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Abstract—Millimeter-wave (mmW) spectrum is a major candi-
date to support the high data rates of 5G systems. However, due
to directionality of mmW communication systems, misalignments
between the transmit and receive beams occur frequently, making
link maintenance particularly challenging and motivating the
need for fast and efficient beam tracking. In this paper, we
propose a multi-armed bandit framework, called MAMBA, for
beam tracking in mmW systems. We develop a reinforcement
learning algorithm, called adaptive Thompson sampling (ATS),
that MAMBA embodies for the selection of appropriate beams
and transmission rates along these beams. ATS uses prior beam-
quality information collected through the initial access and
updates it whenever an ACK/NACK feedback is obtained from
the user. The beam and the rate to be used during next downlink
transmission are then selected based on the updated posterior
distributions. Due to its model-free nature, ATS can accurately
estimate the best beam/rate pair, without making assumptions
regarding the temporal channel and/or user mobility. We conduct
extensive experiments over the 28 GHz band using a 4×8 phased-
array antenna to validate the efficiency of ATS, and show that it
improves the link throughput by up to 182%, compared to the
beam management scheme proposed for 5G.

Index Terms—Millimeter-wave, directional communications,
beam tracking, reinforcement learning, multi-armed bandit.

I. INTRODUCTION

Millimeter-wave (mmW) communications are one of the

frontiers of next-generation wireless systems, including 5G

New Radio (NR) [1] and WiGig [2]. The abundant spectrum

available in the mmW bands enables many users to be served

by a base station (BS), with significantly higher data rates than

what is possible at sub-6 GHz bands [3]. Traditionally, mmW

bands have not been utilized for terrestrial communications

due to their harsh propagation characteristics. Nevertheless,

even though mmW signals are attenuated more heavily com-

pared to their sub-6 GHz counterparts, their small wavelengths

allow large antenna arrays to be implemented into small

form-factor radios. By using high-dimensional phased-array

antennas, transmissions/receptions can be beamed towards

desired directions. The resulting beamforming gain makes it

possible to achieve high data rates, despite the unfavorable

characteristics of the channel [4].

While beamforming allows for high gains, establishing and

maintaining a directional link can be quite challenging [5]–

[7]. Due to the limited scattering at mmW frequencies, the

channel between the BS and the user equipment (UE) is

typically sparse [8], [9]. Specifically, the transmitted signal

reaches the receiver along a few angular clusters. Identifying

the directions of these clusters takes a considerable amount

of time, prolonging the initial access (IA) process that takes

place before a BS-UE link can be established.
Although the IA problem has been well studied (e.g., [10]–

[16]), tracking a mobile UE efficiently and reliably is still

a research challenge [17]. After the initial directional link

between a BS and a UE is established, significant beam mis-

alignments occur frequently due to UE mobility, environmental

changes, or even wind [18]. These misalignments incur a large

beamforming loss, resulting in reduced data rate or link outage.

Consequently, tracking UEs and maintaining the quality of

their directional links are quite critical.
In this paper, we propose a multi-armed bandit framework,

called MAMBA, for beam tracking in mmW systems. In

MAMBA, each beam is modeled as an arm of the multi-

armed bandit, and the BS acts as the agent interacting with

these arms to learn the underlying system dynamics. To

quantify a beam’s quality, we consider the modulation and

coding schemes (MCSs) that can be supported by a beam. We

then develop a reinforcement learning (RL) algorithm, called

adaptive Thompson sampling (ATS), to be used in MAMBA

for determining the optimal beam/MCS pair for each down-

link transmission. Specifically, ATS aims at maximizing the

expected transmission rate, taking into account the estimated

reward distributions associated with each beam. However, due

to the time-varying nature of the environment, keeping track of

these reward distributions is nontrivial. To address this issue,

ATS uses apriori beam-quality information collected through

IA, and updates this information at each iteration based on the

feedback obtained from the UE. The beam and MCS to be

used during the next downlink transmission are then selected

based on the updated posterior distributions of the rewards,

i.e., achievable rates of various beams. Due to its model-free

nature, ATS can accurately estimate the best beam/MCS pair,

without making unrealistic assumptions regarding the temporal

channel and/or the UE mobility. Because all RL algorithms

require some time to learn the optimal strategy, we derive an

upper bound on regret, which is the loss in reward resulting

from deviating from the optimal strategy.
The main contributions of this paper are as follows:

• We introduce a multi-armed bandit framework, MAMBA,



to model a joint beam tracking and adaptive rate selection

problem in mmW systems. MAMBA does not incur extra

control overhead to the system. It utilizes the ACK/NACK

feedback obtained from the UE to select the best action,

i.e., the best beam/MCS pair.

• We develop an RL algorithm called ATS to be used within

MAMBA. ATS selects the optimal beam/MCS pair so as

to maximize the data rate of the underlying transmission.

In ATS, the prior reward distribution of each beam is set

based on its quality measured during IA. These priors are

updated whenever an ACK/NACK packet is received, and

the beam/MCS pair to be used in the next transmission

is determined using the updated posterior distributions

of the rewards. To address the nonstationarity in the

environment, we introduce a forget factor that discounts

the information obtained in the past and a boost factor

that increases the impact of the recent observations.

• Because the goal of ATS is to minimize the cumulative

regret, we derive an upper bound on the Bayesian regret

of the ATS algorithm. To account for the time-varying

rewards, we utilize a discrete time random walk process

in our analysis.

• Through hardware experiments at 28 GHz frequency us-

ing a 4×8 phased-array antenna, we verify the efficiency

of ATS in terms of throughput, average data rate, and

outage duration in both indoor and outdoor scenarios. Our

experiments show that ATS can improve the throughput

by up to 182%, compared to a static beam management

scheme that is proposed for 5G.

