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Abstract

We analyze the correlation structure for a general class of scene-based MPEG video models.

These models explicitly capture the impact of scene dynamics on the variable bit rate (VBR).

The autocorrelation function (ACF) for this class is derived at the GOP (course grain) and frame

(�ne grain) levels for an arbitrary scene-length distribution. Based on the GOP-level ACF, we

establish the relationship between the scene-length statistics and the short-range/long-range

dependence (SRD/LRD) of the underlying model. We formally show that when the intra-scene

dynamics exhibit SRD (as often the case), the overall model exhibits LRD if and only if the

second moment of the scene length is in�nite. Our results provide the theoretical foundation for

several empirically derived scene-based models. In particular, they prove the presence of LRD

in a model with Pareto distributed scene lengths. Our GOP-level analysis is then used to derive

the ACF for a generic frame-level MPEG model in which the three types of MPEG frames are

interleaved according to a given GOP pattern. In this case, the repetitive application of the

GOP pattern induces strong periodic components in the structure of the ACF. It is shown that

this frame-level ACF does not converge to zero as the frame lag goes to in�nity. This, somehow

surprising, result can be extended to composite processes in which two drastically di�erent sub-

models are interleaved in a deterministic manner (e.g., composition of audio and video streams).
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1 Introduction

In this paper, we investigate the correlation structure for a general class of scene-based models that

are used to characterize variable bit rate (VBR) MPEG-coded video streams. Scene-based models

form an important family of video models in which scene dynamics are explicitly incorporated.

These models are particularly capable of capturing the multiple-time-scale variations in a VBR

video source and, consequently, on providing accurate estimates of the queueing performance at a

bu�ering node [6].

Several scene-based video models have been proposed in the literature. Examples of these are

given in [2, 3, 4, 6, 9, 10, 11] (also, see [5] for a survey of video models). In principle, a scene-based

model could incorporate both inter- and intra-scene variations. However, intra-scene variations

are often ignored to simplify the construction of the model [4, 2]. When both types of variations

are present, they are often modeled independently using two individually autocorrelated stochastic

processes. These processes, along with the scene-length statistics, distinguishes one scene-based

model from another.

Most scene-based models have been developed for compression schemes in which one encoding

technique is applied to all frames of a given video sequence. Such schemes result in homogeneous

VBR sequences in which the uctuations are primarily attributed to scene dynamics. In contrast,

the MPEG algorithm applies di�erent encoding techniques to produce three types of compressed

frames (I, P, and B). The three types di�er signi�cantly in their bit rate characteristics, with

I frames being larger, on average, than P frames, which in turn are larger than B frames. The

complete VBR sequence is obtained by interleaving frames of di�erent types according to a Groups-

of-Pictures (GOP) pattern, which speci�es the sequence of P and B frames between two successive

I frames. The GOP pattern is applied repeatedly to a video sequence, resulting in heterogeneous

frame sizes and signi�cant periodicity in the tra�c pattern of this sequence. To avoid the complexity

of dealing with such periodicity, most scene-based models focus on characterizing MPEG-coded

video at the GOP level (an exception is the model in [9]).

An important aspect of a video model is the form of its autocorrelation function (ACF). Because

of their impact on the queueing performance at a bu�ering node, correlations in a real video sequence

must be su�ciently captured. In typical scene-based models, the ACF is not given analytically but

is obtained empirically using synthetic data. However, without an analytical expression for the

ACF, it is not possible to make any formal statement about the SRD/LRD structure of the model.

Such a statement provides �rst guidelines for e�cient resource allocation and network dimensioning

under QoS guarantees.

The contributions of this paper are as follows. First, we derive the GOP-level ACF for a general

class of scene-based models with an arbitrary scene-length distribution and frame-size statistics.

The only restrictions we impose on this class are that inter-scene and intra-scene variations are

2



mutually independent and that scene lengths constitute an i.i.d. process. Such assumptions are

satis�ed by most existing scene-based models (for which the ACF has not been previously reported).

From the derived ACF, we establish the relationship between the scene-length distribution of a

model and its SRD/LRD structure. Our results indicate that when the intra-scene dynamics

exhibit SRD (as often the case), the overall video model is LRD only if the second moment of the

scene length is in�nite (as in the case of a Pareto scene length with parameter 1 < � < 2).

