clockwise). The UE simply runs SPF for each region,

first taking measurements from the middle beams at each region

and their neighbors (scanned beams are shown in red). Using these

measurements, the UE determines the rising directions, eliminating

at least half of the beams in each region. Then, it scans through

several more beams, until reaching the beams indicated with yellow.

The yellow beams yield the highest measurement results within

their regions, making them the three candidates for the optimal

beam. Finally, MPF compares the three measurement results, and

selects the beamformer corresponding to the highest result.

5.3 3DPF Algorithm
We now describe how the MPF algorithm can be extended to 3D

beam search. In the 2D case, every time a beam direction i is probed,
two adjacent beams in the azimuth domain, i − 1 and i + 1, are also
probed. In the 3D case, each time beam direction i is probed, four
adjacent beams are also probed: up and down in the elevation do-

main, and left and right in the azimuth domain. The main difference

between MPF and 3DPF is that when finding the rising directions

in 3D, we take measurements from these four neighbors of beam i
and determine the rising quadrant (instead of the rising half of the

array). Afterwards, the algorithm is run recursively in that quad-

rant. For a small D, measuring four neighbors may incur a large

overhead. However, when D is relatively large, that overhead is

negligible, as demonstrated in Section 7.

Similar to MPF, in 3DPF the space is divided into K angular

regions to account for multiple peaks. Specifically, the horizontal

domain is divided intoKx and the vertical domain is divided intoKy
regions, whereK = KxKy . As the algorithm still runs in logarithmic

time within each region, the complexity is still O(K log
D
K ).

The 3DPF is provided as a pseudocode in Algorithm 3. In Section

4, we denoted q, f and v as vectors. In reality, when UPAs are used,

they are flattened matrices. For consistency in the notation, here

we keep using the vector notation. We use vi,up , to refer to the

measurement result obtained from i’s upper neighboring beam in
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Algorithm 3 3DPF Algorithm

1: procedure 3D_Single_Peak(Q, g)
2: Initialize:
3: i ← middle beam of Q
4: vi ← q∗i g
5: vi,lef t ← q∗i,lef t g, vi,r iдht ← q∗i,r iдht g
6: vi,up ← q∗i,upg, vi,down ← q∗i,downg
7: Recursion:
8: if |vi |2 > |vi,up |2 and |vi |2 > |vi,down |

2 and |vi |2 >
|vi,lef t |

2 and |vi |2 > |vi,r iдht |2 then return |vi |2

9: else if |vi |2 < |vi,up |2 and |vi |2 < |vi,r iдht |2 then re-
turn 3D_Single_Peak(Q{upper-right quadrant}, g)

10: else if |vi |2 < |vi,up |2 and |vi |2 < |vi,lef t |2 then return
3D_Single_Peak(Q{upper-left quadrant}, g)

11: else if |vi |2 < |vi,down |
2 and |vi |2 < |vi,r iдht |2 then

return 3D_Single_Peak(Q{lower-right quadrant}, g)
12: else return 3D_Single_Peak(Q{lower-left quadrant}, g)
13: procedure 3DPF(Q, g, Kx , Ky )
14: Divide Regions:
15: Divide Q into K (K = KxKy ) equal regions Ri
16: Finding Peaks:
17: Candidates Ω ← { }
18: for Each Ri , i ∈ {1, · · ·K} do
19: localMax← 3D_SINGLE_PEAK(Ri , g)
20: Ω ← Ω∪ localMax

return max(Ω)

the elevation domain. Similar definitions apply to vi,lef t , vi,r iдht ,
and vi,down . The notation for qi is extended the same way to

account for four different neighboring beam directions.