II. RELATED WORK

Multi-armed bandit (MAB) modeling framework has been

extensively applied in the literature to various online opti-

mization problems [19]. Its goal is to capture the exploration

versus exploitation tradeoff and to minimize the cumulative

regret of deviating from the optimal strategy. RL is the most

common technique for solving MAB problems, and there are

three widely applied RL algorithms in the literature to achieve

minimum regret in stationary MAB problems: ε-greedy, upper

confidence bound (UCB), and Thompson sampling (TS) [20].

ε-greedy is a simplistic approach in which the algorithm selects

the action with the highest empirical mean with probability

1 − ε, or a random action with probability ε. UCB, on the

other hand, maintains a confidence interval for each arm, in

addition to the empirical means. Then, in each round, the

algorithm greedily picks the action with the highest upper

confidence bound. Finally, in TS, the rates of exploration and

exploitation are dynamically updated with respect to the pos-

terior distribution of each beam. Specifically, the beams with

higher estimated rewards are exploited more frequently, but

the beams with lower estimated rewards are still occasionally

explored. Recently, TS was empirically shown to outperform

the two other approaches for a wide variety of problems [21],

[22]. Accordingly, in this paper, we adopt the TS approach,

but adapt it to nonstationary scenarios. This adaptation is

necessary due to UE mobility and/or environmental changes.

RL and Kalman-filter-based estimation techniques have

also been used for solving various problems in wireless

communications. In [23], the authors proposed a variation

of TS for optimal rate selection over time-varying wireless

channels with unknown channel statistics, without considering

directional communications. The authors in [24] and [25] used

RL for beam tracking. However, their methods utilize location

information, which may not always be available at the BS.

The authors in [26] used extended Kalman filters (EKF) for

angle-of-arrival (AoA) and angle-of-departure (AoD) tracking.

However, since their method tracks the currently utilized

channel cluster, it can only track one AoA/AoD pair at a time.

Similarly, the authors in [27] used Kalman filters to track

the AoA and AoDs at the transmitter (Tx) and the receiver

(Rx). However, both [26] and [27] assume that the angles

are randomly perturbed according to a zero-mean Gaussian

distribution, which may not hold in a real wireless system.

Our proposed ATS algorithm is model-free, and hence, does

not make assumptions regarding the underlying channel and/or

user mobility. The online decision-making process in each

round is done by solving a system of linear equations, which is

easy to parallelize. In addition, to our knowledge, our paper is

the first to study joint beam/rate selection for mmW systems.

III. SYSTEM MODEL

Without loss of generality, we consider the beam tracking

problem for a single UE. We first briefly describe how beam-

forming is typically applied on a mmW channel, then explain

the MAMBA framework, and finally formulate the reward-

maximization problem.

A. Codebook-based Beamforming

Consider a link between a BS and a UE that communicate

using uniform planar arrays (UPAs). Let the total number

of antennas at the BS and the UE be ABS and AUE, respec-

tively. Also, let H denote the AUE × ABS complex channel

matrix between them. To express the received signal, Tx

and Rx beamforming should be applied to channel H. In

practice, the beamforming vectors are computed offline for

a set of directions and stored in codebooks at the BS and

the UE [4]. Denote the codebooks for the BS beamformer

by F = {f1, f2, · · · , fDBS
} and for the UE beamformer

by Q = {q1,q2, · · · ,qDUE
}, where DBS and DUE are the

maximum number of narrow beams that can be generated at

the BS and the UE, respectively. Assume that after IA, the

BS and the UE agree on a directional link for which the BS

uses its Tx beamforming vector fi ∈ C
ABS×1, and the UE

uses its Rx beamforming vector qj ∈ C
AUE×1 (i and j are the

indices of the Tx/Rx beamforming vectors in their respective

codebooks). The received signal at time t, yij(t), can then be

written as:

yij(t) = qH
j Hfis+ qH

j z(t) (1)

where s is the transmitted signal, and z ∈ C
AUE×1 is a

vector of complex circularly-symmetric white Gaussian noise.

Each (fi,qj) pair achieves a certain Rx power Pij(t) at time
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Fig. 1. Timeline of the proposed downlink communication scheme between
a BS and a UE.

t, where Pij(t) = |yij |2. Because H is time-varying, the

distribution of Pij(t) is nonstationary. Our goal here is to find

the best strategy to achieve the highest long-term throughput.

B. MAMBA Framework

A naive tracking strategy is to exploit the current best beam

pair, say (fi,qj), for a relatively long time. In the current 5G

standard [28], when a new UE joins the network, it waits for

the BS to execute the IA procedure, through which they can

discover initial communication directions. During IA, the BS

transmits synchronization signals (SS), allowing a listening

UE to measure beam qualities and report them back. BS

periodically reruns the IA to discover new UEs and update

the best beams for already discovered ones. In between IA

cycles, other periodic control signals, called channel state

information-reference signals (CSI-RS), are transmitted by the

BS to maintain communication. CSI-RS is used to obtain

reference signal received power (RSRP) measurements for

beam management during mobility. However, this can be quite

wasteful, given that no data is transmitted/received during

the IA phase (which lasts for 5 ms) or CSI-RS (which

occupies up to 4 OFDM symbols). To support ultra-reliable

low-latency communications (URLLC), the control overhead

of beam tracking needs to be significantly decreased [29].

Our goal is to reduce this overhead by skipping CSI-RS

transmissions and extending the period between two IA cycles,

while maintaining connectivity. To do that, MAMBA exploits

the ACK/NACK feedback obtained from the UE to make new

beam selections. Note that ACK/NACK mechanism is already

a part of 5G physical layer [30]. We assume that the UE

communicates using relatively wide beams so the tracking

problem is only applicable to the BS side. This is a reasonable

assumption, considering the smaller form-factor and fewer

antenna elements on a UE. Given our focus on the BS side

only, in the subsequent sections, the subscript ‘BS’ will be

dropped from related variables.

