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Abstract—Directionality in millimeter-wave (mmW) systems
make link establishment and maintenance challenging, due to
the search-time overhead of beam scanning and the vulnerability
of directional links to blockages. In this paper, we propose a
communication protocol called SmartLink, which exploits the
clustering phenomenon at mmW frequencies to establish a multi-
beam link between a base station and a user. By utilizing
multiple clusters, SmartLink enables efficient link maintenance
and sustained throughput. We develop a logarithmic-time search
algorithm called multi-lobe beam search (MLBS), which is used
in SmartLink to discover the clusters. MLBS probes several
directions simultaneously, using multi-lobe beam patterns. The
number of simultaneous lobes is selected to minimize the search
time of the clusters. We provide detailed analysis of the false
alarm and misdetection probabilities for the designed beam pat-
terns. Following cluster discovery, SmartLink divides antennas
into sub-arrays to generate the optimal multi-lobe beam pattern
that maximizes the average data rate under blockage. Extensive
simulations using actual channel traces obtained by utilizing
phased-array antennas at 29 GHz are used to verify the efficiency
of SmartLink. MLBS decreases the discovery time by up to 88%
compared to common existing search schemes, and exploiting
multiple clusters improves the average data rate by 10%.

Index Terms—Millimeter-wave; initial access; analog beam-
forming; blockage; multi-lobe beams; beam scanning.

I. INTRODUCTION

The rapid growth in mobile data is forcing next-generation

wireless systems like 5G NR [1] and WiGig [2] to explore RF

communications at millimeter-wave (mmW) bands. Unlike the

heavily congested and fragmented sub-6 GHz spectrum, mmW

bands provide abundant spectrum (about 1.3 GHz in the 28
GHz band, 2.1 GHz in the 39 GHz band, and 14 GHz in

the 60 GHz band) [1]. This allows mmW systems to achieve

very-high-throughput and ultra-low-latency communications,

and to support a diverse set of applications [3]. However,

mmW signals experience much higher propagation and pene-

tration losses compared to their sub-6 GHz counterparts (e.g.,

up to 40 dB through glass and brick walls), making them

very vulnerable to blockage [4]–[6]. Fortunately, the smaller

wavelengths of mmW signals allow large antenna arrays to

be implemented into small form-factor radios. With proper

analog and/or digital processing of the signals fed to/received

from these antenna elements, transmissions/receptions can be
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beamed towards desired directions. The high beamforming

gain can then compensate for the severe signal degradation

and provide adequate link margin [7].

There are several ways to apply beamforming at mmW

frequencies. Analog beamforming can be used with only one

RF chain and multiple phase shifters that feed an antenna array

and steer the beam. In contrast, digital beamforming relies on

several RF chains and multiplies a particular precoding matrix

by the modulated baseband signals from these chains. Despite

its superior performance, pure digital beamforming is less

favored due to its higher complexity and energy consumption.

As a good tradeoff, hybrid beamforming, in which the signal

processing is divided between the analog and digital domains,

has been proposed [8]. In this paper, we consider analog

beamforming, whose low power consumption and simple

hardware make it a desirable architecture, especially for user

equipment (UE) radios.

While beamforming allows for high gains, establishing and

maintaining network connectivity based on directional links

can be quite challenging [9], [10]. Due to the limited scattering

at mmW frequencies, the channel matrix between the base

station (BS) and the UE is typically sparse [7], [11]. The

transmitted signal reaches the receiver along a few (typically

less than 5) distinct angular clusters. Identifying the directions

of these clusters takes a considerable amount of time.

In this paper, we propose an efficient and reliable com-

munication protocol for mmW systems. Our protocol, called

SmartLink, utilizes multiple clusters between the BS and the

UE to provide an effective mechanism for maintaining com-

munications under random blockage. It uses a unique beam

scanning technique called multi-lobe beam search (MLBS).

Implementing shortest-depth decision trees, MLBS utilizes

beam patterns with multiple lobes to simultaneously discover

multiple channel clusters. The decision tree indicates the

next beam pattern that should be scanned, based on previous

measurement results. As the worst-case beam scanning time

depends on the depth of the decision tree, the number of

simultaneous lobes to be used by MLBS is optimized to

minimize the depth. Through rigorous analysis, we show that

MLBS reduces the search time from linear to logarithmic with

respect to the total number of beam directions. The creation of

multiple main lobes naturally reduces the beamforming gain,

leading to higher false alarm and misdetection probabilities.

Here, misdetection is defined as the inability to discover the

UE due to low received power. False alarm refers to the event

when a channel cluster is aligned with an undesired side lobe

of the transmitter (Tx) and/or the receiver (Rx) antenna array

(resulting in sub-optimal communication). We provide detailed
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analyses of both probabilities. Depending on the discovered

channel clusters and their relative gains, we virtually divide

the Tx and the Rx antenna arrays into several sub-arrays. Each

sub-array generates a beam towards one of the inferred channel

clusters, so as to maximize the average data rate in a blockage-

prone environment.

The main contributions of this paper are as follows:

• We develop a logarithmic-time search scheme called

MLBS for the discovery of multiple channel clusters in

a directional mmW system. MLBS utilizes decision trees

whose nodes indicate the sequence of beam directions

that need to be scanned. As the worst-case beam scanning

time depends on the depth of the decision tree, the

number of simultaneous lobes to be used by MLBS is

selected in a way to minimize the depth. Upper and lower

bounds on the depth of the resulting tree are derived.

• We provide detailed analysis of the misdetection and false

alarm probabilities under MLBS.

• We present a technique for splitting the antenna array

into sub-arrays to generate an optimal multi-lobe pattern.

This splitting depends on the discovered channel clusters,

their relative strengths, their blockage probabilities, and

the data transmission duration.

• We introduce the SmartLink protocol, which defines the

required message exchange between the BS and the UE

to establish the multi-directional link.

• Through experimental channel measurements at 29 GHz

frequency using 4× 4 uniform planar arrays (UPAs), we

verify the efficiency of SmartLink in terms of the reduc-

tion in search time and the increase in data rate. With

a proper number of main lobes, SmartLink reduces the

search latency by up to 88% compared to 5G NR and 65%
compared to 802.11ad-like beam scanning approaches.

Our results also show that utilizing multiple clusters

provides an efficient mechanism against blockages, and

improves the average data rate by 10%.

II. RELATED WORK

Several previous works on mmW communications focused

on determining the best channel cluster and communicating

through a single beam [2], [12]–[15]. Maintaining an active

link over a relatively long period of time may not be feasible

in this case, due to the dynamic nature of mmW channels and

their susceptibility to frequent blockage events [6], [16].

To identify one cluster, three main approaches have been

discussed in the literature: Exhaustive search [12], two-stage

hierarchical search [2], and context-information-based (CI-

based) search [17]. Exhaustive search is a sequential brute-

force approach and it is considered for 5G NR [17]. It comes

at a significant cost in terms of discovery time, as each pair of

transmit/receive directions must be probed sequentially. On the

other hand, the two-stage beam search used in the 802.11ad

standard for WiGig devices employs a hierarchical multi-

resolution beamforming codebook to reduce the overhead of

exhaustive search. In the first stage, the access point (AP)

sequentially transmits synchronization signals over relatively

wide (quasi-omnidirectional) sectors and tries to determine the

best coarse direction. In the second stage (beam refinement),

the AP refines its search within the selected coarse sector

by switching to narrow beams [2]. Although this approach

reduces the initial access (IA) delay, the search time still scales

linearly with the total number of narrow beams. Note that

when multiple clusters are to be found, the performance of

hierarchical beam search approaches that of the exhaustive

search. This is due to the fact that multiple quasi-omni sectors

that received relatively strong signals in the first stage needs

to be scanned with narrow beams in the second stage. Finally,

the CI-based search relies on location information, where the

UE simply selects the closest BS based on location and steers

its beam towards that BS [17].

