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Abstract—Full-duplex (FD) radios have the potential to double
a link’s capacity. However, it has been recently reported that
the network throughput gain of FD radios over half-duplex (HD)
ones is unexpectedly marginal or even negative. This is because
both ends of each link transmit at the same time, a set of
concurrent FD links will experience more network interference
(hence, reduction in the spatial reuse). This article identifies the
unique advantages of FD radios and leverage multi-input multi-
output (MIMO) communications to translate the FD spectral
efficiency gain at the PHY level to throughput and power efficiency
gain at the network layer. To that end, we first study the
power minimization problem subject to rate demands in a FD-
MIMO network. Sufficient conditions under which the FD network
throughput can asymptotically double that of an HD network are
then established. These conditions also guarantee the existence
of a unique Nash Equilibrium that the game quickly converges
to. By capturing “spatial signatures” of other radios, a FD-
MIMO radio can instantly adjust its ongoing radiation pattern
to avoid interfering with the reception directions at other radios.
We exploit that to develop a novel MAC protocol that allows
multiple FD links to concurrently communicate while adapting
their radiation patterns to minimize network interference. The
protocol does not require any feedback or coordination among
nodes, but relies on the network interference perceived by these FD
radios. Extensive simulations show that the proposed MAC design
dramatically outperforms traditional FD-based CSMA protocols
and HD radios w.r.t. both throughput and energy efficiency. A
centralized algorithm for the FD network-wide transmit power
minimization problem is also developed. Simulations show that,
the proposed MAC protocol on average achieves almost the
same power efficiency as the centralized algorithm. Interestingly,
we even observe cases when the proposed distributed algorithm
outperforms the centralized approach.

Index Terms—Power efficiency, network throughput, full-duplex,
MIMO, beamforming, Nash equilibrium, optimization, MAC.

I. INTRODUCTION

Recent advances in self-interference suppression (SIS) al-
low a wireless device to transmit and receive simultaneously,
i.e., perform full-duplex (FD) communications, on the same
frequency [1] [2] and using the same antenna array [3] [4].
Over the last few years, various SIS techniques have been
demonstrated, including antenna cancelation, analog RF, and
digital cancelation (see [5] and references therein). Latest de-
velopments have successfully suppressed self-interference to the
noise floor level for both single [3] and multi-antenna (i.e.,
MIMO) [4] devices. The spectral efficiency of an FD link has
been shown to be nearly double that of a conventional half-
duplex (HD) link [3] [4]. However, at the network layer, it has
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been reported that the network throughput gain under FD radios
is unexpectedly marginal or even negative compared to HD-
based systems [6] [7] [8]. This article attempts to translate the
FD spectral efficiency gain at the link level into throughput and
energy/power efficiency gains at the network layer.

Unlike HD radios, both ends of an FD link transmit at the
same time. A set of mutually interfering FD links will now
experience increased network interference and subsequently,
severe reduction in spatial reuse. While previous works (e.g.,
[6] [7] [8]) identified the causes of throughput reduction in
a network of FD radios, they failed to answer the question
whether FD network throughput can be ever double that of HD.
If it is possible, then under what conditions? Seeking an answer
to this question is critical in designing efficient MAC protocols
for FD-based multi-user systems.

Fig. 1. Bidirectional link i is comprised of a left il and a right ir radio. From
the product of precoding and channel gain matrices from jl to ir (captured at
RF chains of ir) ir can infer SPs of information signal of link j (implicitly
embedded in precoding matrix of jl) and SPs of interference induced on jl
from ir (via channel reciprocity). il then can configure its radiation pattern to
reduce as much interference as possible on jr .

The FD capability not only improves the spectral efficiency
but also allows a wireless device to instantaneously discern the
medium while transmitting and instantly adjust its transmission
strategy. This was leveraged to combat hidden/exposed termi-
nals (in CSMA-based protocols) [9] or to improve the spectrum
sensing/awareness in opportunistic access systems [10]. For
MIMO communications, the interference/signal perceived by a
FD MIMO radio provides it with much detailed information
(other than just the busy/idle status about the medium): It helps
the node to partially infer “spatial signatures” (SPs) [11] [12]
of the information signals intended to other nodes as well as the
interference from the underlying node onto others. Specifically,
the SP of the mth data (or interfering) stream is the mth column
vector of the corresponding channel gain matrix, describing the
spatial direction along which the stream’s received power is
maximized1. Note that in FD communications where the same
antenna array is used to transmit and receive simultaneously [4],
channel reciprocity holds (i.e., the channel gain matrix on one