Based on our generic GOP-level MPEG model, we introduce a frame-level counterpart that

incorporates the three types of MPEG frames. We derive the ACF for this frame-level model. Our

results indicate that due to the repetitive application of the GOP pattern, the ACF at the frame

level exhibits (as expected) strong periodicity. More interestingly, because of this periodicity the

ACF never drops o� to zero (i.e., as the frame lag goes to in�nity, the ACF converges to known

positive and negative limits). The non-zero-convergence result can be extended to other types of

media streams that are interleaved in a deterministic manner (e.g., the interleaving of audio and

video packets in MPEG-2).

2 Autocorrelation Structure at the GOP Level

In this section, we investigate the ACF for a scene-based video model at the GOP level. While

the GOP notion is speci�c to MPEG video, our \GOP-level" analysis applies, in general, to VBR

sequences in which the frame sizes are homogeneous, i.e., produced by the same compression ap-

proach. For example, it applies to JPEG and H.261 video sequences, among others. Without loss

of generality, we present our ideas in the context of MPEG video.

Consider an MPEG-coded video sequence. Let X

n

be a random variable (rv) that models the

size of the nth GOP in this sequence, n = 1; 2; : : :. Let S

i

be a discrete rv that models the length of

the ith scene (measured in the number of GOPs). We assume that scenes are i.i.d. with common

probability mass function f

s

and cumulative distribution function F

s

. Let S be a generic rv that

describes the length of an arbitrary scene. Intuitively, GOPs that belong to the same scene are

relatively close in size. In contrast, GOPs belonging to di�erent scenes may have signi�cantly

di�erent sizes. Accordingly, we model X

n

by the sum of two random components:

X

n

a:s:

= Y

n

+ Z

n

(1)

where Y

n

is a rv that accounts for the impact of scene dynamics on the bit rate; Y

i

a:s:

= Y

j

if

GOPs i and j belong to the same scene. The rv Z

n

represents the di�erence between the size

of the nth GOP and the mean GOP size in the underlying scene. By construction, E[Z

n

] = 0.

We assume that Y

n

and Z

n

are mutually independent. The random processes fY

n

: n = 1; 2; : : :g

and fZ

n

: n = 1; 2; : : :g constitute two sequences of correlated and identically distributed rvs. We

assume that both processes are second-order stationary, and we denote their corresponding ACFs
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at lag k by �

Y

(k) and �

Z

(k), respectively. Furthermore, we let �

2

Y

and �

2

Z

be the variances of Y

1

and Z

1

, respectively. The above formulation encompasses many existing scene-based models.

Now consider the random process fX

n

: n = 1; 2; : : :g. The ACF for this process at lag k is

given by

�

X

(k)

4

=

E [(X

n

�m)(X

n+k

�m)]

�

2

X

=

E [Y

n

Y

n+k

] + �

2

Z

�

Z

(k)�m

2

�

2

Y

+ �

2

Z

(2)

where m

4

= E[X

1

] = E[Y

1

]. Consider the term E [Y

n

Y

n+k

] for k = 1; 2; : : :, and an arbitrary n.

The relationship between Y

n

and Y

n+k

depends on whether GOPs n and n+ k belong to the same

scene. Let

^

S be the forward recurrence time that is associated with the scene length S. The pmf

of

^

S is given by:

f

ŝ

(i)

4

= Pr[

^

S = i] =

Pr[S � i]

E[S]

; i = 1; 2; : : : (3)

Since n is chosen arbitrarily, the two GOPs belong to the same scene if

^

S > k. Otherwise, they

belong to di�erent scenes (and are, thus, independent). Consequently,

E [Y

n

Y

n+k

] =

1

X

j=1

E

h

Y

n

Y

n+k

=

^

S = j

i

� Pr

h

^

S = j

i

(4)

=

k

X

j=1

E

h

Y

n

Y

n+k

=

^

S = j

i

f

ŝ

(j) +

1

X

j=k+1

E

h

Y

n

Y

n+k

=

^

S = j

i

f

ŝ

(j) (5)

= m

2

k

X

j=1

f

ŝ

(j) +E

h

Y

2

1

i

1

X

j=k+1

f

ŝ

(j) = m

2

F

ŝ

(k) +E

h

Y

2

1

i

(1� F

ŝ

(k)) (6)

where F

ŝ

is the CDF of

^

S. Accordingly, (2) can be written as

�

X

(k) =

�

2

Y

[1� F

ŝ

(k)] + �

2

Z

�

Z

(k)

�

2

Y

+ �

2

Z

(7)

In the absence of the noise process fZ

n

: n = 1; 2; : : :g, (7) reduces to �

X

(k) = Pr[

^

S > k], i.e., the

ACF is simply given by the complementary distribution of

^

S.