A reasonable choice for modeling the beam tracking prob-

lem is to use Markov decision processes (MDPs). MDPs have

been extensively used in the literature to model a wide variety

of problems in which an agent continually interacts with the

environment to achieve a goal [31]. The agent selects actions

and the environment responds to these actions, presenting

new states to the agent. While very powerful, MDPs can be

computationally expensive to solve. Thankfully, in our beam

tracking problem, selecting a new action (beam) does not

change the state of the BS, i.e., selecting a beam at time t
does not limit (or increase) the beam selection possibilities

at time t + 1. Therefore, our problem can be modeled as a

single-state MDP, i.e., an MAB problem.

MAMBA framework is specified by the tuple 〈A,R〉, where

A � {f1, · · · , fD} is the set of actions referring to the

possible beams at a given time and R is the set of rewards

(i.e., achievable rates) associated with these actions. At time

t, an action at ∈ A is taken and a reward rt ∈ R is

observed. This rt is a random sample drawn from the selected

beam’s underlying reward distribution. Let Θi,t denote the

reward distribution associated with beam i at time t, and

let θi,t denote the mean of Θi,t, i.e., E[Θi,t] = θi,t where

θi,t is unknown. Note that there are D distributions in total

associated with various BS beams. Letting at = fi means

that beamformer fi is selected at time t, and hence the BS

receives a reward rt ∼ Θi,t. In MAMBA, the BS obtains

the reward by measuring the received signal strength (RSS)

of ACK/NACK packets transmitted back by the UE, and

determining the optimal MCS index that can be supported

based on the measured RSS. Assuming channel reciprocity,

the BS then uses this information to do beam/MCS selection

for the subsequent downlink data transmission. Fig. 1 shows

the proposed downlink communication timeline.

After IA is completed, the BS designs a beam tracking

policy to be used until the next IA period. A policy is defined

as a T -element vector that specifies the actions to be taken at

subsequent times t = 1, · · · , T . The most common metric to

measure the performance of a given policy is the cumulative

regret, defined as the lost reward as a result of deviating from

the optimal strategy. The goal of MAMBA is to find a policy

that maximizes the cumulative reward, which is equivalent

to minimizing the cumulative regret up to time T . We will

analyze the regret performance of our policy in Section V.

C. Problem Formulation

In MAMBA, the BS has some prior “belief” about the

reward distribution of each beam, thanks to IA. An effective

method to update these beliefs during data transmission is

Bayesian inference. Using Bayesian inference, the posterior

distribution Pr(θ|x), i.e., the distribution of θ after taking

into account the observed data x, can be computed as:

Pr(θ|x) = Pr(x|θ) Pr(θ)/Pr(x) (2)

where Pr(x|θ) is the likelihood, i.e., the distribution of the

observed data, Pr(θ) is the prior distribution, i.e., the distri-

bution of θ before any data is observed, and Pr(x) is the

marginal distribution of the evidence, which normalizes the

posterior distribution. Using (2), the BS continuously updates

its belief of each arm’s mean rewards, i.e., θi,t, ∀i ∈ A and

∀t ∈ {1, · · · , T}, while transmitting/receiving data.

Here we model the rewards as M -dimensional variables. For

each transmission, the BS chooses a beam and a transmission

rate for that beam from the set {v0, v1, · · · , vM−1}. Specifi-

cally, for a given beam, the BS can establish communication

with the UE using one of the M − 1 available MCS indices,
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MCS indices (M = 4). Probabilities refer to θ
(m)
i,t , ∀i ∈ A and ∀m ∈

{1, · · · ,M − 1} for a given t.

each of which has an associated rate vm, m ∈ {1, · · · ,M−1},

or cannot establish any communication, i.e., v0 = 0. Based on

the feedback received from the UE (i.e., ACK, NACK, or no

reply), the BS decides whether the selected rate is attainable on

the selected beam or not. If an ACK or NACK is received, the

BS measures the RSS of the received packet and determines

the MCS index that can be supported on that beam. If neither

an ACK nor a NACK is received, the reward is set to 0.

The reward for each beam is drawn from a likelihood

distribution associated with that beam. A suitable reward dis-

tribution to be used here is the categorical distribution, a.k.a.,

generalized Bernoulli distribution. This discrete distribution

describes the possible results of a random variable that can

take one of M possible categories, with the probability of each

category separately specified. The pmf of the categorical ran-

dom variable x ∼ Cat(θi,t) with M categories can be written

as Pr(x = m|θi,t) = θ
(m)
i,t , where θi,t � [θ

(0)
i,t , · · · , θ(M−1)

i,t ].

Here, θ
(m)
i,t refers to the mth element of vector θi,t, such that

θ
(m)
i,t ≥ 0 ∀m and

∑M−1
m=0 θ

(m)
i,t = 1. An illustrative example

of beam qualities is shown in Fig. 2 using M = 4.

At any time t, the observed reward vector rt =

[r
(0)
t , · · · , r(M−1)

t ] contains a single 1 at the highest attainable

MCS index (based on the RSS of ACK/NACK packets)

and 0s elsewhere. For convenience, we assign r
(0)
t = 1

for an unsuccessful communication and r
(m)
t = 1 for a

communication whose highest attainable MCS index is m,

∀m ∈ {1, · · · ,M − 1}. Therefore, the observed data rate at

time t can be written as rtv
T , where v � [v0, v1, · · · vM−1]

is the value vector whose entries correspond to the rates

associated with different MCS indices.