1In MIMO communcations, signal alignment can be realized via precoding, in
which the information symbol vector is pre-multiplied with a precoding matrix
before being placed on a Tx antenna array. A precoding matrix, or precoder,
is a matrix of complex elements whose phase and amplitude can be tuned to
govern radiation directions/beams of the signal [11].



direction is the transpose of that of the other direction). Hence,
as shown in Figure 1, the interference seen at the RF chains
of radio ir (product of interfering channel gain matrix from jl
to ir and jl’s Tx precoder) contains SPs of information signal
of link j (implicitly embedded in jl’s Tx precoder that is used
to align jl’s signal along link j’s SPs) and SPs of interference
induced on jl from ir (via channel reciprocity).

Knowing the above SPs together with the ability to adjust the
radiation pattern instantaneously (by tuning the phase and the
amplitude of elements of its precoding matrix), a FD MIMO
node can minimize its required Tx power and “be responsible”
for reducing as much interference as possible on others. This
ability does not exist in HD radios (where Tx and Rx have
to take turn) or single-antenna radios, which cannot control
their radiation beams. Note that existing works (e.g., [7] [8]
[9]) considered a protocol model that does not allow links to
coexist, and hence ignored the above advantage of FD MIMO
radios which in fact facilitates the concurrent FD transmissions.

To establish the conditions that guarantee the superiority of
FD over HD radios in a network setting, we consider the trans-
mit power minimization problem subject to rate constraints, in-
stead of the throughput maximization in [6] [7] [8]. Considering
the power minimization problem allows us to derive sufficient
conditions under which a set of rate demands can be met.
We can then identify sufficient conditions for the FD network
throughput to asymptotically reach twice that of a comparable
HD network. Note that due to interference, the network-wide
transmit power minimization problem is nonconvex. Hence,
even with the availability of global network information, solving
such a problem is prohibitively expensive. Existing approaches
[13] [12] that solve the power minimization problem subject
to SINR requirements for HD radios are inapplicable as our
problem involves coupling matrix operations.

We formulate a noncooperative game in which FD radios
are players who aim to meet their rate demands by optimizing
their precoders. Instead of simply minimizing transmit powers
as in HD radios, a FD radio minimizes the sum of transmit
powers on its antennas, weighted by the transpose of its in-
terference covariance matrix (perceived locally by the radio).
Following the approach in [14], using recession analysis [15]
and the variational inequality theory [16], we provide sufficient
conditions under which a Nash Equilibrium (NE) exists and a
set of rates can be met. We also prove that the NE is unique. At
this NE, if a network of 2N HD radios (N links) can achieve
a total throughput of dN bps (i.e., d bps per link), then with
FD capability, for the same network/channel realization, 2N FD
radios can achieve 2N(d−1) bps (i.e., (d−1) bps per direction
of a bidirectional link).

Simulations results show that for a given set of rate demands
the proposed approach is much more power-efficient than when
HD radios are used or when FDs do not exploit SPs. The
total network transmit power under our approach is way less
than N times that of the CSMA-based approach (where only
one link is allowed to use the medium at a time) while the
network throughput is N times higher. We also observe that the
game converges quickly to its NE, facilitating the design of a
practical MAC protocol (called FD-MAC). As a performance
benchmark, we develop a centralized algorithm for the FD
network-wide power minimization problem using augmented
Lagrangian method. Our major contributions are as follows:
• We establish sufficient conditions under which FD radios

can double the network throughput.

• We identify and exploit the unique advantages of FD radios
to allow for coexistence of multiple links. This is done by
having MIMO FD radios instantly discern the medium at
a finer level (i.e., spatial signatures of other radios) and
instantaneously adjust/adapt their radiation beams.

• We design an efficient MAC protocol for a network of
FD radios. The proposed FD-MAC protocol does not
require any feedback from or coordination between links,
as precoders are designed using only local information.
Via simulations, FD-MAC is shown to achieve almost the
same performance as its centralized version (which aims
to minimize the total network Tx power). FD-MAC yields
much higher energy efficiency and throughout gain than
that of CSMA-based approach as well as HD radios.

• We prove that there exists a unique NE to which FD-
MAC converges. Simulations show that that the proposed
distributed algorithm converges to this NE after a few
iterations.

We use (.)∗ to denote the conjugate of a matrix, (.)H for its
Hermitian transpose, tr(.) for its trace, |.| for the determinant,
and (.)T for the matrix transpose. diagm(.) indicates the diago-
nal element (m,m) of a matrix, and sum(.) gives the summation
of all elements of a vector. Matrices and vectors are bold-faced.