Equation (7) can be used to construct a simple test for the LRD/SRD of a video model with

a given scene-length distribution. Recall that a process exhibits LRD behavior if its ACF has an

in�nite sum. Taking the sum of �

X

(k) from k = 0 to 1, we have

1

X

k=0

�

X

(k) =

1

(�

2

Y

+ �

2

Z

)

"

�

2

Y

1

X

k=0

(1� F

ŝ

(k)) + �

2

Z

1

X

k=0

�

Z

(k)

#

=

�

2

Y

E[

^

S] + �

2

Z

P

1

k=0

�

Z

(k)

(�

2

Y

+ �

2

Z

)

(8)

It is easy to show that

E[

^

S] =

1

2

+

E[S

2

]

2E[S]

(9)

From (8) and (9), we arrive at the following result:
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Proposition 1 The video model fX

n

: n = 1; 2; : : :g is long-range dependent if and only if at least

one of the following conditions is satis�ed:

1. The second moment of the scene length is in�nite.

2. The noise process fZ

n

: n = 1; 2; : : :g is LRD.

Examples

I. Pareto Distribution

Some studies have reported the appropriateness of the Pareto distribution for modeling the scene

duration [3, 6]. The complementary form of this distribution is given by

Pr[S > k] =

�

w

k

�

�

; for k � w (10)

where w and � are two positive parameters. Assuming that the noise process is SRD, then for

1 < � < 2, E[S

2

] is in�nite and the model is LRD. A similar result has been provided for the

superposition of ON/OFF sources in which the ON periods of one or more sources are Pareto

distributed with 1 < � < 2 [1].

II. Frater's Scene-Length Distribution

In [2], Frater et al. introduced a model for JPEG video in which the scene duration has the following

distribution:

f

s

(k)

4

= Pr[S = k] =

a

k

n

+ b

2

; k = 1; 2; : : : (11)

where a, b, and n are three positive constants. The noise process was ignored. To examine the

SRD/LRD structure of this model, we consider E[S

2

]:

E[S

2

] =

1

X

k=1

k

2

f

s

(k) =

1

X

k=1

ak

2

k

n

+ b

2

(12)

It is straightforward to show that E[S

2

] is �nite for n > 3, and is in�nite otherwise. In other

words, Frater's video model is SRD if and only if n > 3. Two video sequences were examined in [2]:

Star Wars and Film. Their corresponding n values were determined to be 2 and 3.8, respectively,

implying that only the �rst sequence (Star Wars) exhibits LRD!

III. Gamma and Weibull Distributions

Gamma and Weibull distributions have also been proposed for the scene duration [3]. Both have

�nite second moments. Thus, under an SRD noise process, both distributions result in SRD models.
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In typical scene-based modeling studies, the scene-length distribution is obtained by directly

�tting the empirical scene lengths. The ACF in this case is only obtained empirically using synthetic

sequences. Due to the small number of long scenes (typically, in the order of few tens), accurate

�tting of the tail of the empirical scene-length distribution is not feasible, despite the importance of

this tail in determining the SRD/LRD structure of the model. We remedy this issue by providing

an alternative modeling approach for the scene-length distribution. Ignoring the noise process, we

have �

X

(k) = Pr[

^

S > k], from which we have

Pr[

^

S = j] = �

X

(j � 1)� �

X

(j) =

Pr[S � j]

E[S]

(13)

Pr[S = j] = Pr[S � j]� Pr[S � j + 1] = E[S]

�

Pr[

^

S = j]� Pr[

^

S = j + 1]

�

(14)

= E[S] [�

X

(j � 1)� 2�

X

(j) + �

X

(j + 1)] (15)

Evaluating (13) at j = 1, we obtain

E[S] =

Pr[S � 1]

�

X

(0)� �

X

(1)

=

1

1� �

X

(1)

(16)

From (16) and (15), we obtain the pmf for the scene length in terms of the ACF:

f

s

(i)