With the above preliminaries, the goal of the BS is to select

a policy ξ = [a1, · · · , aT ], i.e., sequence of Tx beams at times

t = 1, · · · , T , that maximizes the expected throughput. If the

expected reward vectors θi,t = [θ
(0)
i,t , · · · , θ(M−1)

i,t ] of each

beam i at each time t are known, this translates into solving

the following optimization problem:

maximize
ξ

T∑
t=1

θi,tv
T

s.t.

M−1∑
m=0

θ
(m)
i,t = 1, θ

(m)
i,t ≥ 0, ∀i, t,m. (3)

The challenge here is that the expected reward vectors are
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Fig. 3. Flowchart of the proposed beam tracking method at the BS.
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Fig. 4. Visualization of 3D Dirichlet distributions as a heatmap, where darker
areas denote higher probabilities and lighter areas denote lower probabilities.
(a) αi,t = [5, 5, 5], (b) αi,t = [2, 5, 6].

unknown and nonstationary. As a result, we cannot solve (3)

directly. Our goal is to design an RL algorithm that learns the

expected rewards of different beams and outputs a policy that

converges to the optimal one.

IV. PROPOSED BEAM TRACKING ALGORITHM

In this section, we explain our TS-based algorithm used by

a BS in MAMBA for beam tracking. The process of adapting

the BS beam should be seamless from the UE’s perspective,

i.e., the UE should not be required to know about BS beam

switching and should not expect control packets regarding

that. The flowchart of the proposed method is shown in Fig.

3. We first consider a stationary system where the expected

rewards of the arms do not change in time, and then extend

our treatment to time-varying systems.

TS is a posterior sampling technique. Therefore, before

taking an observation, we need a suitable prior that represents

our belief on an arm’s reward. Because the reward distribution

of arm i is modeled as categorical distribution and the Dirichlet

distribution is the conjugate prior of it, we model the prior of

the expected rewards as a Dirichlet distribution with parameter

αi,t, Dir(αi,t). As a result, the posterior obtained at each

round is also a Dirichlet distribution, following (2).

Dirichlet distribution is a multivariate generalization of the

beta distribution. The set of points in the support of an M -

dimensional Dirichlet distribution is the standard (M − 1)-

simplex. For M = 3, the support is an equilateral triangle

with vertices at (1, 0, 0), (0, 1, 0), and (0, 0, 1). The pdfs of

two arbitrary 3D Dirichlet distributions are shown in Fig. 4.

At each round, after an action is taken, a reward is observed

and the posterior distribution is updated according to (2).

When the prior is the conjugate distribution of the likelihood,

the update rule is much simpler. Specifically, for the case with



Algorithm 1 Thompson Sampling

1: for t = 1, 2, · · · , T do
2: Take Samples:

3: for i ∈ A do
4: Sample si,t ∼ Dir(αi,t)

5: Choose and apply action:

6: at = argmaxi∈A si,tv
T

7: Select at and observe rt
8: Update distributions:

9: for i ∈ A do
10: if at = i then
11: αi,t+1 ← αi,t + rt
12: else
13: αi,t+1 ← αi,t

Cat(θi,t) rewards and Dir(αi,t) priors ∀i ∈ A, the update rule

for the posterior is as follows:

αi,t+1 =

{
αi,t + rt, if at = i

αi,t, if at 	= i.

First condition refers to the case when beam i is selected

for transmission at time t and a reward rt is observed. The

posterior distribution of beam i is then updated accordingly.

Second condition refers to the case when beam i is not

selected for transmission at time t, and thus, its posterior is

not changed.

After the distributions are updated, the arm to be selected

for the next round is determined based on random samples

taken from the current posterior distributions of the arms.

Specifically, at each time t, the BS virtually samples from each

arm’s updated distribution to obtain si,t ∼ Dir(αi,t), ∀i ∈ A,

and selects the action as:

at = argmax
i∈A

si,tv
T . (4)

Therefore, even though the arms with currently high estimated

means are more likely to be selected, other arms also get

a chance to be picked and updated, i.e., exploration versus

exploitation. This is called the Thompson sampling and its

pseudocode is provided in Algorithm 1. Note that |si,t| = 1,

∀i ∈ A, ∀t ∈ {1, · · · , T}.

Algorithm 1 works well in stationary scenarios, where beam

qualities do not change over time. However, for nonstationary

scenarios, we need an effective mechanism to cope with time-

varying channel characteristics.

A. Adaptive Thompson Sampling (ATS) Algorithm

In nonstationary scenarios, the algorithm should never stop

exploring, since it needs to keep track of changes. With some

modification, TS remains an effective approach, as long as the

channel characteristics change relatively slowly.

To address the nonstationarity, we model the evolution of the

belief distributions in a way that discounts the relevance of past

observations and increases the impact of recent observations.

In practice, this involves implementing a “forget” factor γ1 that

slowly alters the posterior distributions and a “boost” factor

γ2. For i ∈ A, the update rule can then be written as:

αi,t+1=

⎧⎪⎪⎨
⎪⎪⎩
γ1αi,t + γ2rt, if at = i

γ1αi,t, if at 	= i and max{γ1αi,t} > 1

1, otherwise.

Here, the operation max{γ1αi,t} returns the largest element

of the vector γ1αi,t. Note that multiplying αi,t with a constant

γ1 effectively increases the variance (given that 0 < γ1 < 1),

but does not alter the mean of the Dirichlet distribution. To

show that, let us first calculate μi,t+1 � E[Dir(αi,t+1)]:

μi,t+1 =

⎡
⎣ γ1α

(0)
i,t∑M−1

j=0 γ1α
(j)
i,t

, · · · , γ1α
(M−1)
i,t∑M−1

j=0 γ1α
(j)
i,t

⎤
⎦

=

⎡
⎣ α

(0)
i,t∑M−1

j=0 α
(j)
i,t

, · · · , α
(M−1)
i,t∑M−1

j=0 α
(j)
i,t

⎤
⎦ = μi,t.