In Section II, we present the network model and problem
formulation. Conditions for the existence and uniqueness of
the NE and rate-demand satisfaction, optimal precoders, MAC
protocol are presented in Section III. The centralized algorithm
is developed in IV. Numerical results are discussed in Section V,
followed by concluding remarks in Section VI.

II. NETWORK MODEL

Consider an ad hoc network of N FD-MIMO links. Both ends
of each bidirectional link i operate simultaneously as transmitter
and receiver. We differentiate the two FD radios/nodes of link i
by denoting the left radio il and the right radio ir. Without
loss of generality, each node is equipped with M antennas
(our analysis and results are applicable to the case where nodes
have different numbers of antennas). The latest advances in SIS
(e.g., [4]) allow the M -antenna array at each radio to transmit
and receive simultaneously. Let Hrl

ii (Hlr
ii ) denote the M ×M

channel gain matrix of the left-to-right (right-to-left) direction
of link i. Due to channel reciprocity, Hrl

ii is the transpose of
Hlr
ii . Each element of Hrl

ii is a multiplication of a distance- and
frequency-dependent attenuation term and a random term that
reflects multi-path fading (complex Gaussian variables with zero
mean and unit variance). Let Hll

ij and Hlr
ij denote the M ×M

interfering channel gain matrices from the radios jl and jr of
link j on radio il of link i, respectively.

Let Gl
i and Gr

i denote the transmit precoding matrices at the
left il and right ir radios of link i, respectively. Let xri denote
the vector of transmit information symbols being placed on the
antennas of radio ir (for the right-to-left direction of link i).
The received signal vector yli at the antennas of radio il is:

yli = Hlr
iiG

r
ix
r
i+
√
gsisH

ll
iiG

l
ix
l
i+

N∑
j=1|j 6=i

(
Hll
ijG

l
jx
l
j + Hlr

ijG
r
jx
r
j

)
+No

(1)
where the first term is the intended signal, the second term
is the self-interference induced by transmit chains of radio il
(with gsis and Hll

ii being the self-interference suppression level
and self-interference matrix, respectively), the third and forth



terms represent interference from the left and right radios of
link j, and No is an M × 1 complex Gaussian noise vector
with identity covariance matrix I, representing the noise floor.
Let cli (cri ) denote the throughput received at the il (ir) radio of
link i. Treating interference from others radios as color noise,
we have:

cli = log |I + Gr
i
HHlr

ii

H
Ql
i

−1
Hlr
iiG

r
i |

cri = log |I + Gl
i

H
Hrl
ii

H
Qr
i
−1Hrl

iiG
l
i|

(2)

where Qr
i (Ql

i) is the noise-plus-interference covariance matrix
at radio ir (il):

Qr
i =I + gsisH

rr
ii Gr

iG
r
i
HHrr

ii
H

+

N∑
j=1|j 6=i

(
Hrl
ijG

l
jG

l
j

H
Hrl
ij

H
+ Hrr

ij Gr
jG

r
j
HHrr

ij
H
)
.

The network-wide power minimization problem subject to
radios/nodes’ rate demands dli (to be received by il) and dri (to
be received by ir) is stated as follows:

minimize
{Gl

i,G
r
i ,∀i}

N∑
i=1

{tr(Gl
iG

lH
i ) + tr(Gr

iG
rH
i )}

s.t. C1: dli ≤ cli, ∀i
C2: dri ≤ cri , ∀i

(3)

III. NONCOOPERATIVE GAME FORMULATION

A. Formulation

The network-wide power minimization problem (3) is not
convex, and hence is computationally expensive to solve even
in a centralized manner. Additionally, collecting network infor-
mation for (3) often requires excessive overhead. Existing works
on HD-based systems formulate strategic noncooperative games
where the players are transmitting nodes. A transmit precoder
G̃r
i of radio ir is found from:

minimize
{Gr

i }
tr(Gr

iG
rH
i )

s.t. dli ≤ cli.
(4)

similarly, the transmit precoder Gl
i of radio il can be found by

solving:
minimize
{Gl

i}
tr(Gl

iG
lH
i )

s.t. dri ≤ cri
As aforementioned, a FD radio, ir, can use its receive chains

to gauge how much interference its antennas induce on others.
Specifically, consider the transpose of the covariance matrix of
interference-plus-noise perceived by radio ir:

Qr
i
T = I+ gsis(H

rr
ii Gr

iG
r
i
HHrr

ii
H)T

+

N∑
j=1|j 6=i

(
(Gl

j

T
Hlr
ji)

H(Gl
j

T
Hlr
ji)+(Gr

j
THrr

ji )
H(Gr

j
THrr

ji )
)

Let:

Sri
def
= gsis(H

rr
ii Gr

iG
r
i
HHrr

ii
H)T

+

N∑
j=1|j 6=i

(
(Gl

j

T
Hlr
ji)

H(Gl
j

T
Hlr
ji)+(Gr

j
THrr

ji )
H(Gr

j
THrr

ji )
)
.