5.4 Selecting the Optimal Number of Regions
As discussed in Section 4, the peaks of the P-sparse measurement

vector v can be found with high probability using r ≥ cP log(D/P)
samples (probed narrow beams). Setting K = P in the 3DPF algo-

rithm yields r = P log
D
P samples. As a result, for r to be greater

than or equal to cP log(D/P), c must be equal to 1. Using Theorem 1,

it is proven that with K = P , the 3DPF algorithm has a misdetection

probability below e−cr = e−r .
Unfortunately, there is no way to know in advance how many

clusters a given environment exhibits at a specific operating fre-

quency. However, there exists several works addressing the dis-

tribution of the number of clusters in various mmW bands (e.g.,

[4, 16]). In this paper, we aim at accounting for a relatively large

number of clusters to lower the chances of misdetection. Let P∗

be the 95th-percentile of P . In [4], P is modeled as a random vari-

able with distribution max{Poisson(µ), 1}, where µ = 1.8, for the

28 GHz band. Solving numerically, P∗ ≈ 3.72 when the operating

frequency is 28 GHz. We can then select K = ⌈P∗⌉, where ⌈.⌉ is the
ceiling function. Note that in [4], P is modeled for a 2D channel. In

our experiments, we observed that for 2D beam searching, select-

ing K = 4 achieves good performance in terms of discovery time

and misdetection probability. For 3DPF, we tried several K values

and found K = 16 to achieve very low misdetection rate and high

probability of identifying the optimal beam.

6 FASTLINK PROTOCOL
In this section, we present our FastLink protocol for the IA process

in mmW systems, and explain how it integrates the 3DPF algorithm

as part of the message exchange between the BS and the UE.

In LTE systems, the IA procedure utilizes an omnidirectional

signal called the Cell Reference Signal (CRS), which is regularly

monitored by each UE to create a wideband channel estimate that

can be used both for demodulating DL transmissions and for esti-

mating the channel quality [14]. However, for 5G mmW systems,

IA must take place directionally. As a result, when the main beams

of the Tx and the Rx do not point to each other, the directional link

cannot be established.

To find a suitable directional link, recent 5G specifications re-

quire that the BS covers the whole spatial area with a pre-configured

number of beams, using periodically transmitted synchronization

signal (SS) blocks [1]. These SS blocks carry primary synchroniza-

tion signals (PSS), secondary synchronization signals (SSS), and

physical broadcast channel (PBCH) information. PSS is mainly used

for initial symbol boundary synchronization to the NR cell and the

SSS is used for detection of cell and beam IDs. When the UE enters

the coverage area of a BS, it listens to an SS burst (consisting of

multiple SS blocks) and measures the signal quality of different

beams. It then determines the beam for which the received power

is maximum (and above a predefined threshold). This beam will be

chosen for subsequent transmissions/receptions. After determining

the best BS beam, the UE has to wait for the BS to schedule the

random access channel (RACH) opportunity for the beam direction

that the UE has selected. For each SS block, the BS will specify one

or more RACH opportunities to occur in a certain time, frequency,

and direction, so that the UE knows when to transmit the RACH

preamble [14]. During a RACH opportunity, UE performs random

access, implicitly informing the BS of its selected beam direction.

Note that the existing 5G specifications do not standardize how

beam sweeping will be performed at the UE.

Our 3DPF algorithm can be directly applied at the UE side, with-

out changing the default 5G IA process. This reduces the search

time at the UE side, but the BS still sweeps its beams exhaustively.

With some small changes in the IA structure, 3DPF can be employed

at both the BS and the UE. In FastLink, the BS and the UE both se-

quentially scan a small subset of their beam directions. Specifically,

during an SS block, the BS steers its beam towards a direction and

transmits PSS and SSS. During this SS block, the UE constantly mea-

sures the received power, steering its receive beam according to the

3DPF algorithm. At the end of the SS block, the BS switches to Rx

mode, and listens to a REPLY message from the UE along the same

beam direction. UE sends its REPLY using the best beam direction

it found for the given BS beam. After measuring the Rx power, in

the next SS block, the BS steers its beam towards another direction

suggested by 3DPF, and the UE runs a new search for the new BS

beam. Measurements of received powers of REPLY messages are

stored in a table at the BS. In the last stage of 3DPF, BS selects the

beam with the highest power.

For a time division duplex (TDD) system, the BS and UE operate

on the same frequency, and so the number of clusters they experi-

ence are the same. Thus, the optimal K for the BS and the UE are

the same, i.e. K
BS
= K

UE
= ⌈P∗⌉, as discussed in Section 5.4. This
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Figure 3: Proposed transmission block structure.

allows the BS to know how long each SS block should last (for UE

to run 3DPF), without prior communication with the UE.

The transmission block structure for FastLink is shown in Fig.