4

= Pr[S = j] =

�

X

(j � 1)� 2�

X

(j) + �

X

(j + 1)

1� �

X

(1)

(17)

Accurate modeling of the scene length can proceed by �rst obtaining an adequate �t for the em-

pirical ACF (which can be done relatively with high accuracy), and then using this �t to derive

the corresponding scene-length distribution. We provide one example: In [8] an ACF of the form

�

X

(k) = e

��

p

k

was found quite appropriate for modeling JPEG-coded video. Ignoring the noise

process (i.e., intra-scene variations), the scene-length distribution in this case is simply given by:

f

s

(k) =

e

��

p

k�1

� 2e

��

p

k

+ e

��

p

k+1

1� e

��

; k = 1; 2; : : : (18)

3 Autocorrelation Structure at the Frame Level

GOP-level modeling is su�cient for evaluating the queueing performance at a bu�ering node (e.g.,

an ATM multiplexer) with a relatively large bu�er size. In this case, synchronization between

di�erent MPEG sources has little impact on the performance. However, when the bu�er size is

small (e.g., it drains in less than a GOP time), then synchronization between MPEG sources will

have a signi�cant impact on the performance. Consider, for example, the multiplexing of two

MPEG streams. If both streams are exactly aligned with respect to their GOPs (i.e., their I

frames overlap), then the bu�er overow rate will be much higher than when one MPEG source
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lags the other by one frame period. Clearly, a frame-level model is needed to study the packet loss

performance in such cases. In this section, we extend our generic GOP-level scene-based model to

characterize the frame-level variations.

Consider the stationary process fX

n

: n = 1; 2; : : :g that represents the GOP sequence of an

MPEG stream. Let f

X

be its marginal distribution. A GOP pattern is characterized by two

parameters: the I-to-I frame distance (N) and the I-to-P frame distance (M). Not all MPEG

sequences involve a repetitive GOP pattern. In fact, some encoders allow a new GOP to start

before the completion of the previous one, typically in response to a large frame (i.e., the start of

a high-action scene). However, for tractability purposes, we restrict our work to MPEG sequences

that conform to repetitive GOPs, and many sequences do so in practice.

Denote the size of the kth frame in the MPEG sequence by U

k

. Suppose that this frame

belongs to the rth GOP. If the MPEG sequence starts with a complete GOP (i.e., the �rst frame

is I ), then r = dk=Ne. However, this makes the process fU

n

: n = 1; 2; : : :g nonstationary,

precluding any analysis of the correlation structure. Instead, we will allow the �rst GOP of the

video sequence to be incomplete by randomly selecting the �rst frame in the sequence from any

location in the GOP pattern, and continuing thereafter according to the GOP pattern. This will

have no e�ect on the long-term behavior of the model, but will ensure its stationarity. Accordingly,

dk=Ne � r � dk=Ne + 1. We de�ne U

k

as follows:

U

k

4

=

8

>

>

>

<

>

>

>

:

c

I

X

r

; if the kth frame is an I frame

c

P

X

r

; if the kth frame is a P frame

c

B

X

r

; if the kth frame is a B frame

(19)

for some constants c

I

, c

P

, and c

B

. According to this model, B frames (also, P frames) that belong

to the same GOP have the same size. An example of the resulting sample path based on this model

is shown in Figure 1.

The constants c

I

, c

P

, and c

B

are obtained as follows: c

I

=

I

avg

X

avg

, c

P

=

P

avg

X

avg

, and c

B

=

B

avg

X

avg

, where I

avg

; P

avg

; and B

avg

are the average (empirical) frame sizes for I, P, and B frames,

respectively; andX

avg

is the average size of a GOP. Note that c

I

+(N=M�1)c

P

+(N�N=M)c

B

= 1,

ensuring that the sum of frame sizes in the rth GOP is equal to X

r

. The marginal distributions

for the sizes of the three frame types are given in terms of f

X

as follows: f

I

(x) = f

X

(x=c

I

),

f

P

(x) = f

X

(x=c

P

), and f

B

(x) = f

X

(x=c

B

). Let U

I

, U

P

, and U

B

be three generic rvs that indicate

the sizes of arbitrary I, P, and B frames, respectively. It readily follows that E[U