In addition to the above works, others in the literature

considered transmissions through multiple antenna lobes. The

authors in [18] used a unique approach based on hashing

functions to identify the best beam. Although the multi-beam

hash functions reduce the search time, they were not used to

identify multiple channel clusters. [19] improves on [18] and

reduces beam alignment delay by orders of magnitude. Similar

to [19], the authors in [20] and [21] also aimed at scanning the

environment with multi-lobe beam patterns and establishing

communications through multiple lobes. However, they did

not optimize their search scheme and simply rotated a pre-

designed multi-lobe pattern to decide the best Rx pattern. As

a result, their scheme does not guarantee discovering multiple

clusters and combating blockage. On a different perspective,

[22] introduced a heterogeneous multi-beam cloud radio ac-

cess network architecture, with the goal of providing seamless

mobility and coverage, rather than exploiting multiple channel

clusters. However, none of the above works considered the

tradeoff between simultaneously searching multiple directions

and the reduced beamforming gain for a system that utilizes

analog beamforming. Such tradeoff was studied in [23], but

the evaluation was done through antenna patterns with a fixed

number of lobes. As a result, the search time is not minimized.

Our proposed MLBS approach computes the optimum num-

ber of simultaneous beams to be used, given the number of

channel clusters and beam directions. As a result, we guar-

antee the minimum search time. We also provide a detailed

analysis of the misdetection and false alarm probabilities under

MLBS. After the clusters are discovered, they are used to

simultaneously receive copies of the same signal arriving from

multiple directions. The phases of these signals are adjusted

for coherent combination. Because the probability that all

channel clusters are blocked at the same time is small, our

proposed scheme provides an effective mechanism to combat

blockage and maintain communications at high link rates.

Our contributions in this paper show the potential benefits of

discovering multiple clusters/links between two communicat-

ing nodes in mmW systems and encourage further research on

developing multi-beam transmission methods. Even though we

focus on dealing with dynamic blockage at the mmW bands

through the usage of multiple clusters and analog beamforming

(i.e., higher diversity gain), our method can be applied in a

hybrid beamforming architecture for multiplexing gain and

can also be integrated into coordinated multipoint (CoMP)

techniques for the 5G networks.
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III. SYSTEM MODEL

In this paper, we consider the IA process at a BS that wishes

to discover the UEs in its range. Electronically steerable

phased-array antennas are used by the BS and the UEs. In

addition, we assume analog beamforming, as it is currently the

most energy-efficient beamforming solution available. In par-

ticular, a beamforming architecture with a much lower number

of transceivers than the total antenna number is more practical

and cost effective to deploy, especially in the UE side [24].

For that reason, UEs operating on mmW bands are typically

envisioned to exploit analog beamforming. The use of digital

and hybrid beamforming architectures can reduce the IA time

to meet the low-latency 5G requirements, but at the expense

of much higher energy consumption. As described in [9], low-

resolution digital architectures can also be a viable solution in

digital/hybrid architectures. Still, even low resolution digital

beamforming is suitable for the BS side, due to stringent power

requirements at the UE [25].

Following the IA process, the BS and any discovered

UE can communicate over multiple beams. Without loss of

generality, we let the BS be the Tx and one arbitrary UE be

the Rx, i.e., the downlink.

A. Preliminaries - Antenna Arrays

In this section, we demonstrate how multi-lobe patterns are

created. To do so, we first explain the calculation of the array

factor1 (AF) at a UE antenna array. Extension to the BS is

straightforward. Consider a UPA that consists of N antenna

elements with a horizontal inter-element distance dx and a ver-

tical inter-element distance dy . Suppose that the incident wave

of the received signal arrives at zenith angle θ and azimuthal

angle α, and the antennas are placed on an Nx ×Ny 2D grid

(i.e., N = NxNy). The phase of the received signal at element

(nx, ny), nx ∈ {1, · · · , Nx} and ny ∈ {1, · · · , Ny}, leads

the phase at element (nx − 1, ny − 1) by 2π(dx cosα sin θ +
dy sinα sin θ)/λ, where λ is the wavelength of the signal. Let

κ � dxnx cosα sin θ+dyny sinα sin θ. The received signal at

antenna (nx, ny) can then be written as:

snx,ny
(θ, α) = R Inx,ny

ej
2π
λ κ (1)

where Inx,ny
is the amplitude excitation of the element

(nx, ny) and R is the individual gain of each antenna element.

Since Inx,ny does not affect the analog beamforming weights,

for simplicity, we let Inx,ny
= 1. Let wnx,ny

be a complex

phase shifter weight associated with snx,ny
. The total received

signal is given by:

s(θ, α) = R

Nx∑
nx=1

Ny∑
ny=1

wnx,nye
j 2π

λ κ = R FUPA (2)

where FUPA is the AF of the UPA. The signal power can then

be maximized by maximizing |R FUPA|. Assuming the same

signal magnitude at each antenna, |FUPA| is maximum when

wnx,ny is selected in a way to ensure that the received signals

1The AF is the factor by which the element factor of an individual antenna
is multiplied to get the total firing pattern of the entire array.

Fig. 1. Normalized directivity pattern of a 16 × 16 UPA divided into two
sub-arrays, beaming along (θ1, α1) = (0◦, 0◦) and (θ2, α2) = (30◦, 0◦)
(antennas placed on the Y-Z plane).

are in phase, i.e., by setting wnx,ny
= e−j 2π

λ κ. This way, the

UE beam can be steered along the direction (θ, α).
To create a pattern with multiple lobes, the antenna array

is divided into several sub-arrays. The elements in each sub-

array are then assigned weights for different steering angles.

An example of a two-lobe beam pattern with uniform sub-

array division is illustrated in Fig. 1, where the steering angles

are (θ1, α1) = (0◦, 0◦) and (θ2, α2) = (30◦, 0◦).

B. Channel and Beamforming

To develop a multi-lobe beamforming design, we must

express the channel between a BS and a UE, when both are

equipped with UPAs. We use the notation x × y to denote a

matrix of x rows and y columns. Let the total number of

antennas at the BS and UE be NBS = NBS,x × NBS,y and

NUE = NUE,x × NUE,y , respectively. Denote the NUE × NBS

channel matrix between the BS and the UE by H.

To express the received signal, Tx and Rx beamforming

should be applied to channel H. In practice, the beamforming

vectors are computed offline for a set of directions and stored

in the codebooks at the Tx and the Rx. During directional com-

munications, if the BS uses the transmit beamforming vector

fi ∈ C
NBS×1 and the UE uses the receive beamforming vector

qj ∈ C
NUE×1 (i and j are the indices of the beamforming

vectors in their respective codebooks), then the received signal

yij can be written as

yij = q∗
jHfix+ q∗

jn (3)

where (.)∗ denotes conjugate transpose operation, x is the

transmitted signal and the entries of n ∈ C
NUE×1 are complex

circularly symmetric white Gaussian noise. Here, fi and qj

consist of the complex antenna weights wnx,ny (computed as

discussed in Section III-A) to construct Tx beam i and Rx

beam j, respectively. Note that patterns generated by fi and

qj can have single or multiple main lobes. Let us define the

codebook at the Rx side as Q, where Q consists of L single-

lobe beams,
(
L
2

)
two-lobe beams, and so on. Here, L is the

maximum number of single-lobe beam patterns that can be

generated at the Rx, which is a function of the resolution of

the phase shifters.

Our aim is to find the optimum Rx beamformer that

maximizes the average data rate within a given time period,

for a given Tx beamformer. Because mmW channel clusters

experience significant blockages, utilizing several channel
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clusters simultaneously prevents the Tx and the Rx from losing

communication, and hence improves the average data rate.

IV. CLUSTER DISCOVERY AND MULTI-LOBE

COMMUNICATIONS

In this section, we explain the main aspects of the proposed

multi-directional communications scheme. Specifically, the

proposed scheme consists of three main parts: identifying

cluster directions, aligning the phases of the signals coming

from different paths, and optimally allocating antennas/power

to different clusters while taking blockages into account. We

then explain the protocol design that specifies the steps taken

at the BS and the UE to execute these parts.