Next, we calculate σ2
i,t+1 � Var[Dir(αi,t+1)]:

σ2
i,t+1 =

⎡
⎣μ

(0)
i,t+1(1− μ

(0)
i,t+1)

1 +
∑M−1

j=0 γ1α
(j)
i,t

, · · · , μ
(M−1)
i,t+1 (1− μ

(M−1)
i,t+1 )

1 +
∑M−1

j=0 γ1α
(j)
i,t

⎤
⎦

=

⎡
⎣ μ

(0)
i,t (1− μ

(0)
i,t )

1 + γ1
∑M−1

j=0 α
(j)
i,t

, · · · , μ
(M−1)
i,t (1− μ

(M−1)
i,t )

1 + γ1
∑M−1

j=0 α
(j)
i,t

⎤
⎦ > σ2

i,t

given that 0 < γ1 < 1. Thus, the variances of the unexplored

arms increase at each iteration. Note that the effects of γ1 and

γ2 are different. Specifically, γ1 determines the rate at which

the prior information is forgotten, whereas γ2 determines

how much the new information is valued. Finally, the last

condition ensures that if arm i has not been selected for a

long time, αi,t+1 is updated in a way that our belief on arm i’s
distribution converges to the multi-dimensional uniform, i.e.,

Dir(1). We incorporate this new update rule into an algorithm

called ATS (see Algorithm 2).

Prior Selection: In general, a uniform prior works well with

most TS algorithms. For our problem formulation, this would

correspond to the multi-dimensional uniform distribution, i.e.,

Dir(1). However, this prior ignores any useful knowledge

obtained through IA. Taking past knowledge into account and

choosing an informative prior reduce what must be newly

learned. Specifically, if the best MCS index that beam i

can satisfy during IA is m, we assign α
(m)
i,0 = P and

α
(j)
i,0 = 1, ∀j ∈ {0, · · · ,M − 1}, j 	= m. Here, P ≥ 1 is

an adjustable design parameter called the prior strength. By

selecting informative prior parameters αi,0 according to IA,

convergence time can be significantly reduced.

B. Rate Selection

After a beam has been selected via ATS, the BS needs

to determine an appropriate MCS to be used during data

transmission. The MCS selection is particularly important,

as the effective data rate of a given transmission would be



Algorithm 2 Adaptive Thompson Sampling

1: for t = 1, 2, · · · , T do
2: Take Samples:

3: for i ∈ A do
4: Sample si,t ∼ Dir(αi,t)

5: Choose and apply action:

6: at = argmaxi∈A si,tv
T

7: Select at and observe rt
8: Update distributions:

9: for i ∈ A do
10: if at = i then
11: αi,t+1 ← γ1αi,t + γ2rt
12: else if at 	= i and max{γ1αi,t} > 1 then
13: αi,t+1 ← γ1αi,t

14: else
15: αi,t+1 ← 1

0 if the MCS that the BS selects cannot be supported at

the UE. Conversely, if the BS selects a lower MCS than

the maximum one that the UE can support, the link would

be underutilized. Taking this tradeoff into account, we next

propose two techniques for the MCS selection.

Greedy MCS Selection: Here, the MCS index that attains

the largest expected rate on the selected beam is used for

transmissions. Specifically, after sampling si,t, ∀i ∈ A, and

selecting the action at, the MCS index m∗ is selected as:

m∗ = argmax
m∈{0,··· ,M−1}

s
(m)
at,tv

(m). (5)

Therefore, even when an MCS index is less likely to be

attained than others, depending on v, the BS may decide to

choose it due to its higher associated rate.

Conservative MCS Selection: In the conservative selection

scheme, the MCS index that is most likely to be attained and

can achieve a non-zero rate on the selected beam is used for

transmission. In other words, after the BS collects si,t, ∀i ∈ A,

and selects the beam, it will select a transmission rate based

on the probabilities of attaining different MCS indices on

the selected beam. Specifically, given that action at has been

selected, the rate selection problem can be written as:

m∗ = argmax
m∈{0,··· ,M−1}

s
(m)
at,t. (6)

V. REGRET ANALYSIS

In this section, we compute an upper bound on the Bayesian

regret for our proposed method. Let I denote an instance of

the MAB problem drawn initially from some known prior P

over a set of possible problem instances. A problem instance is

specified by θi,t ∀i ∈ A and ∀t ∈ {1, 2, · · · }. (For a stationary

bandit problem, in which θi,1 = θi,2 = · · · = θi,t ∀i ∈ A and

∀t ∈ {1, 2, · · · }, a problem instance is specified only by θi,

∀i ∈ A.) Then, Bayesian regret until time T is defined as:

BR(T ) =
T∑

t=1

EI∼P

[
E

[
θa∗

t ,t
vT − θat,tv

T | I
]]

(7)

where θat,t denotes the expected reward vector of the

action selected by our algorithm at time t and a∗t =
argmaxi∈A θi,tv

T . The inner expectation in (7) is the ex-

pected regret for a given problem instance I, and the outer

expectation is over the set of all problem instances. Let

BRt denote the instantaneous regret at time t, i.e., BRt =
E[θa∗

t ,t
vT − θat,tv

T ], where inner and outer expectations in

(7) are merged into a single expectation. Then, BRt can be

also written as:

BRt =

M−1∑
m=0

E

[
θ
(m)
a∗
t ,t

− θ
(m)
at,t

]
vm. (8)

Now, we focus on bounding E[θ
(m)
a∗
t ,t

− θ
(m)
at,t ], ∀m ∈ M.