I

] = c

I

m,

E[U

P

] = c

P

m, and E[U

B

] = c

B

m. Also, var(U

I

)

4

= �

2

I

= c

2

I

�

2

X

, var(U

P

)

4

= �

2

P

= c

2

P

�

2

X

, and

var(U

B

)

4

= �

2

B

= c

2

B

�

2

X

. Let �

U

(k) be the ACF of fU

n

: n = 1; 2; : : :g at lag k

�

U

(k)

4

=

E [(U

1

�

e

m)(U

1+k

�

e

m)]

�

2

U

=

E [U

1

U

1+k

]�

e

m

2

�

2

U

(20)
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Figure 1: Bit-rate variations in frame-level model (N = 6; M = 3).

where

e

m

4

= E[U

1

] =

m

N

and

�

2

U

4

= var(U

1

) =

(�

2

X

+m

2

)

N

�

c

2

I

+ (

N

M

� 1)c

2

P

+ (N �

N

M

)c

2

B

�

�

m

2

N

2

(21)

Recall that according to our model, the �rst frame of an MPEG stream is selected randomly from

the N frames of a GOP. Thereafter, the MPEG sequence proceeds according to the repetitive GOP

pattern. This means that the �rst GOP may be incomplete. Consider E[U

1

U

1+k

] for k > 1:

E[U

1

U

1+k

] =

N

X

i=1

E[U

1

U

1+k

=T

1

= i] Pr[T

1

= i] (22)

where T

i

is a discrete rv that reects the location (and consequently, the type) of the ith frame

in the GOP pattern. The sample space of T

i

is 


T

= f1; 2; : : : ; Ng. Thus, T

j

a:s:

= i means that

the type of the jth frame is the same as the type of the frame in the ith location of the GOP

pattern. Because of the repetitive application of the GOP pattern, the process fT

n

: n = 1; 2; : : :g

constitutes a deterministic Markov chain with transition probabilities

p

ij

4

= Pr [T

n

= j=T

n�1

= i] =

8

<

:

1 if j = i+ 1 and i = 1; : : : ; N � 1; or i = N and j = 1

0 otherwise

(23)

Our previous assumption related to the type of the �rst frame can now be stated formally

by taking the initial distribution of the Markov chain to be its stationary distribution, i.e., �

i

4

=

8



Pr[T

1

= i] = 1=N for all i 2 


T

. Hence,

E[U

1

U

1+k

] =

1

N

N

X

i=1

E[U

1

U

1+k

=T

1

= i] (24)

Before proceeding with the computation of E[U

1

U

1+k

=T

1

= i], we need to de�ne some related

quantities. Let

g

N

(i; k)

4

= (i+ k � 1) mod N (25)

g

M

(i; k)

4

= (i+ k � 1) modM (26)

where i 2 


T

and k is a positive integer. Note that because N is a multiple of M , if g

N

(i; k) = 0

then g

M

(i; k) = 0 as well. De�ne the following two sets:




P

4

= f1 +M; 1 + 2M; 1 + 3M; : : : ; 1 + (N=M � 1)Mg (27)




B

4

= f2; 3; : : : ;M;M + 2;M + 3; : : : ; 2M; : : : ; (N=M � 1)M; (N=M � 1)M + 2; : : : ; Ng(28)

Note that 


T

= f1g

S




P

S




B

and the three sets f1g, 


P

, and 


B

are mutually exclusive. Next,

we de�ne the following function �(i; k):

� Case 1: i = 1

� If g

N

(1; k) = 0, then �(1; k)

4

= c

2

I

.

� If g

N

(1; k) 6= 0 but g

M

(1; k) = 0, then �(1; k)

4

= c

I

c

P

.

� If g

M

(1; k) 6= 0, then �(1; k)

4

= c

I

c

B

.

� Case 2: i 2 


P

� If g

N

(i; k) = 0, then �(i; k)

4

= c

I

c

P

.

� If g

N

(i; k) 6= 0 but g

M

(i; k) = 0, then �(i; k)

4

= c

2

P

.

� If g

M

(i; k) 6= 0, then �(i; k)

4

= c

P

c

B

.

� Case 3: i 2 


B

� If g

N

(i; k) = 0, then �(i; k)

4

= c

I

c

B

.

� If g

N

(i; k) 6= 0 but g

M

(i; k) = 0, then �(i; k)

4

= c

P

c

B

.