A. MLBS Algorithm

For a given Tx direction, the MLBS algorithm aims at

identifying the directions of the dominant channel clusters at

the Rx. Recall that L is the total number of available narrow

beam directions. We assume that the number of clusters P
is unknown. To infer the P cluster directions, we propose

to take multiple measurements using beam patterns with B
lobes, B ≥ 1, generated using B sub-arrays. This problem

is similar to the game Mastermind, with L colors (directions)

and B pegs (simultaneous beams). The outcome of taking a

measurement with a pattern at each round will either be a

1 if the power of the received signal is above a threshold

T or a 0 if the power of the received signal is below T .

In general, the solution to Mastermind can be found in a

relatively small number of rounds using the minimax method,

i.e., choosing a test pattern that minimizes the maximum

number of remaining possibilities at each round. However,

finding the optimal solution for the overall problem is NP-hard

[26]. As a result, online computation of the optimal sequence

of test patterns is not feasible. Thankfully, the optimal strategy

can be computed offline, considering all possible responses,

and stored in a binary decision tree. Then, at each round, the

receiver measures the channel with a given antenna pattern.

Based on the received power and the decision tree, it can select

the next test pattern optimally.

To build the decision tree, we first initialize an
(
L
P

) × (
L
B

)
matrix D, whose rows correspond to all possible cluster

combinations in the environment and its columns correspond

to all possible B-lobe beam patterns. For example, consider

the row labeled as (m,n) and the column labeled as (i, j).
Their intersection represents the scenario where the Rx uses a

beam pattern with two main lobes pointing along directions i
and j to measure the channel that has two clusters along the

directions m and n. If the Rx pattern captures at least one

cluster, the corresponding matrix entry is set to 1; otherwise

it is set to 0. The selection of the threshold T for this binary

decision will be discussed in the next section.

Recall that P is not known before any channel measure-

ments are taken. However, statistical channel models can

be utilized to determine an appropriate value for P at the

frequency of interest. MLBS can then be executed with that

value. In case that the channel exhibits fewer clusters than

initially assumed, the algorithm will still return P output

Algorithm 1 MLBS Algorithm

1: procedure MAIN(L,P,B)

2: rows ← (
L
P

)
direction combinations

3: global columns ← (
L
B

)
direction combinations

4: global D ← zeros(
(
L
P

)
,
(
L
B

)
)

5: for i in rows do
6: for j in columns do
7: if i and j have a common direction then
8: D[i][j] ← 1

9: root ← (1, 2, · · · , B)
10: MLBS(rows, root)

11: procedure MLBS(REMAININGROWS, PARENT)

12: if size(remainingRows)> 2 then
13: remainingLeft ← remainingRows - {rows whose

intersection with parent is 0 in D}
14: remainingRight ← remainingRows - {rows whose

intersection with parent is 1 in D}
15: ll ← column that divides remainingLeft as evenly

as possible, in terms of 1s and 0s

16: rr ← column that divides remainingRight as evenly

as possible, in terms of 1s and 0s

17: parent.leftchild ← ll

18: parent.rightchild ← rr

19: MLBS(remainingLeft, ll)

20: MLBS(remainingRight, rr)

21: else
22: remainingLeft ← remainingRows - {rows whose

intersection with parent is 0 in D}
23: remainingRight ← remainingRows - {rows whose

intersection with parent is 1 in D}
24: parent.leftchild ← remainingLeft

25: parent.rightchild ← remainingRight

directions, but no antenna/power will be allocated to weaker

clusters. Antenna allocation will be explained in detail in

Section IV-D.

The MLBS algorithm is summarized in Algorithm 1. The

output of the algorithm is the resulting decision tree, which

is defined by its root and the left and right children of

each node. The nodes of the tree correspond to multi-lobe

measurement patterns and the leaves correspond to identified

cluster directions. The root of the decision tree does not affect

the performance of the MLBS. Specifically, an optimal tree

can be constructed with any arbitrary pattern selected as the

root. Without loss of generality, we select the root as the

pattern (1, 2, · · · , B), i.e., the pattern with B main lobes in the

directions 1, · · · , B. Once a measurement result for this initial

pattern is obtained, the next pattern is selected in a way to

divide the remaining cluster directions as evenly as possible,

so as to minimize the maximum remaining possibilities. In

other words, the next test pattern should have even (or close

to even) number of 1s and 0s in the corresponding column

of D, for the remaining possible cluster directions. This way,

the remaining candidate directions are halved at each round,

until the unique cluster directions are identified. As a result,

although the complexity of constructing the decision tree from
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TABLE I
DECISION MATRIX FOR L = 5 AND P = B = 2.

(1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)
(1, 2) 1 1 1 1 1 1 1 0 0 0
(1, 3) 1 1 1 1 1 0 0 1 1 0
(1, 4) 1 1 1 1 0 1 0 1 0 1
(1, 5) 1 1 1 1 0 0 1 0 1 1
(2, 3) 1 1 0 0 1 1 1 1 1 0
(2, 4) 1 0 1 0 1 1 1 1 0 1
(2, 5) 1 0 0 1 1 1 1 0 1 1
(3, 4) 0 1 1 0 1 1 0 1 1 1
(3, 5) 0 1 0 1 1 0 1 1 1 1
(4, 5) 0 0 1 1 0 1 1 1 1 1

Fig. 2. Decision tree for matrix D. Path traversed in the example is shown
with dashed lines. Identified cluster pair is shown in the red box.

matrix D is exponential, it could be done once and offline.

Once the tree is constructed, traversing it and identifying

the cluster directions take logarithmic time, as the remaining

possibilities are reduced approximately by half after testing an

antenna pattern. On the other hand, exhaustive 5G beam search

scales linearly with L, regardless of how many clusters the BS

and the UE aim at finding, as they probe each beam direction

sequentially. Finally, 802.11ad search also scales linearly with

L. Even though its search time may be relatively low when

the aim is to find a single cluster, the search time approaches

that of exhaustive search when the algorithm aims at finding

multiple clusters.

Example: We illustrate the execution of MLBS algorithm

with L = 5 and P = B = 2. For this case, the matrix D can be

constructed as in Table I. Notice that when the row and column

tuples overlap by at least one entry, i.e., one or more clusters

can be captured with the given pattern, the corresponding entry

in D is set to 1.

Using D, the decision tree can be constructed as in Fig.

2. Specifically, after taking a measurement with the root

(first column), either the first seven or the last three rows

will be eliminated, depending on the measurement outcome.

Afterwards, if the first seven rows remain, the next pattern can

be chosen as (4, 5), i.e., the last row, as it divides the remaining

rows as evenly as possible in terms of 1s and 0s. Similarly, if

the last three rows remain, the next pattern can be chosen

as (1, 3), i.e., second column. The rest of the tree can be

constructed in the same manner. Note that the decision tree is

not unique. Fig. 2 depicts one of the optimal (minimum depth)

decision trees for the given L, P , and B. In the decision tree,

rectangles correspond to nodes (i.e., antenna patterns to be

tested), ellipses correspond to leaves (i.e., inferred directions),

and left and right branches correspond to strong or weak signal

relative to T (1 or 0, respectively).

Suppose that the strongest clusters that the algorithm aims

at discovering are along the directions 2 and 4 (i.e., the

row labeled as (2, 4)). The algorithm starts at the root by

applying the initial pattern (1, 2). Since pattern (1, 2) will

capture cluster 2, the outcome of this measurement will be

1. As a result, the algorithm proceeds with the left branch that

originates from the root, eliminating the cluster pairs (3, 4),
(3, 5) and (4, 5). The next measurement pattern to be selected

according to the decision tree is (4, 5). Since this pattern also

captures a cluster (direction 4), the result will again be 1. After

this step, only four possible cluster pairs remain: (1, 4), (1, 5),
(2, 4) and (2, 5). Next, pattern (3, 5) is chosen according to

the tree, and the outcome of this measurement is 0. This

leaves only two possible cluster pairs: (1, 4) and (2, 4). The

algorithm then proceeds with the final measurement using

pattern (2, 5), and using its outcome, cluster directions can

be uniquely identified as (2, 4), in just four steps. 5G beam

search, on the other hand, requires measuring all five directions

to find these clusters. Finally, 802.11ad search will initially

take two measurements using quasi-omni beams (say, (1, 2, 3)
and (4, 5)), and then will do beam refinement in both of these

quasi-omni beams. As a result, it requires seven test trials.