Sri contains spatial signatures of the interference signal
induced by radio ir onto radio jl (Hlr

ji) and radio jr (Hrr
ji ). Sri

also captures the SPs of information signal (Hlr
jj , Hrl

jj) intended
for radios jl and jr that are implicitly embedded in transmit
precoders Gl

j and Gr
j (as radio jl aligns its data streams with

the sub-channels directions of Hrl
jj while Hlr

jj = Hrl
jj
T ).

Intuitively, for an interfering channel, SPs capture the vul-
nerable directions that interference is most harmful. For an
information signal, SPs are directions along which the trans-
mit/receive beamformers should align the signal to maximize
the signal’s received power [11]2. Exploiting knowledge of other
nodes’ SPs that is learned while transmitting, an FD radio can
meet its rate demand while minimizing both transmit power and
interference induced on other radios. To that end, the precoder
of radio ir can be obtained from:

minimize
{Gr

i }
tr(Gr

iG
rH
i ) + tr(Gr

iS
r
iG

rH
i )

s.t. dli ≤ cli
(5)

where tr(Gr
iG

rH
i ) + tr(Gr

iS
r
iG

rH
i ) = tr(Gr

iQ
r
i
TGrH

i ) is
interpreted as the summation of transmit power and interference
caused by ir.

B. Nash Equilibrium Existence and Uniqueness

The two games (4) and (5) have identical strategic space,
defined as the union of all players’ strategic spaces [17], which
is shaped by rate constraints C1 and C2. We thus can focus
on analyzing the game (5), game (4) then follows by replacing
Qr
i
T in (5) with the identity matrix I.

Optimizing the precoder Gr
i of radio ir embodies computing

the optimal radiation directions and power allocation across ir’s
antennas. We can rewrite Gr

i as:

Gr
i = G̃r

i ×Pr
i
1/2 (10)

where G̃r
i is an M ×M unit-norm column matrix, controlling

radiation directions of radio ir. Pr
i is an M×M diagonal matrix

whose diagonal element Pr
i (m,m) is the power allocated on

mth data stream of radio ir.
Let pri

def
= [Pr

i (1, 1),Pr
i (2, 2), . . . ,Pr

i (M,M)] denote the
power allocation of radio ir for its various data streams.
Let p

def
= [pl1,p

r
1, , . . . ,p

l
N ,p

r
N ] ∈ R2NM

+ denote the power
allocation on all data streams of all (2N ) radios in the network.
Qr
i is positive definite, and so is its transpose. The objective

function in (5) is non-decreasing in every element of pri . Thus,
at a NE of the game (if one exists), the rate demand inequality
constraint becomes active (i.e., turns to equality). If not, the
radio is able to lower its transmit power and reduce the objective
function in (5) while fulfilling its rate demand. This defines a
feasible set for p, denoted by Pfeasible(d) in (6), corresponding
to a given requested rate profile d

def
= [dr1, d

l
1, . . . , d

r
N , d

l
N ] at a

NE. We first prove that if a rate demand profile can be supported
with a finite power vector p, then the game (5) admits at least
one NE.

Theorem 1: If all rate demands can be supported, then the
game (5) admits at least one NE.
Proof: If all rate demands can be met, the strategic space of
game (5) must be nonempty. Additionally, it can be verified
that the strategic space of each player (defined by the rate
constraint) in (5) is convex, as the achievable throughput is
concave w.r.t. a radio’s precoder. Since rate demands can be

2For example, the minimum mean square error (MMSE) receiver at jl is
capacity-optimal by setting its receive beamformer to Ql

j
−1

Hlr
jj [11]



supported with finite transmit powers, we can add technical
constraints on radios’ power budget. This makes these strategic
spaces compact. In short, the strategic space of (5) is nonempty,
convex, and compact. Moreover, the player’s payoff in the
objective function of (5) is convex. Hence, (5) admits at least
one NE [17]. �

For the existence of a NE, it suffices to find conditions
under which the feasible set Pfeasible(d) of p is nonempty and
bounded. This is formally stated in the following theorem:

Theorem 2: Let Γ be a 2N × 2N matrix that is defined in
(7). If Γ is a P-matrix3, then Pfeasible(d) ∈ R2NM

+ is nonempty
and bounded, and hence the game (5) admits at least one NE.
Proof: We first prove that Pfeasible(d) contains at least one
bounded vector p ∈ RNKM+ or the the rate remand can be met
with finite transmit power.