� If g

M

(i; k) 6= 0, then �(i; k)

4

= c

2

B

.

We now return to the problem of determining E[U

1

U

1+k

=T

1

= i]. There are two cases to

consider. First, when i+ k � N Frames 1 and 1 + k must belong to the same (�rst) GOP, and

E[U

1

U

1+k

=T

1

= i] = �(i; k)E[X

2

1

] = �(i; k)

h

�

2

X

+m

2

i

(29)
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When i + k > N , Frames 1 and 1 + k belong to di�erent GOPs and possibly to di�erent scenes.

More speci�cally, the (1 + k)th frame belongs to the rth GOP, where r

4

= d(i+ k)=Ne > 1. Thus,

E[U

1

U

1+k

=T

1

= i] = �(i; k)E[X

1

X

r�1

] = �(i; k)

h

�

2

X

�

X

(r � 1) +m

2

i

(30)

Equations (29) and (30), combined with the expressions for �(i; k), �

X

, �

2

X

, and m can be used to

compute E[U

1

U

1+k

] for various values of k, as shown next.

3.1 Computation of E[U

1

U

1+k

]

Case I: k = 1; 2; : : : ; N � 1

Based on the previous discussion, we have

E[U

1

U

1+k

] =

1

N

2

4

N�k

X

i=1

E[U

1

U

1+k

=T

1

= i] +

N

X

i=N�k+1

E[U

1

U

1+k

=T

1

= i]

3

5

(31)

=

1

N

2

4

N�k

X

i=1

�(i; k)(�

2

X

+m

2

) +

N

X

i=N�k+1

(�

2

X

�

X

(r � 1) +m

2

)

3

5

(32)

where, as before, r

4

= d(i+k)=ne. For k = 1; : : : ; N and i = N �k+1; : : : ; N , we have r = 2. Thus,

E[U

1

U

1+k

] =

1

N

2

4

(�

2

X

+m

2

)

N�k

X

i=1

�(i; k) +

N

X

i=N�k+1

�(i; k)(�

2

X

�

X

(1) +m

2

)

3

5

(33)

=

1

N

2

4

m

2

N

X

i=1

�(i; k) + �

2

X

0

@

N�k

X

i=1

�(i; k) + �

X

(1)

N

X

i=N�k+1

�(i; k)

1

A

3

5

(34)

It can be shown that

N

X

i=1

�(i; k) =

8

>

>

>

<

>

>

>

:

�

�

1

4

= c

2

I

+ c

2

P

(N=M � 1) + c

2

B

(N �N=M); if k mod N = 0

�

�

2

4

= 2c

I

c

P

+ (N �N=M)c

2

B

+ (N=M � 2)c

2

P

; if k mod N 6= 0 but k modM = 0

�

�

3

4

= 2c

I

c

B

+ 2(N=M � 1)c

P

c

B

+ (N � 2N=M)c

2

B

; if k modM 6= 0

(35)

Case II: k � N

Starting with (30), this case is further divided into two subcases.
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Case II-A: k = pN for p = 1; 2; : : :.

In this case, Frames 1 and 1 + k di�er exactly by p GOPs, irrespective of the value of i. Thus,

r = di=Ne+ p = 1 + p. Accordingly,

E[U

1

U

1+k

] =

1

N

N

X

i=1

�(i; k)

h

�

2

X

�

X

(p) +m

2

i

(36)

=

�

2

X

�

X

(p) +m

2

N

N

X

i=1

�(i; k) (37)

Finally,

�

U

(k) =

h

�

�

2

X

�

X

(p) +m

2

�

�

P

N

i=1

�(i; k)

�

=N

i

�

e

m

2

�

2

U

(38)

Case II-B: k 6= pN and k > N

In this case, Frames 1 and 1 + k may di�er by either p GOPs or by p + 1 GOPs, where p

4

=

dk=Ne � 1 = bk=Nc. More speci�cally, for T

1

= 1; 2; : : : ; i

�

, where i

�

= Ndk=Ne � k, the 1st and

(1 + k)th frames di�er by p GOPs. For T

1

= i

�

+ 1; : : : ; N , the two frames di�er by p+ 1 GOPs.