Clearly, the reduction in discovery time that MLBS provides

is more significant when L � 5, which is typical for a mmW

system.

Complexity Analysis: In this section, we compute the time

complexity of MLBS. We also derive upper and lower bounds

on the depth of the decision tree. Let ζ be the probability of

capturing a cluster using a B-lobe pattern. This probability

can be computed as:

ζ =
P

L

⎛
⎝1 +

B−2∑
i=0

i∏
j=0

L− P − j

L− 1− j

⎞
⎠ (4)

where the first term, P
L , corresponds to capturing a cluster with

the first main lobe, the second term, L−P
L

P
L−1 , corresponds to

not capturing a cluster with the first lobe but capturing it with

the second lobe, and so on. Capturing at least one cluster with

a pattern results in a measurement outcome of 1. As explained

before, the aim of the algorithm is to find a pattern at each

round such that it divides the remaining rows as evenly as

possible, in terms of measurement outcomes of 1s and 0s.

In each round, the algorithm finds a pattern that reduces the

number of remaining rows by at least a fraction f of the rows

from the previous round. Note that since we want to analyze

the worst-case complexity, the number of rows can never be

reduced by more than half. Specifically,

f =

{
ζ if ζ < 0.5

1− ζ otherwise.
(5)

In the best-case scenario, the remaining rows are halved at

each round, i.e., f = 0.5, which results in the following

complexity:

O
(
log2

(
L

P

))
=O

(
log2 L

P
)
=O(P log2 L)=O(log2 L)

(6)
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Fig. 3. Numerical analysis of Equation (7). (a) The value of the objective
function in (7) vs. B (P = 5 and L = 50), (b) minimum achievable value
of the objective function at the optimum B vs. P/L.

where
(
L
P

)
is the number of rows in the first round and the

last equality comes from the fact that P � L. For the best

performance, B should be selected properly, ensuring that f
is as close to 0.5 as possible. Thus, the optimum B can be

found by solving

minimize
B

|ζ − 0.5|
s.t. 1 ≤ B < L, P, L,B ∈ Z. (7)

For the algorithm to achieve logarithmic complexity, we

must ensure that a suitable pattern can be found in each round.

Theorem 1: At each round of the algorithm, a pattern can

be found such that it reduces the number of remaining rows

by at least a fraction f of the rows from the previous round.

Proof: Let us use proof by induction. In step 1 of the

algorithm, the optimal B can be found by solving (7). The

resulting B reduces the number of rows at least by a fraction

f and at most by 0.5. Although (7) does not have a closed-

form solution, it can be solved via gradient descent since the

objective function is unimodal, i.e., guaranteed to have a single

global minimum. Note that if P/L ≥ 0.5, then the objective

function is monotonically increasing, as all the terms in the

sum are positive. In that case, the optimum B = 1. On the

other hand, if P/L < 0.5, then the objective function first de-

creases until the sum exceeds 0.5; afterwards, it monotonically

increases, which results in an optimum B > 1. An example

graph of the objective function versus B is shown in Fig. 3(a)

for P = 5 and L = 50.

Suppose now that at step s, we select B = Bs and the

theorem holds. Then, we can write

f ≤ P

L

⎛
⎝1 +

Bs−2∑
i=0

i∏
j=0

L− P − j

L− 1− j

⎞
⎠ ≤ 0.5. (8)

To complete the proof, we must show that at step s+1, we

can find a Bs+1 such that

f ≤ P

L

⎛
⎝1 +

Bs+1−2∑
i=0

i∏
j=0

L− P − j

L− 1− j

⎞
⎠ ≤ 0.5. (9)

To satisfy (9), we can simply select Bs+1 = Bs, as that would

make (8) and (9) equivalent. Thus, by selecting the same B
at each round, the remaining number of rows can be reduced

by at least the fraction f at each round, leaving 1−f fraction

of rows. Denote the depth of the decision tree by η. Then,

η ≤ log 1
1−f

(
L
P

)
when the same B is selected at each round.

Accordingly, the worst-case complexity of the algorithm is

O
(
log 1

1−f
L
)
= O(log2 L).

Note that this is an upper bound on η, and f approaches 0.5
at each round (f = 0.5 at the last round). Thus, log2

(
L
P

) ≤
η ≤ log 1

1−f

(
L
P

)
.

If P � L, one can conclude that P/L < 0.5. In this

case, we can numerically show that the value of the objective

function in (7) gets arbitrarily close to 0 with the optimal

selection of B. Fig. 3(b) depicts the minimum achievable

value of the objective function vs. P/L. The figure shows

that this value is at most 0.12 (at P/L = 0.4). A typical

P/L in a real system is likely to be much smaller, given that

the environment typically exhibits P < 5 clusters and the

number of directions L > 50. When P/L < 0.1, the minimum

value of the objective function is less than 0.03, meaning that

η = log1.9
(
L
P

) ≈ log2
(
L
P

)
. Note that the sawtooth shape in

Fig. 3(b) is due to B being an integer.

So far, we discuss the time complexity of MLBS, which is

O(log2 L). However, this logarithmic-time complexity comes

at the expense of higher memory requirement. The Rx needs

to store the decision tree (nodes and leaves) to execute MLBS.

As the depth of the decision tree scales logarithmically with

L, the number of nodes and leaves of the decision tree also

increases with L. In particular, a binary tree with a depth of

O(log2 L) has at most 2L − 1 nodes and 2L leaves, leading

to O(L) memory complexity.

Discussion: The first-null beamwidth (FNBW) of an an-

tenna pattern and the beam scanning resolution are typically

not the same. Therefore, the neighboring beams usually over-

lap (see the lined region in Fig. 4(a)). When a channel cluster is

captured by the overlapping region as in Fig. 4(a), it may cause

the measurement outcomes of both patterns to be interpreted

as 1, as shown in 4(b). We eliminate these duplicate channel

clusters during the phase alignment stage, as explained in

Section IV-C. Because this will potentially eliminate some

duplicates during phase alignment, it is a good idea to aim at

identifying more than P clusters with MLBS, if beam overlaps

are significant. Even if MLBS identifies some weak clusters

that remain after phase alignment, these clusters will not be

utilized during data communication, thanks to our optimal

antenna allocation scheme, explained in Section IV-D.

B. Threshold Selection

MLBS utilizes the received signal power, PRx, to determine

whether a cluster is captured or not by a given antenna

pattern. In particular, if PRx ≥ T (PRx < T ), the binary

outcome of the measurement is set to 1 (0). However, due

to multipath effects and the side-lobes of Tx and Rx beams,

wrong decisions may be made, depending on the value of

T . For example, if T is too small, an outcome of 1 may

be observed even when Tx and Rx beams are not perfectly

aligned. On the other hand, if T is too large, the measurement

outcome may be 0 even though it should be 1, due to

the incoherent combining of signals arriving from different

clusters or insufficient beamforming gain. Therefore, T must
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(a) (b)

Fig. 4. Visualization of the overlapping beams in an 8-element uniform linear
array (FNBW= 28.6◦). Blue curve corresponds to the beam pattern when
the antenna steers towards 0◦, the red curve corresponds to the beam pattern
when the antenna steers towards 15◦, and the green lines show the overlapping
region. Cluster in (a) can be interpreted as in (b), due to the measurement
outcome of both beams being 1.

be selected in a way that accounts for false positives (false

alarm) and false negatives (misdetection).

To decide whether the current measurement outcome should

be set to 1 or 0, we apply a likelihood-ratio test based on PRx.

In particular, our hypothesis testing includes the following two

events:

• H1: At least one cluster is captured by the main lobes of

a given pattern

• H0: No cluster is captured by the main lobes of a given

pattern

To select an appropriate value for T , we employ the Neyman-
Pearson hypothesis test and evaluate the misdetection prob-

ability, Pr{MD} = Pr{PRx < T |H1}, and the false alarm

probability, Pr{FA} = Pr{PRx ≥ T |H0}. This test can be

expressed by the following optimization problem:

minimize
T

Pr{MD}
s.t. Pr{FA} ≤ γFA (10)

where γFA is a given maximum tolerable false alarm prob-

ability. From the definition, it is easy to see that Pr{MD}
(Pr{FA}) is monotonically increasing (decreasing) in T .