We use a random walk process to model the nonstationarity

of the rewards obtained from various beams [32]. Specifically,

the expected reward vector of each beam follows a discrete-

time random walk in an (M − 1)-dimensional space with

reflecting boundaries. We assume that the step sizes εi,t of

this walk at each time interval t are uniformly distributed:

εi,t ∼ U [0, σ] ∀i ∈ A and ∀t ≥ 0. Here, σ denotes the

maximum step size, which is also called the volatility of an

arm in MAB context [32]. The direction of the walk is also

determined by a uniform distribution within all the possible

directions in (M−1) dimensions. See Fig. 4 for an illustration

of this model. Let ωi,t ∈ R
1×3 denote the unit vector towards

the selected step direction. Given the triangle in Fig. 4, whose

corners are located on the x-, y- and z-axes, if θi,t + εi,tωi,t

does not hit the edge, then θi,t+1−θi,t = εi,tωi,t. Otherwise,

|θi,t+1 − θi,t| ≤ εi,t due to the reflecting boundaries (where

|.| denotes the length of a vector).

Let S
(m)
i,t denote the empirical summation of the rewards

observed from the beam i and MCS index m up to time t.
Also, let ni,t denote the number of times beam i is selected

up to time t, based on our ATS algorithm. Note that when

beam i is selected at time t, we observe a reward vector

rt, which includes rewards of all MCS indices belonging to

that beam (1 or 0). That is, for each MCS index, there are

ni,t observations. Accordingly, S
(m)
i,t = γ2

∑ni,t

k=1 γ
t−τi,k
1 r

(m)
τi,k

where τi,j denotes the time of the jth selection of beam i.

Then, the expected value of S
(m)
i,t is given by E[S

(m)
i,t ] =

γ2
∑ni,t

k=1 E[γ
t−τi,k
1 r

(m)
τi,k ] = γ2

∑ni,t

k=1 γ
t−τi,k
1 θi,τi,k .

Lemma 1: For a given beam i and t ≤ T ,

Pr

(∣∣∣θ(m)
i,t − γt

1θ
(m)
i,0

∣∣∣ ≥ min{1, σ}
√

8T log T

)
≤ O(T−4).

Proof: To simplify the proof, we drop the MCS index

m. Let Xn = γT−n
1 θi,n, n = 0, 1, · · · , T , denote a sequence

of random variables. This sequence is a supermartingale, as

E[Xn+1|X0, X1, · · · , Xn] ≤ Xn, n = 0, 1, · · · , T − 1 (recall

that γ1 < 1). Therefore, we can apply Azuma-Hoeffding

inequality as in Claim 3.6 of [32]. First, it is clear that |Xn+1−
Xn| < min{1, σ} almost surely. Following Azuma-Hoeffding

inequality, Pr(|θi,t − γt
1θi,0| ≥ min{1, σ}√8T log T ) ≤

Pr(|θi,T − γT
1 θi,0| ≥ min{1, σ}√8T log T ) ≤ 2T−4 =

O(T−4).



Lemma 2: Let θ̂
(m)
i,t �

∑ni,t

k=1 γ
t−τi,k
1 r

(m)
τi,k /ni,t denote our

empirical estimate of θ
(m)
i,t . Then,

Pr

(∣∣∣θ̂(m)
i,t − θ

(m)
i,t

∣∣∣ ≥ δi,t

)
≤ O(T−4) (9)

where δi,t =
√

2 log T/ni,t+min{1, σ}√8T log T and t ≤ T .
Proof: We utilize Hoeffding inequality to prove this

lemma. Let Yk = γ2γ
t−τi,k
1 r

(m)
τi,k , k = 1, · · · , ni,t, denote each

term in Si,t, which consists of independent random variables

that are strictly bounded by the interval [0, γ2]. Following

Hoeffding inequality, we obtain (10). In the next step, each

term of the inequality inside the probability expression is

divided by γ2. (12) follows from Lemma 1. Finally, by

dividing the terms of the inequality inside the probability

expression by ni,t, we obtain (9).
In the rest of the analysis, we exploit similar techniques to

bound the Bayesian regret as in [33]. Given a problem instance

I, let a history Ht denote all selected beams of our algorithm

and the corresponding observed rewards up to time t, i.e., a

particular run of the algorithm. Given this history, let U
(m)
t (i)

and L
(m)
t (i) denote the upper and lower confidence bounds

on action i’s expected reward at time t for MCS index m,

respectively, such that:

U
(m)
t (i) = θ̂

(m)
i,t + δi,t and L

(m)
t (i) = θ̂

(m)
i,t − δi,t. (13)

Lemma 3: For any t ≤ T ,

BRt ≤ 2MvM−1E
[
δat,t

]
+O(T−4). (14)

Proof: Conditioned on a certain history Ht, the optimal

action a∗t and the action at (selected by ATS) are identically

distributed, and U
(m)
t (a∗t ) = U

(m)
t (at) (please refer to Propo-

sition 1 in [33] for further details). Hence,

E

[
θ
(m)
a∗
t ,t

− θ
(m)
at,t

]
= EHt

[
E

[
θ
(m)
a∗
t ,t

− θ
(m)
at,t |Ht

]]

= EHt

[
E

[
U

(m)
t (at)− U

(m)
t (a∗t ) + θ

(m)
a∗
t ,t

− θ
(m)
at,t |Ht

]]

=EHt

[
E

[
U

(m)
t (at)− θ

(m)
at,t |Ht

]
+E

[
θ
(m)
a∗
t ,t

− U
(m)
t (a∗t )|Ht

]]

= E

[
U

(m)
t (at)− θ

(m)
at,t

]
+ E

[
θ
(m)
a∗
t ,t

− U
(m)
t (a∗t )

]
. (15)

We separately investigate the two terms in (15). Let (a)+ �
max{0, a} for any real number a. First, consider the second

term in (15):