3. BS sends PSS and SSS for τ
UE
consecutive mini-slots within an

SS block through a selected beam i , where τ
UE

is the maximum

required number of mini-slots for the UE to run 3DPF algorithm

with the pre-selected K . Specifically, τ
UE
= ⌈P∗⌉ log DUE

⌈P ∗ ⌉ , where

D
UE

is the maximum number of narrow beams at the UE. Then,

the UE determines the best receive beam for BS transmit beam i
and sends a REPLY message to the BS. However, the power of the

signal received by the BS can be lower than its sensitivity. If the

BS does not receive a REPLY message from the UE after τ
UE
mini-

slots, it stores a minimum power value, ζ , in its table for beam i .
Then, the BS continues executing 3DPF, selecting the next transmit

beam suggested by the algorithm according to the received power

value. In total, BS needs to scan at most τ
BS
= ⌈P∗⌉ log DBS

⌈P ∗ ⌉ beams,

where D
BS
is the maximum number of narrow beams at the BS.

After collecting all REPLY messages from the UE for the selected

beams, the BS finally selects the best transmit beam from the table

and the UE selects the best receive beam for the given transmit

beam. This way, the time required to establish a directional link

can be reduced from D
BS
D

UE
to τ

BS
τ
UE
(τ

BS
≪ D

BS
and τ

UE
≪ D

UE
).

7 PERFORMANCE EVALUATION
In this section, we evaluate the performance of 3DPF through exten-

sive hardware experiments and computer simulations. We compare

3DPF with 802.11ad beam search approach, in which the search

time scales linearly with D. Note that current 5G NR beam search

also scales linearly with D, attaining similar results to 802.11ad.

7.1 Experimental Results
We first conduct extensive experiments to verify the efficiency of

3DPF. 4 × 4 UPAs are used in our experiments with dx = 0.5λ
and dy = 0.6λ. For the sake of measuring the received power, a

continuous wave with 5 dBm amplitude is transmitted over the 29

GHz band, which is a candidate band for 5G communications. To

generate the waveform, Keysight E8257D-ATO-8384 PSG signal

generator is used. At the Rx side, the array is connected to Keysight

PXA-550-MY55002004 vector signal analyzer (VSA). To steer the

transmit/receive beams to desired directions, antenna arrays are

connected to microcontrollers, which are interfaced with the PC

through serial port. The whole setup with the Tx, Rx, PSG, and the

VSA can be seen in Fig. 4.

In the experiments, Tx direction is fixed and the best Rx direction

for that fixed Tx direction is determined using 802.11ad beam scan

and the 3DPF algorithm. We test several LOS and NLOS scenarios

Figure 4: Test setup using 4 × 4 UPAs both at the Tx and the
Rx side, signal generator and vector signal analyzer.
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Figure 5: Rx powers for different beam directions at 29 GHz
operating frequency and under first scenario (Tx-Rx separa-
tion of 3m). (a) Flattened, (b) 3D representation.

with a Tx-Rx separation of 3 m, where the NLOS path is created by

a 1.2 m × 1.2 m metal reflector. The effective beam scanning range

of the UPAs in our experiments are ±60◦ from broadside, in both

azimuth and elevation (effective FOV = ∼ 120
◦
in each direction).

Beyond that, the antenna gain drops significantly as a result of

the non-ideal behavior of the antenna elements. Therefore, this

region can be considered as one quasi-omni beam for the sector-

level scanning phase of 802.11ad, and thus in the beam refinement

phase, 802.11ad protocol exhaustively scans all narrow beams in

this region. To obtain the AoA profile, we exhaustively scanned the

3D space within the effective beam scanning range of the antenna

arrays under different scenarios. Using the above setup, we collected

RSS measurements from the 3D space (see Fig. 5).

In addition to exhaustively probing all directions, we also imple-

mented our 3DPF algorithm in the Rx side. Next, we compare 3DPF

with 802.11ad/exhaustive beam search approach and plot the per-

centage of the scanned beams and actual elapsed time. We varied K
to study the resulting time overhead. The results are shown in Fig.

6. As shown in Fig. 6(b), even when K = 25, the time required to

find the best beam is still 70% less than that of 802.11ad. Note that

in Fig. 6(b), the y-axis on the left shows the percentage of scanned

directions, and the y-axis on the right shows the actual elapsed time

(they are in one-to-one correspondence). Trials refer to different

runs of the experimental scenarios.