Therefore, to minimize Pr{MD}, the smallest T should be

chosen while satisfying the constraint in (10). Hence, the

optimal T value is obtained when (10) holds with equality.

Let Topt denote the optimal threshold value, i.e., Pr{FA} =
Pr{PRx ≥ Topt|H0} = γFA. To find Topt, we need to evaluate

PRx.

For analytical tractability, we approximate the actual an-

tenna patterns by a sectored antenna model, as commonly done

in the literature [27]–[29]. Specifically, let G(θ, α) be the an-

tenna gain of the Rx antenna array, where {θ, α} ∈ [0, 2π] are

the zenith and azimuthal angles, respectively. Let θb ∈ [0, 2π]
and αb ∈ [0, 2π], ∀b ∈ {1, · · · , B}, denote the zenith and

azimuthal directions of the bth main lobe, respectively. Then,

G(θ, α)=

⎧⎪⎪⎨
⎪⎪⎩
Gmax, if |θ − θb| ≤ ωy/2,

|α− αb| ≤ ωx/2, b ∈ {1, · · · , B}
Gmin, otherwise

(11)

where ωy and ωx are the beamwidths of a main lobe in the

zenith and azimuthal coordinates, respectively. Furthermore,

Gmax and Gmin are the antenna gains of the main and side

lobes, respectively.

Let rpe
jϕp be the received signal from the pth cluster, where

rp and ϕp represent its magnitude and phase, respectively. Let

P denote the set of clusters. Then, PRx is then given by:

PRx =

⎛
⎝∑

p∈P
rpe

jϕp

⎞
⎠

⎛
⎝∑

p∈P
rpe

jϕp

⎞
⎠

∗

+ PN (12)

where PN = nn∗ and n ∼ CN (0, σ2
N ) is the additive white

Gaussian noise. In our analysis, we rely on the 3GPP channel

model [30]. Based on this model, the phase of a received signal

from a particular cluster is a uniformly distributed random

variable between 0 to 2π, i.e., U(0, 2π). Let us evaluate the

received signal power from the pth cluster, i.e., r2p. Let Pp,

PTx, and PL denote the pth cluster power, the transmit power

of BS (including the Tx antenna array gain), and the path loss

of the channel between BS and UE, respectively. Based on the

assumed sectored antenna model, H0 is the event in which all

the dominant channel clusters between the BS and the UE are

captured by the side lobe. Therefore, given that H0 occurs, r2p
is given by:

r2p = Gmin Pp PTx PL. (13)

In dB scale, the path loss can be written as −10 log10(PL) =
α + 10βlog10(d) + ξ, where d is the distance between the

BS and the UE, α and β are frequency- and environment-

dependent constants, and ξ ∼ N (0, σ2
SF ) is the shadow fading.

IA is performed when a new UE enters the range of a BS, or

a UE attempts to change its status from idle to connected.

Therefore, instead of relying on specific distributions for UE

locations, the maximum possible distance between a BS and a

UE, Dmax, can be considered in the path-loss. In that case, d
can be replaced by Dmax. Alternatively, one can assume that

UEs are randomly and uniformly located on a ring around

the BS. Hence, the CDF of the distance between a BS and

a UE is given by Pr[D < d] =
d2−D2

min

D2
max−D2

min
, where Dmin is

the minimum distance between a BS and the UE, and d ∈
[Dmin, Dmax].

According to [30], the cluster powers are calculated as fol-

lows. Let Xp ∼ U(0, 1), ∀p ∈ P . Let P ′
p � X

τp−1
p 10−0.1Zp ,

where Zp ∼ N (0, ζ2), ∀p ∈ P . τp and ζ are given

environment-dependent constants. Finally, the cluster power

Pp is given by:

Pp =
P ′
p∑

n∈P P ′
n

. (14)

The CDF of PRx under H0, i.e., Pr{PRx ≤ T |H0}, can then

be calculated numerically. In particular, Pr{PRx ≤ T |H0} =
Pr{PN ≤ T − (

∑
p∈P rpe

jϕp)(
∑

p∈P rpe
jϕp)∗|H0}, where

PN is a random variable with chi-square distribution. Let

fX(x) and FX(x) denote the PDF and CDF of an arbi-

trary random variable x, respectively. Hence, for a given

T , Pr{PN ≤ T − (
∑

p∈P rpe
jϕp)(

∑
p∈P rpe

jϕp)∗|H0} can

be computed by utilizing the PDF of random variables ϕp,
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d, ξ, Xp, Zp, ∀p ∈ P , and the CDF of PN . Note that

from the above discussion, the PDF and CDF of these

random variables are known. More formally, Pr{PRx ≤
T |H0} is given in (15). The integral in (15) is taken over

the set A, where A = {ϕp, d, ξ,Xp, Zp ∀p ∈ P|T ≥
(
∑

p∈P rpe
jϕp)(

∑
p∈P rpe

jϕp)∗|H0}. In other words, the val-

ues of ϕp, d, ξ,Xp, Zp ∀p ∈ P that satisfy the condition

T ≥ (
∑

p∈P rpe
jϕp)(

∑
p∈P rpe

jϕp)∗ are considered in (15).

In Fig. 5, we numerically evaluate this integral by exploiting

the midpoint rule. We use the channel model parameters as

given in [30], where PTx = 46 dBm, center frequency is 28
GHz, signal bandwidth is 57.6 MHz, and the cell radius is

200 m. P and Gmin are set to 2 and 1, respectively. Note that

determination process of the threshold value Topt is performed

offline, i.e., no online calculation is required.

C. Phase Alignment

After cluster directions have been discovered, we need to

determine the phases and magnitudes of the signals arriving

at the Rx through each cluster, in order to add the multipath

components coherently. This process is similar to how Rake

receivers work [31]. Rake receivers use several sub-receivers

called fingers to cope with multipath fading. In particular,

each finger is assigned to a different multipath component,

and independently performs decoding. Then, the contribution

of all fingers are coherently combined. However, this method

requires multiple fingers and results in a significantly more

complex system compared to a single-RF-chain receiver. Here,

as the cluster directions are already determined previously, in-

stead of employing a separate finger per multipath component,

each cluster is probed with the optimal single-lobe beam for

that direction, in a different time slot. The received signals are

then decoded, and the phases and magnitudes of the signals

coming from each cluster are computed.

To coherently add the signals, consider the P clusters

identified with MLBS. The phase alignment problem with P
clusters can be formally written as:

maximize
{c1,··· ,cP }

|c1r1ejϕ1 + · · ·+ cP rP e
jϕP |

s.t. |ci| = 1, ∀i ∈ {1, · · · , P}
(16)

where ri and ϕi represent the magnitude and phase of the

signal arriving from cluster i, respectively, ∀i ∈ {1, · · · , P}.

Here, the objective function is the magnitude of the superim-

posed signals received from all clusters, decision variable is the

vector of unit-modulus complex weights, and the constraint is

a result of analog beamforming (having only phase shifters and

no amplifiers). Note that rie
jϕi already accounts for transmit

and receive beamformers, i.e., ci are selected to coherently

add the signals, not to steer the beams. By setting the first

cluster as reference (e.g., c1 = 1), we can easily compute ci,
∀i ∈ {2, · · · , P}. In particular, ci = ej(ϕ1−ϕi), so that the

phases of two signals coming from the first and ith clusters

are aligned. Specifically, this corresponds to adding a phase

offset ci to all antennas in the sub-array that beams towards

the cluster i. As all antennas in the sub-array are exposed to

the same phase offset, ci does not affect the beam directions.

Note that the phase alignment is only required after the

signal directions are found. Thus, (16) needs to be solved

only once, after the clusters are determined. The alignment

of phases is not possible with 802.11ad search as all antennas

are used to create a single wide beam, which can capture more

than one signal adding destructively [32].

As explained in Section IV-A, MLBS can misidentify some

clusters due to the partial overlap of neighboring beams. These

duplicate clusters can be eliminated as follows: If the phases

of the signals captured by neighboring beams are exactly the

same, we can determine that they are in fact the same cluster.