E

[
θ
(m)
a∗
t ,t

− U
(m)
t (a∗t )

]
≤ E

[(
θ
(m)
a∗
t ,t

− U
(m)
t (a∗t )

)+
]

(16)

≤ Pr
(
θ
(m)
a∗
t ,t

≥ U
(m)
t (a∗t )

)
≤ O(T−4) (17)

The first inequality in (17) follows from the fact that the

largest possible value for (θ
(m)
a∗
t ,t

−U
(m)
t (a∗t ))

+ is 1. The second

inequality in (17) is due to Lemma 2. Now, consider the first

term in (15):

E

[
U

(m)
t (at)− θ

(m)
at,t

]
= E

[
2δat,t + L

(m)
t (at)− θ

(m)
at,t

]
= 2E

[
δat,t

]
+ E

[
L
(m)
t (at)− θ

(m)
at,t

]
(18)

Similar to (16) and (17):

E

[
L
(m)
t (at)− θ

(m)
at,t

]
≤ E

[(
L
(m)
t (at)− θ

(m)
at,t

)+
]

≤ Pr
(
θ
(m)
at,t ≤ L

(m)
t (at)

)
≤ O(T−4).

Combining (8) and (15):

BRt =

M−1∑
m=0

E

[
θ
(m)
a∗
t ,t

− θ
(m)
at,t

]
vm ≤ ME

[
θ
(m)
a∗
t ,t

− θ
(m)
at,t

]
vM−1

≤ 2MvM−1E
[
δat,t

]
+O(T−4).

Theorem 4: Given D beams, each of which has a volatility

σ, the Bayesian regret of the ATS within a time horizon T is

bounded by:

BR(T )=O
(
M

√
DT log T +M min

{
T, σT

√
8T log T

})

Proof: We know that BR(T ) =
∑T

t=1 BRt. Hence,

following Lemma 3:

BR(T ) ≤
(
2MvM−1E

[
δat,t

]
+O

(
T−4

))
(19)

= O
(
M

√
log T

) T∑
t=1

E

[√
1/nat,t

]
+

O
(
M min{1, σ}T

√
8T log T

)
(20)

Lemma 1 in [33] states that E

[√
1/nat,t

]
= O(

√
DT ).

Furthermore, when the rewards are bounded by the interval

[0, 1], the maximum possible regret within a time horizon T
is T . Thus, the second term in (20) is bounded by MT .

Theorem 4 states that if σ is relatively low, the regret

scales with
√
T log T . Note that the authors in [33] prove that

the regret of a stationary system also scales with
√
T log T .

Therefore, when σ is low, ATS can alleviate the affect of

nonstationarity. On the other hand, if σ is large, the worst

case regret scales linearly with T .

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of MAMBA

through extensive experiments. We compare ATS with two

other schemes: a dynamic oracle that always selects the best

beam and MCS index at each location, and a static oracle that

runs an exhaustive scan once and uses the best beam/MCS

pair it finds until the next scan. We implemented the dynamic

oracle by running an exhaustive scan at each location, without

taking into account its search time overhead. Therefore, the

performance of the dynamic oracle shows the upper bound for

all tracking algorithms. Note that the static oracle is similar to

what is proposed for 5G NR, i.e., using the same beam found

during IA, until the transmission of the next SS burst.

In the experiment setup (see Fig. 5), a 4×8 UPA is used at

the Tx side to transmit a continuous wave (CW) signal with 0
dBm amplitude at 28 GHz frequency. Keysight E8267D PSG

signal generator is used to generate the signal. At the Rx side,



Pr

(∣∣∣S(m)
i,t − E[S

(m)
i,t ]

∣∣∣ ≥ γ2
√
2ni,t log T

)
≤ O(T−4) (10)

Pr

(∣∣∣∑ni,t

k=1 γ
t−τi,k
1 r

(m)
τi,k −∑ni,t

k=1 γ
t−τi,k
1 θ

(m)
i,τi,k

∣∣∣ ≥ √
2ni,t log T

)
≤ O(T−4) (11)

Pr

(∣∣∣∑ni,t

k=1 γ
t−τi,k
1 r

(m)
τi,k − ni,tθ

(m)
i,t

∣∣∣ ≥ √
2ni,t log T + ni,t min{1, σ}√8T log T

)
≤ O(T−4) (12)

Rx Tx

(a)

(b) (c)

Fig. 5. Experimental setup used for performance evaluation. (a) Outdoor
scenario with 7 m Tx-Rx separation, (b) 4 × 8 UPA at the Tx side, (c) 20
dBi gain horn antenna at the Rx side.

a 20 dBi gain horn antenna is connected to Keysight 9038A

MXE EMI receiver to obtain RSS measurements. The PSG and

the EMI receiver are connected to a host PC, and the RSS

results are obtained via a TCP connection. To simulate the

effect of ACK/NACK, the Rx measures the RSS and stores it

in a variable in the host PC. The Tx can then read this variable

and obtain a reward by determining the most appropriate MCS

through the lookup table of WiGig [2].

We conducted the experiments in two different scenarios:

an indoor office (Tx-Rx separation of 3.5 m) and an outdoor

environment (Tx-Rx separation of 7 m). Recall that ATS only

runs at the Tx side, while the Rx keeps pointing towards the

Tx. To ensure that, we moved the Rx along an arc whose

center is the Tx. RSS measurements were taken at equally

spaced locations on that arc, with 3.5 cm minimum spacing.

The number of measurement points depends on the Tx-Rx

separation, and hence, it is different for different scenarios.

As the Tx and Rx antennas were at the same elevation, beam

sweeping was done only in the azimuthal domain. The UPA

was steered ±45◦ from broadside with 5◦ steps.