In Fig. 6(a), an angular step size of 1
◦
is used, which results in

D = 14641. On the other hand, in Fig. 6(b), a larger step size of

5
◦
is used, which results in D = 625. Note that when switching

between beams, we impose an artificial delay to accommodate the
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Figure 6: Performance comparison of the 3DPF algorithm and 802.11ad/exhaustive beam scan. (a) Percentage of scanned beams
and elapsed time vs. trial number for 1◦ resolution, (b) percentage of scanned beams and elapsed time vs. trial number for 5◦

resolution, (c) probability of finding a suboptimal beam pair in 3DPF algorithm (averaged over 11 trials).

time needed to read the Rx power value from the VSA through the

serial port. For that reason, the measured latency values in Fig. 6(b)

are higher than the actual beam scanning delay. Another important

observation is regarding the overhead of scanning the neighbors in

3DPF. In Fig. 6(a), the search space is very large, so the overhead of

scanning the neighbors is negligible. Thus, 3DPF scans less than

1% of all the beams, on average. However, when the search space is

smaller, the overhead is more pronounced. Nevertheless, 3DPF still

scans 2% − 30% of the space, depending on the selected K .
Recall that, as explained in Section 5.2, if the beam that 3DPF

returns cannot support the link budget, a misdetection is declared;

otherwise if the beam does not yield the highest Rx power but com-

munications along that beam can still be established, the beam is

declared “suboptimal”. Due to short Tx-Rx separation, no misdetec-

tion was observed in any of our experiments. However, the channel

between the Tx and the Rx changes slightly between different runs

of the same scenario. We assumed that deviations that are within 5
◦

from the optimal beam direction do not cause a suboptimal beam

selection. However, any deviation larger than that is declared sub-

optimal, and the probability of finding a suboptimal beam vs. K is

shown in Fig. 6(c).

7.2 Simulation Results
Due to the limitations of our experimental setup, we rely on com-

puter simulations to study the impact of Tx-Rx distance. Here, Tx

power is set to P
Tx
= 30 dBm and A

BS
= A

UE
= 16. We run our

simulations in the 28 GHz band with UPAs (dx = dy = λ/2), using
[4] to model large-scale effects. For small-scale effects, we place

random scatterers on an ellipsoid between the Tx and the Rx. Tx

beam is kept the same, and Rx sweeps its beam in 5
◦
steps to find

the best receive direction for the given Tx beam. Beam scanning

range is kept the same as in the hardware experiments (±60◦ from

broadside, in both azimuth and elevation). Tx-Rx separation varies

between 10 m and 250 m. Results are averaged over 1000 runs. An

example simulation setup is seen in Fig. 7(a), and the resulting Rx

powers for different Rx beam directions are shown in Figs. 7(b) and

7(c). The results from the simulations are in line with those obtained

in the hardware experiments. In Fig. 8(a), for all values of K , the
number of scanned directions under 3DPF is significantly smaller

than that of 802.11ad. Even when K = 25, 3DPF scans less than 35%

of the directions scanned by the exhaustive approach. In Fig. 8(b),

we observe the misdetection probability vs. Tx-Rx distance. Except

when K = 1, the difference in the misdetection probability between

3DPF and 802.11ad is negligible. Finally in 8(c), suboptimal proba-

bility is plotted vs. distance. Although 3DPF has a high suboptimal

probability when K is small, the suboptimal probability decreases

significantly when K ≥ 9. Note that suboptimal probability decays

with increasing distance, as the misdetection probability becomes

dominant.

8 CONCLUSIONS
In this paper, we proposed FastLink, an efficient beam finding pro-

tocol for mmW systems that always transmits using the narrowest

possible beams, allowing high beamforming gains and low misde-

tection rate. We first formulated the beam finding problem as a

sparse problem, and used CS to determine the minimum number

of measurements needed to reconstruct the peaks of the sparse

channel. Using CS analysis, we designed the 3DPF algorithm and

show that it significantly reduces the search latency compared to

existing search schemes. 3DPF was incorporated into an IA protocol

called FastLink to allow the BS and the UE to establish a directional

link. Finally, extensive experimental and simulation results were

provided to verify the efficiency of 3DPF.
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