Then, the cluster with less power can be eliminated, since less

received power indicates that the cluster direction is further

away from the boresight of the beam. This way, even if the

MLBS is set to discover more than P clusters, the excessive

clusters can be eliminated at this stage.

D. Optimal Antenna Allocation

Without loss of generality, the optimal antenna allocation at

the Rx is studied in this section. Note that, MLBS identifies P
cluster directions using B-lobe beams. After MLBS is com-

pleted and the cluster directions are found, here the antenna

array will be divided up to P sub-arrays to beam towards the

discovered clusters. If the environment exhibits fewer clusters

than we expect and MLBS returns some eminently weak

clusters, they will not be assigned any antennas thanks to our

optimization problem presented below.

A UPA steers a beam towards a direction with a gain

that is directly proportional to its number of antennas under

half-wavelength spacing (which is the recommended value by

the 3GPP standards [30]), thanks to “array gain” [33]. Let

NUE,x and NUE,y denote the number of columns and number

of rows, respectively, in the Rx antenna array, where NUE =
NUE,x × NUE,y is the total number of Rx antenna elements.

During phase alignment (see Section IV-C), the Rx acquires

the SNR from each inferred cluster by allocating all its antenna

elements to a single beam and measuring the corresponding

received power. Let Kp denote the measured SNR during this

process when the Rx beam is directed towards pth inferred

cluster, ∀p ∈ P � {1, · · · , P}. Note that Kp includes the

effects of Tx and Rx antenna gains, Tx transmission power,

cluster powers, and the path-loss.

Here, we propose to dynamically divide the Rx antenna

array into sub-arrays during the data transmission phase such

that each sub-array forms a beam towards the direction of a

different cluster. In particular, let the array be divided into

P sub-arrays, and let Np denote the number of antennas of

the pth sub-array, ∀p ∈ P . Further suppose that the pth sub-

array is beamforming towards the direction of the pth cluster.

By coherently combining signals from multiple directions as

explained in Section IV-C, the SNR at the Rx during the data

transmission is given by SNR =
(∑

p∈P Np

√
Kp/NUE

)2

.

Note that existing approaches find the strongest cluster and

allocate all antennas to its direction, i.e., SNR = K∗
p if

max(K1, · · · ,KP ) = K∗
p .

By exploiting different beam directions, we aim at achieving

higher average transmission rate between the Tx and the Rx
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Pr{PRx ≤ T |H0} =

∫
· · ·

∫
fϕ1

(ϕ1) · · · fϕP
(ϕP )fD(d)fΞ(ξ)fX1

(X1) · · · fXP
(XP )

fZ1(Z1) · · · fZP
(ZP )FPN

(T − (
∑
p∈P

rpe
jϕp)(

∑
p∈P

rpe
jϕp)∗|H0)

dϕ1 · · · dϕPdddξdX1 · · · dXPdZ1 · · · dZP (15)
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Fig. 5. False alarm probability under various threshold values.

under dynamic blockage. This way, even when one or more

beams are blocked, the Tx-Rx link will remain operational.

Dynamic blockage is commonly modeled in time by a Poisson

process [5], [6]. Thus, the arrival time of a blocker is expo-

nentially distributed. Here, we assume that the blockers are

impenetrable, and the blockage processes of various directions

are independent and identically distributed. Let ρ denote the

blockage rate, i.e., the rate parameter of the exponential distri-

bution. The exact formulation of the associated optimization

problem depends on P , i.e., the size of P . Therefore, for

simplicity, here we focus on the special case P = 2. The

problem formulation for other P values is straightforward. To

generate 2 lobes, the antenna array is horizontally divided into

two, meaning that the decision parameter of the optimization

problem is the number of rows allocated to a sub-array. Let

N1 = NUE,x×N
(1)
UE,y and N2 = NUE,x×N

(2)
UE,y denote the number

of antennas of the first and second sub-arrays, respectively,

where N
(1)
UE,y and N

(2)
UE,y represent the numbers of rows allocated

to the two directions, respectively. Let t1 denote the time

that passes until the one of the beams is blocked since the

start of data transmission. Similarly, let t2 denote the time

that passes until the blockage of the second beam, starting

from when the first direction was blocked. Note that due to

the merging and memoryless properties of Poisson process,

E[t1] = (2ρ)−1 and E[t2] = ρ−1. Let Td denote the duration

of data transmission phase. Accordingly, the optimization

problem that maximizes the total transmitted data over the

period of time that starts with the data transmission phase and

lasts until all the beams are blocked or the data transmission

duration expires (whichever occurs first) is formulated as:

maximize
{N(1)

UE,y,N
(2)
UE,y}

E
[
min{Td, t1} log2 (1 + UB)+

max{min{Td − t1, t2}, 0} log2 (1 + Ul)
]

(17)

s.t. N
(1)
UE,y +N

(2)
UE,y = NUE,y, N

(1)
UE,y, N

(2)
UE,y ∈ {0} ∪ Z

+

Here, UB �
(
N

(1)
UE,y

√
K1/NUE,y +N

(2)
UE,y

√
K2/NUE,y

)2

and

Ul �
(
N

(l)
UE,y

√
Kl/NUE,y

)2

where the lth beam represents

the last blocked beam, l ∈ {1, 2}. The expectation in (17)

is taken with respect to t1 and t2, as they represent the

random blockage. UB is the SNR at the Rx when both

directions are used for data transmission. Therefore, the term

min{Td, t1} log2 (1 + UB) is the amount of transmitted data

until the one of the beams is blocked since the start of

data transmission or the data transmission duration expires

(whichever occurs first). Similarly, Ul is the SNR at the Rx

when only the lth direction is used for data transmission, so

the second term in the objective function is the amount of

transmitted data until the blockage of the lth beam (t2) or the

data transmission duration expires (Td − t1), i.e., whichever

occurs first after the first blockage event. Finally, the objective

function in (17) can also be written as E[min{Td, t1}] log2(1+
UB) +E[max{min{Td − t1, t2}, 0}](log2(1 +U1) + log2(1 +
U2))/2. Note that the probability of the first cluster being

blocked before the other one is 0.5 (and vice versa) due to

the equiprobable events. The closed-form expressions for the

expected values in this expression can be given by:

E
[
min{Td, t1}

]
=

1− e−2ρTd

2ρ
(18)

E
[
max{min{Td − t1, t2}, 0}

]
=

1− e−2ρTd

ρ
−

2e−ρTd(1− e−ρTd)

ρ
(19)

Hence, expectation in the objective function can be eliminated.

The final optimization problem is still a nonlinear integer

programming problem, which is NP-hard. However, it can

be converted to a convex optimization problem, if the integer

restrictions of (17) are relaxed such that N
(p)
UE,y’s are allowed

to take any nonnegative real number, i.e., N
(p)
UE,y ≥ 0, ∀p ∈ P .

Particularly, the objective and constraint functions of this

relaxed problem are concave and convex with respect to N
(p)
UE,y

∀p ∈ P , respectively. Hence, this problem can be numerically

and efficiently solved using existing methods, such as the

gradient descend. Let N
(p)∗
UE,y ∀p ∈ P denote the optimal

solutions of the relaxed problem. That solution can be used

to determine N
(p)
UE,y’s of the original problem. Even though it

does not guarantee the optimal solution, N
(p)
UE,y’s can be set to

N (p)∗
UE,y � or �N (p)∗

UE,y � ∀p ∈ P , such that
∑

p∈P N
(p)
UE,y = NUE,y

(.� and �.� are ceiling and floor functions, respectively). This

way, the integer restrictions can be satisfied. Note that the

solution of the relaxed problem provides an upper-bound for

the original problem. We can compare the performance gap be-
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tween this upper-bound and the one obtained by using ceiling

and floor functions. If the gap is relatively small, this efficient

solution can be considered good enough. Alternatively, we can

apply branch and bound algorithm, which is one of the most

common methods to solve integer programming problems.

This method exploits the solution of the relaxed problem to

add certain bounding constraints to the original one. Although

these extra constraints lead to the optimal solution, which

is purely integer, the complexity of the algorithm is high.