In Fig. 6(a) and 6(b), we depict the throughput performance

of ATS against dynamic and static oracles. Recall that, if the

MCS selected by the BS cannot be supported at the UE,

the throughput gain from the given transmission will be 0.

Throughout the experiments, the slot duration is 1 ms and

the Rx speed is 14 cm/slot, unless otherwise specified. In

the outdoor scenario with 80 measurement points, a line-

of-sight (LOS) path is available at each point. Hence, the

dynamic oracle can always achieve the highest rate (see dashed

line in Fig. 6(a)). On the other hand, in the indoor office

environment with 40 measurement points, the LOS path is

blocked at certain locations. Therefore, even the dynamic

oracle cannot satisfy the highest MCS index at all points, as

seen from the last 10 slots in Fig. 6(b). Notice that in both

figures, the performance of all three algorithms are identical

in the beginning. This is because when the displacement

of the Rx is small, the Tx can keep using the best beam

that was identified during IA. Also note that the ATS/greedy

and ATS/conservative exhibit the same performance for the

selected design parameters (P = 100, γ1 = 0.2, and γ2 = 20).

As seen from Fig. 6(a), the throughput of ATS is 182% higher

than that of the static oracle in the outdoor scenario, and only

21% lower than that of the dynamic oracle. For the indoor

measurements, Fig. 6(b) shows that the throughput of ATS

is 75% higher than that of the static oracle and 27% lower

than that of the dynamic oracle. Therefore, in both scenarios,

ATS significantly outperforms the static oracle, and performs

reasonably close to the dynamic oracle (i.e., low regret).

Fig. 6(c) depicts the evolution of throughput over time for

ATS with different γ1 values. The worst performance is seen

when γ1 = 0.01, i.e., when the information obtained during

IA is almost instantly forgotten. In this case, ATS cannot

exploit the useful prior information, and hence, the dashed

curves do not follow others even during the first 20 slots.

On the other hand, when γ1 = 0.9, ATS cannot adapt to

the changing environment fast enough. Specifically, it keeps

using the previous beam even after its quality has degraded.

When γ1 = 0.2, ATS can balance the exploration and the

exploitation, and can achieve the highest throughput.

Next, we compute the CDF of the outage duration (consid-

ering both indoor and outdoor scenarios) and display the result

in Fig. 6(d). The figure shows how long ATS stays in outage

after it loses communication. We observe that with probability

exceeding 0.9, the outage will last less than or equal to 5 slots.

This result is particularly important for URLLC communica-

tions, where latency is of utmost importance. URLLC systems

cannot tolerate the lengthy outages resulting from static beam

management (see Fig. 6(a) and 6(b)).
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Fig. 6. Performance evaluation results. (a) Throughput vs. time for the outdoor scenario, (b) throughput vs. time for the indoor office scenario, (c) throughput
vs. time for ATS with different γ1 parameters, (d) CDF of the outage duration, (e) average data rate vs. Rx speed, (f) average data rate vs. γ1 (γ2 = 20),
(g) average data rate vs. γ2 (γ1 = 0.2), (h) average data rate vs. number of IA cycles for the static oracle.

The effect of Rx speed on the average data rate is studied

in Fig. 6(e). When the Rx is slow, ATS performs quite close

to the dynamic oracle and achieves only 4% lower average

rate. In addition, the regret, i.e., the gap between the dynamic

oracle and ATS, scales logarithmically w.r.t. the Rx speed. As

the Rx moves faster, the performance of ATS drops because

it cannot learn the environment fast enough and adapt its

behavior. Note that in practice, the Rx speeds will always

be less than 10 cm/slot, which translates into 360 km/hour.

Therefore, the operating point of a BS will always be on the

left end of the figure. Higher speeds are illustrated here to

show the trend in the average data rate.

Next, we study the impact of γ1 and γ2 on the performance

of ATS. Fig. 6(f) shows that the selection of a very small γ1
can significantly degrade the performance of ATS. Specifically,

when γ1 is too small, it cannot learn the environment, as the

previous information is almost instantly forgotten. On the other

hand, when γ1 is too large, the algorithm loses its reactiveness.

Fig. 6(f) also shows that when the Rx moves more slowly, a

larger γ1 selection does not reduce the average data rate as

much. That is, when the environment changes more slowly,

ATS does not need to forget the old information very quickly.

The effect of γ2 is different, as seen in Fig. 6(g). Except

for when γ2 < 10, the selection of γ2 does not change the

performance of ATS significantly. Recall that the effect of γ1 is

multiplicative, whereas the effect of γ2 is additive. Therefore,

γ1 affects the average data rate more substantially.

Finally, in Fig. 6(h), we depict the average data rate under

the static oracle for different numbers of IA cycles. Running

IA more frequently makes the static oracle more reactive, but

also adds a significant search overhead to the system. When the

total measurement duration (IA+data) is short, the overhead

of rerunning IA becomes more prominent. For that reason,

when the total duration is 20 slots, the static oracle can only

run one IA cycle, or else, its average rate drops to 0. For

longer measurement durations, the optimum number of IA

cycles increases progressively, as the overhead of rerunning

IA becomes less noticeable.

VII. CONCLUSIONS

In this paper, we proposed a multi-armed bandit framework,

MAMBA, for beam tracking in mmW systems. We developed

a reinforcement learning algorithm, called adaptive Thompson

sampling (ATS), used in MAMBA for the selection of beam

direction and MCS. ATS uses prior information collected

through IA and updates it at each iteration based on the

ACK/NACK feedback obtained from the UE. The beam and

the MCS used during next transmission are then selected based

on the updated posterior distributions. Our experimental results

validated the efficiency of ATS and showed that it can improve

the throughput by up to 182% compared to a 5G-like beam

tracking scheme. Our future work will focus on the dynamic

selection of γ1 and γ2 for different environments.
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