Thus,

E[U

1

U

1+k

] =

1

N

i

�

X

i=1

�(i; k)

h

�

2

X

�

X

(p) +m

2

i

+

1

N

N

X

i=i

�

+1

�(i; k)

h

�

2

X

�

X

(1 + p) +m

2

i

(39)

which concludes the derivation of the ACF for the process fU

n

: n = 1; 2; : : :g.

3.2 Asymptotic Behavior of the Frame-Level ACF

From the analytical form of �

U

, one can examine its asymptotic behavior, shedding light on the

LRD/SRD structure. As k !1, p!1 and �

X

(p)! 0, so that

lim

k!1

�

U

(k) =

m

2

N

lim

k!1

P

N

i=1

�(i; k) �

e

m

2

�

2

U

(40)

The limit of

P

i

�(i; k) as k ! 1 alternates between the three values given in (35). Substituting

the values of

e

m and �

2

U

in (40), it is easy to see that lim

k!1

�

U

(k) alternates between the following

three values:

N�

�

j

� 1

N�

�

1

(�

2

X

=m

2

+ 1)� 1

; j = 1; 2; 3 (41)

Note that in general the above three values are non-zero, which justi�es the persistent, periodic

autocorrelations that are observed in empirical MPEG sequences. Note also that the above limit

is valid for any scene-length distribution (including exponentially distributed scene lengths).
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4 Numerical Examples

In this section, we demonstrate the validity of our analytical expressions using three numerical

examples. We consider the ACF only in the presence of inter-scene variations. Additional examples

related to the ACF in the presence of intra-scene variations can be found in [7].

Our validation approach is based on comparing the analytical ACF against the sample ACF of

synthetically generated VBR sequences. In the �rst two examples, we investigate the ACF at the

GOP level assuming a particular scene-length distribution and gamma distributed GOP sizes with

scale and shape parameters of 0.05 and 25, respectively. These parameters correspond to GOP sizes

having mean and standard variation of 500 and 100, respectively. Based on the scene length and

GOP size distributions, we generate synthetic VBR sequences and compute their empirical ACFs.

In the �rst example, we use a shifted exponential scene-length distribution:

Pr[S > k] = Pr[

^

S > k] = e

��(k�1)

; k = 1; 2; : : : (42)

Note that in this case S and

^

S have the same distribution. We set � = 1=49, so that E[S] = 50.

Ten synthetic traces were generated, and their sample ACFs were computed and averaged. The

average ACF for the synthetic traces is plotted in Figure 2 along with its theoretical counterpart.

There is a clear match between the two plots.

Next, we consider a sub-geometric scene-length distribution of the form:

Pr[S > k] = �

p

k

; k = 1; 2; : : : (43)

for some 0 < � < 1. In this case, Pr[S > k] 6= Pr[

^

S > k]. To obtain the theoretical ACF, we

proceed as follows:

�

X

(k + 1) = 1� Pr[

^

S � k + 1] = 1�

�

Pr[

^

S � k] + Pr[

^

S = k + 1]

�

(44)

= �

X

(k)� Pr[

^

S = k + 1] = �

X

(k)�

Pr[S � k + 1]

E[S]

(45)

= �

X

(k)�

�

p

k

E[S]

(46)

If E[S] is known, then the last expression can be used to compute �

X

(k) recursively. While an

exact value for E[S] =

P

1

k=0

�

p

k

is not known, one can accurately approximate it: It is easy to see

that

Z

1

0

e

ln�

p

x

dx �

1

X

k=0

e

ln�

p

k

=

1

X

k=0

�

p

k

�

Z

1

0

e

ln�

p

x

dx+ 1 (47)
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Since

R

1

0

e

ln�

p

x

dx =

2

(ln�)

2

, E[S] is bounded by

2

(ln�)

2

� E[S] �

2

(ln�)

2

+ 1 (48)

Setting � = 0:8, we have 40:17 � E[S] � 41:17. Thus, we take E[S] � 40:67. Figure 3 depicts the

theoretical and empirical ACFs under a sub-geometric scene-length distribution. At small and large

lags, the plots match very well. At intermediate lags, there is a slight di�erence that is attributed to

the large variance of the empirical autocorrelations and to other approximations in the generation

of sub-geometrically distributed random numbers.

Our last example is related to the frame-level ACF. Here, we use the same shifted exponential

scene-length distribution as in the �rst example. We set N = 12, M = 3, c

I

= 5=22, c

P

= 3=22, and

c

B

= 1=22. The analytical and empirical ACFs are shown in Figure 4 for lags in the range 450 to 500.