Thankfully, given that P is typically a small number, the size

of our problem in (17) is not large, meaning that branch and

bound method can also be efficiently applied here.
The problem formulation in the case where P > 2 is

straightforward and omitted here for brevity. For example, in

the case of P = 3, one more decision variable, which is N
(3)
UE,y ,

is added to the problem. Furthermore, t3 that denotes the time

that passes until the blockage of the third beam (since the

blockage of the second beam) needs to be incorporated.
Note that in a given problem instance, the utilization of

more than P clusters may result in a higher average data

rate than utilizing only P of them. However, it is not pos-

sible to obtain this optimal value before running our beam-

search algorithm MLBS to infer the cluster directions and

their associated powers. As discussed before, due to fewer

reflections in mmW spectrum, only a few channel clusters

are present in mmW channels. In fact, a typical number

of clusters is less than five [7]. Therefore, using the mmW

channel statistics, an appropriate number for P can be selected,

i.e., five. Furthermore, the initial selection of P may depend

on some system requirements. In particular, as P increases,

the discovery time of the clusters increases as well, see Fig.

9(c). For example, if the maximum allowable discovery time

for a specific system is 20 slots, at most four clusters can

be discovered within that duration (according to Fig. 9(c)),

leading to a condition of P ≤ 4.

E. Protocol Design
In this section, we present the SmartLink protocol for the

IA process in mmW systems. SmartLink utilizes the afore-

mentioned steps and defines the required message exchange

between the BS and the UE to establish the multi-directional

link. We first briefly explain the IA process in LTE and current

5G standard, and then discuss our proposed protocol.
In LTE systems, the IA procedure utilizes an omnidirec-

tional signal called the Cell Reference Signal (CRS), which is

regularly monitored by each UE to create a wideband channel

estimate that can be used both for demodulating downlink

transmissions and for estimating the channel quality [17].

However, IA needs to be done directionally in 5G mmW

systems, to achieve full coverage potential. As a result, when

the Tx and the Rx beams are not aligned, the directional link

cannot be established.
To find a suitable directional link, recent 5G specifications

require that the BS periodically broadcasts synchronization

signal (SS) blocks towards pre-defined number of beam

directions in a sequential manner [12]. These SS blocks

carry primary synchronization signals (PSS), secondary syn-

chronization signals (SSS), and physical broadcast channel

(PBCH) information [34]. PSS is mainly used for initial

symbol boundary synchronization to the NR cell and the

SSS is used for detection of cell and beam IDs. When the

UE enters the coverage area of a BS, it listens to an SS

burst (consisting of multiple SS blocks) and measures the

signal quality of different beams. It then determines the beam

for which the received power is maximum (and above a

predefined threshold). This beam will be chosen for subsequent

transmissions/receptions. After determining the best BS beam,

the UE has to wait for the BS to schedule the random

access channel (RACH) opportunity for the beam direction

that the UE has selected [17]. During a RACH opportunity,

UE performs random access, implicitly informing the BS of

its selected beam direction. Note that current 5G specifications

do not standardize how beam sweeping will be performed at

the UE.

Our MLBS algorithm can be directly applied at the UE

side, without changing the default 5G IA process. This reduces

the search time at the UE side and combats blockage to

a certain extend, if the BS beam is relatively large. With

some small changes in the 5G IA structure, MLBS can be

employed at both the BS and the UE, as shown in Fig. 6. In

SmartLink, the BS first selects a quasi-omnidirectional beam

and transmits multiple copies of the same SS block over that

beam. A relatively large quasi-omnidirectional beam spans

multiple channel clusters. During this transmission, the UE

constantly measures the received power, while steering its

receive beams according to the MLBS algorithm. This way,

the UE identifies the best Rx beam directions corresponding

to the current quasi-omnidirectional beam of the BS. This

process is repeated for all quasi-omnidirectional beams at the

BS. The UE compares each BS quasi-omnidirectinal beam

in terms of maximizing (17), i.e., average data rate. Similar

to 5G, after the BS finishes transmitting the SS blocks, the

UE waits for the BS to switch to Rx mode, i.e., waits for

RACH opportunities. There is a separate RACH resource in

time and frequency dedicated to each BS quasi-omni beam.

The information of these resources is obtained at the UE via

PBCH and system information block (SIB) transmitted by the

BS. The UE then sends its RACH preamble on the RACH

resources corresponding to the selected quasi-omnidirectional

BS beam. Note that the UE transmits the preamble along the

best beam directions it found via MLBS, while the BS receives

it using a single-lobe beam, which is the selected quasi-

omnidirectional beam. After receiving the RACH preamble,

the BS runs MLBS algorithm to find the best narrow beam

directions for the subsequent transmissions. To do that, the UE

transmits consecutive uplink reference signals, i.e., sounding

reference signals (SRS), on scheduled resources specific to the

UE (see Fig. 6(b)).

Because the BS and the UE operate on the same frequency,

the number of clusters they expect to observe will be the same.

Thus, they will aim at identifying the same number of clusters

when running MLBS. Therefore, the BS can compute the

depth of UEs decision tree ηUE, without prior communication

with the UE. This allows the BS to know how many each

SS block should be transmitted for (UE to run MLBS).

Specifically, BS sends τUE consecutive SS blocks through
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(a)

(b)

Fig. 6. SmartLink protocol, where squared blue shows the transmitting beams
and solid green shows the receiving beams. (a) Step 1, where the BS sends
consecutive SS blocks over the same quasi-omnidirectional beam for the UE
to run MLBS. (b) Step 2, where the UE sends the uplink reference signals to
the BS over the best beam directions found in Step 1 and the BS runs MLBS.

a selected quasi-omnidirectional beam, where τUE = ηUE is

the maximum required number of SS blocks for the UE to

run the MLBS algorithm. This is repeated Lomni times where

Lomni is the number of quasi-omnidirectional beams at the BS

(Lomni � L). Following that, the UE determines the best receive

beams for the best quasi-omnidirectional BS transmit beam

and sends τBS = ηBS SRS messages to the BS for BS beam

training, where ηBS is the depth of the BSs decision tree. After

collecting SRS messages from the UE, the BS finally selects

the best transmit beams corresponding to the best UE receive

beams. Note that as the UE has already selected its best beam

directions previously, the BS training is performed only one

time. This way, the multi-directional link can be established

in τBS + LomniτUE signal transmissions.

After the narrow beam directions are identified, either the

BS or the UE proceeds with the phase alignment to ensure that

the signals are in phase. Note that the party that does the phase

alignment will continue to do so for the subsequent uplink and

downlink transmissions. Finally, the BS solves the optimal

antenna allocation problem in (17) for the identified cluster

directions, while the UE is already transmitting optimally.

Solving the joint optimization problem is left for future work.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-

posed scheme through extensive trace-driven emulations. We

compare our scheme with 802.11ad-like and 5G beam search

approaches, in which the search time scales linearly with L.

A. Experimental Results

We first conduct extensive experiments to obtain the mmW

channel characteristics to be used in our simulations. 4 × 4
UPAs are used in our experiments with dx = 0.5λ and

Fig. 7. Test setup using 4× 4 UPAs both at the Tx and the Rx side, signal
generator, and vector signal analyzer.

dy = 0.6λ. The antenna gain at the broadside of the array

is 12 dB. For the sake of measuring the received power, a

continuous wave with 5 dBm amplitude is transmitted over

the 29 GHz band, which is a candidate band for 5G commu-

nications. Keysight E8257D-ATO-8384 PSG signal generator

is used to generate the waveform. At the Rx side, the array

is connected to Keysight PXA-550-MY55002004 vector signal

analyzer (VSA). To steer the transmit/receive beams to desired

directions, antenna arrays are connected to microcontrollers,

which are interfaced with the PC through serial port. The

whole setup with the Tx, Rx, PSG, and the VSA can be seen

in Fig. 7.

We test several LOS and NLOS scenarios with a Tx-Rx

separation of 3 m, where the NLOS path is created by a 1.2
m × 1.2 m metal reflector. The effective beam scanning range

of the UPAs in our experiments are ±60◦ from broadside, in

both azimuth and elevation (effective FOV = ∼ 120◦ in each

direction). Beyond that, the antenna gain drops significantly

as a result of the non-ideal behavior of the antenna elements.