This range is chosen arbitrarily, and is representative of the behavior at large lags. The two ACFs

almost match at all examined lags (similar trend is also observed at small lags). This match validates

the correctness of our analysis. Note that although the scene-length distribution is exponential, the

deterministic interleaving of three, drastically di�erent processes (one for each frame type) induces

strong correlations that determine the asymptotic shape of the ACF. These correlations do not die

out to zero as the lag goes to in�nity, but instead they converge to �

�

1

= 0:8912, �

�

2

= 0:710, and

�

�

3

= �0:3776. The impact of the scene-length distribution in this case is limited to the speed at

which the ACF converges to these asymptotic quantities.

References

[1] O. J. Boxma and V. Dumas. Fluid queues with long-tailed activity distributions. technical

report Report BS-R9705, Centrum voor Wiskunde en Informatica (CWI), 1997.

[2] M. R. Frater, J. F. Arnold, and P. Tan. A new statistical model for tra�c generated by VBR

coders for television on the Broadband ISDN. IEEE Trans. on Circuits and Systems for Video

Technology, 4(6):521{526, Dec. 1994.

[3] D. P. Heyman and T. V. Lakshman. Source models for VBR broadcast-video tra�c.

IEEE/ACM Transactions on Networking, 4(1):40{48, Feb. 1996.

[4] D. P. Heyman, A. Tabatabai, and T. V. Lakshman. Statistical analysis and simulation study

of video teleconferencing tra�c in ATM networks. IEEE Trans. on Circuits and Systems for

Video Technology, 2(1):49{59, Mar. 1992.

[5] M. Izquierdo and D. Reeves. A survey of statistical source models for variable bit-

rate compressed video. Technical report TR 97-10, Center for Advanced Comput-

13



0 50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

synthetic

exp(−β (k−1))

Lag k (in GOPs)

A
u

to
c
o

rr
e

la
ti
o

n
Shifted Exponential

Figure 2: ACF for the GOP sequence with shifted exponential scene-length distribution (� = 1=49).

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag k (in GOPs)

A
u
to

c
o
rr

e
la

ti
o
n

Sub−geometric

ρ(k+1) = ρ(k) − α
0.5

/E[S]

synthetic

Figure 3: ACF for the GOP sequence with a sub-geometric scene-length distribution (� = 0:8).

14



450 455 460 465 470 475 480 485 490 495 500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag k (in frames)

A
u

to
c
o

rr
e

la
ti
o

n

Shifted Exponential − Frame Level

synthetic

theoretic

Figure 4: ACF at the frame level based on a shifted exponential scene-length distribution (� = 1=49,

N = 12, M = 3).

15



ing and Communication, North Carolina State University, June 1997. (Available at

ftp://ftp.csc.ncsu.edu/pub/rtcomm/video.html).

[6] P. R. Jelenkovic, A. A. Lazar, and N. Semret. The e�ect of multiple time scales and subexpo-

nentiality in MPEG video streams on queueing behavior. IEEE Journal on Selected Areas in

Communications, 15(6):1052{1071, Aug. 1997.

[7] M. Krunz. The autocorrelation structure for a class of scene-based video models and its

impact on the queueing performance. Technical report CENG-99-01, University of Arizona,

Department of ECE, Jan. 1999.

[8] M. Krunz and A. Makowski. Modeling video tra�c using M/G/1 input processes: A com-

promise between Markovian and LRD models. IEEE Journal on Selected Areas in Communi-

cations, 16(5):733{748, June 1998.

[9] M. Krunz and S. K. Tripathi. On the characterization of of VBR MPEG streams. In Perfor-

mance Evaluation Review (Proceedings of the ACM SIGMETRICS '97 Conference), volume 25,

pages 192{202, June 1997.

[10] A. A. Lazar, G. Paci�ci, and D. E. Pendarakis. Modeling video sources for real-time scheduling.

Multimedia Systems Journal, 1(6):253{266, 1994.

[11] B. Melamed, D. Raychaudhuri, B. Sengupta, and J. Zdepski. TES-based video source modeling

for performance evaluation of integrated networks. IEEE Transaction on Communications,

42(10):2773{2777, Oct. 1994.

16