To experimentally obtain the AoA profile, we exhaustively

scanned the 3D space within the effective beam scanning range

of the antenna arrays under different scenarios and collected

RSS measurements from the 3D space.

In Fig. 8, we evaluate the effect of the detection threshold T ,

the improvement in data-rate via using a multi-directional link,

and the performance of the MLBS algorithm using trace-driven

simulations. We take the average values obtained from all LOS

and NLOS scenarios. In Fig. 8(a), when T increases, Pr{MD}
increases and Pr{FA} decreases, as expected. Thus, for this

experimental environment, when T is approximately equal to

−68 dBm, both Pr{MD} and Pr{FA} stay below 0.2. We then

compare the throughput performances of a benchmark scheme

(single-beam) that allocates all antennas to form a beam

towards the strongest cluster and the proposed multi-beam

scheme, under certain blockage probabilities of the underlying

links. In Fig. 8(b), we set the data transmission duration Td

to 10 ms. The results indicate that when the blockage rate

is low, benchmark scheme performs as good as the proposed

scheme. In that case, there is no benefit of using multiple

beams. However, when blockage rate is above 5 bl/s, the

multi-directional scheme outperforms the single-beam scheme

up to 10%. Note that when we allocate the antennas to form

multiple beams, the instantaneous transmission rate decreases.

However, under the dynamic blockage, the proposed scheme
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Fig. 8. Trace-driven simulation results: (a) comparison of misdetection and false alarm probabilities for a given threshold, (b) data rate vs. blockage rate
(comparison of single-beam and multi-beam schemes when Td = 10 ms), (c) Discovery time comparison of MLBS with other search schemes, (d) Misdetection
probability comparison of MLBS with other search schemes.

allows an uninterrupted transmission due to the utilization

of multiple beams, leading to higher data rates on average.

Fig. 8(c) shows the discovery time comparison of MLBS

with 5G and 802.11ad-like beam searching schemes, when

all algorithms aim at identifying three channel clusters. 5G

beam search corresponds to the traditional exhaustive beam

scan and 802.11ad-like search represents the hierarchical beam

search with the goal of identifying multiple channel clusters.

For computational efficiency, the comparison is done over a

subsampled version of the original channel, where the new

channel matrix is 5 × 5 with 25 total directions. The results

indicate that MLBS offers significant reduction in search time

(54% compared to 5G and 43% compared to 802.11ad-like

beam searches). On the other hand, it experiences a slightly

higher misdetection probability compared to 802.11ad-like

search, as observed in 8(d). This 0.065 increase in the misde-

tection probability is due to a higher detection threshold (T )

selection for limiting the false alarm probability. Specifically,

MLBS uses a detection threshold of T = −68 dBm (as found

in Fig. 8(a)), whereas the 802.11ad-like scheme uses T = −80
dBm. Finally, note that the misdetection probability in Fig. 8(a)

is the misdetection of a single measurement taken with a multi-

lobe beam, while the misdetection probability in Fig. 8(d) is

the overall misdetection of MLBS. Deviating from T = −68
dBm found in Fig. 8(a) results in a higher overall misdetection.

B. Simulation Results

In our simulation, we use 3GPP channel models [30] where

PTx = 46 dBm, the operating frequency is 29 GHz, the

bandwidth is 57.6 MHz, and the cell radius is 200 m. A UPA of

half-wavelength antenna spacing is implemented with various

numbers of antennas.

A numerical comparison of MLBS with 5G, 802.11ad-like,

and Rapid-Link [19] beam searching schemes are shown in

Fig. 9. For the first stage of the 802.11ad-like scheme, we

used 6 quasi-omnidirectional beams with 60◦ beamwidth each.

In addition, we used 4 bins within Rapid-Link, as in [19].

Fig. 9(a) depicts the performances of the algorithms, when

they aim at identifying 2 channel clusters. Clearly, discovery

times of all schemes increase with increasing L. However, the

increase is linear for 5G and 802.11ad-like scheme, whereas

it is logarithmic for MLBS and Rapid-Link. MLBS decreases

the discovery time by 88% compared to 5G beam scan, 65%
compared to 802.11ad-like scheme, and 56% compared to

Rapid-Link. In Fig. 9(b), the algorithms aim at identifying

6 channel clusters. Note that compared to Fig. 9(a), curves

in Fig. 9(b) are closer to each other. The search time of 5G

and Rapid-Link remains the same, whereas the search time of

the 802.11ad-like scheme is higher, as more clusters means

more quasi-omnidirectional regions to search in the second

stage. Similarly, the search time of MLBS is also higher, since

the number of rows in the decision matrix,
(
L
P

)
, increases

with increasing P (when P < L/2). As a result, the gap

between the curves shrink when P is larger. Notice that when

P = 6, the Rapid-Link and MLBS perform almost identically.

As the clusters to be discovered increases, the performance

of both MLBS and 802.11ad-like gets closer to that of the

exhaustive beam scan, as we can observe in Fig. 9(c). For

discovering more than 6 clusters, Rapid-Link outperforms

MLBS. However, due to fewer reflections in mmW spectrum,

P is typically less than 5 [7].

In Fig. 10(a), the comparison of Pr{MD} and Pr{FA} for

various number of Rx beams is provided when NUE = 256
and L = 60. The results are obtained for various γFA values

that is used to determine the threshold T as explained in

Section IV-B. When B = 2 and γFA = 0.04, both Pr{MD}
and Pr{FA} are roughly equal to 0.04. Fig. 10(a) also shows

that when the antenna gain per cluster increases, Pr{MD}
decreases. (The case of B = 15 is shown here to present the

misdetection and false alarm probabilities of Rapid-Link per

measurement when 4 bins are used.) Note that Pr{FA} = γFA
for all cases, which shows that our analysis on T is valid. Fig.

10(b) demonstrates the effect of blockage rate on the data rate

when Td = 10 ms and NUE = 256. The results here verify the

ones obtained via experiments, which are shown in Fig. 8(b).

We note that Td also has the same impact as ρ on the data rate.

In Fig. 10(c), we investigate the outage performance of single-

beam and multi-beam schemes when NUE = 256 and Td = 10
ms. Especially for the wireless systems that require very-high

reliability, outage duration is an important performance metric.

Even when ρ = 80 bl/s, the average outage duration of 3-beam

scheme is almost zero. On the other hand, single-beam scheme

leads to 3 ms outage duration, meaning that on average 30%
of the transmission time is wasted.

VI. CONCLUSIONS

In this paper, we proposed an efficient communication

protocol for mmW systems called SmartLink. SmartLink
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Fig. 9. Numerical results: comparison of cluster discovery times between MLBS, 5G, 802.11ad-like, and Rapid-Link [19] beam search approaches. B used in
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Fig. 10. Simulation results: (a) comparison of misdetection and false alarm probabilities for various number of simultaneous beams when NUE = 256
and L = 60, (b) data rate vs. blockage rate and (c) average outage duration vs. blockage rate (comparison of single-beam and multi-beam schemes when
NUE = 256 and Td = 10 ms).

utilizes multiple channel clusters in the mmW channel between

the BS and the UE to combat blockage. It uses a novel

search scheme called MLBS, which discovers multiple clusters

in logarithmic time with respect to the number of beam

directions. Discovered clusters are then simultaneously used

for transmission/reception, and the signals coming from dif-

ferent directions are coherently combined. As the probability

of all channel clusters being blocked at the same time is

low, SmartLink provides an effective mechanism to maintain

communications and improve the data rate by up to 10%.

In our experiments, we were limited by the capabilities of

our setup, such as analog-only beamforming and short Tx-

Rx separation. Our future work will focus on multi-lobe beam

search methods under hybrid beamforming. With hybrid beam-

forming, inferred clusters can be exploited for multiplexing

gain, to transmit a separate independent data stream from

each one of the inferred clusters. We will also investigate

applications of SmartLink to other network architectures such

as coordinated multipoint (CoMP).
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