Lemma 1: Given that Γ is a P-matrix, there exists at least
one bounded vector p ∈ Pfeasible(d) ∈ R2NM

+ .
Proof: See Appendix A. �

Next, to show that Pfeasible(d) is bounded, we rely on the
concept of an asymptotic cone of a nonempty set in recession
analysis [15]. Specifically, for a nonempty set P ∈ RN+ , its
asymptotic cone, Pasymp, is comprised of vectors f ∈ RN+ ,
called limit directions. Each limit direction vector f is defined
through the existence of a sequence of vectors pn ∈ P and a
sequence of scalars νn tending to +∞ such that [15]:

lim
n→∞

pn
νn

= f . (11)

P is bounded if its asymptotic cone Pasymp = {0} [15]. To
show that Pfeasible(d) is bounded, it suffices to prove that its
asymptotic cone Pasymp(d) contains only the zero vector. The
asymptotic cone Pasymp(d) is formally defined in (8).

Since Pfeasible(d) has at least one bounded p (Lemma 1),
by the definition of limit directions, the vector zero 0 belongs
to its asymptotic cone Pasymp(d). We now construct a set P(d)
of which Pasymp(d) is a subset and prove that P(d) = {0} if
Γ is a P-matrix.

Lemma 2: If f ∈ Pasymp(d) then f belongs to P(d),
defined in (9).
Proof: See Appendix B. �

3A P-matrix is one of which all principal minors are positive [18].

Assuming that there exists at least one f 6= 0 and that f ∈
P(d), we have:

Γ× [tr(GlH
1 Gl

1), . . . , tr(GrH
N Gr

N )]T ≤ 0. (12)

As Γ is a P-matrix and [tr(GlH
1 Gl

1), . . . , tr(GrH
N Gr

N )]T is
a nonnegative vector, (12) implies that tr(GlH

i Gl
i) = 0 and

tr(GrH
i Gr

i ) = 0 ∀i [18] or f = 0. This contradicts the above
assumption. Hence, P(d) and its subset Pasymp(d) equal to
{0}. Theorem 2 is proved. �

Intuitions behind Theorem 2 can be drawn as follows. If the
diagonal elements of Γ are positive, then a sufficient condition
for Γ to be a P-matrix is |Γ(i, i)| ≥

∑
j 6=i
|Γ(i, j)| (i.e., row

diagonally dominant) [18]. Hence, the following inequality
guarantees that game (5) has at least one NE:

Mdet(HlrH
ii Hlr

ii )
1
M

gsistr(HllH
ii Hll

ii)+
N∑

j=1|j 6=i
(tr(HllH

ij Hll
ij)+tr(HlrH

ij Hlr
ij))

≥(2d
l
i−1),∀ i.

(13)

To better interpret inequality (13), let’s assume SIS is perfect
(i.e., gsis is sufficiently small to be neglected) and rewrite
Hlr
ii = 1√

slrii
n H̄lr

ii where n is the path loss exponent, siilr is

the transmission distance from radio ir to radio il, and H̄lr
ii

is a complex Gaussian matrix with with zero mean and unit
variance. Inequality (13) can be rewritten as:

Mdet(H̄lrH
ii H̄lr

ii )
1
M

N∑
j=1|j 6=i

(
slrii

n

sllij
n tr(H̄llH

ij H̄ll
ij) +

slrii
n

slrij
n tr(H̄lrH

ij H̄lr
ij))

≥ (2di
l

− 1) ∀ i.

(14)

The nominator of the LHS in (14) represents the strength of
the channel gain matrix from ir to il, while its denominator
describes the strength of (interfering) channel gain matrices
from all other radios jl and jr (j 6= i) on radio il. For the
game (5) to have at least one NE, the multi-user interference
should not be too strong. This is the case if the (transmission)
distance slrii between the il and ir is small enough compared
with (interfering) distances (sllij and slrij) between il and other
radios (other than ir), the channel gain matrix of link i is full-

Pfeasible(d)
def
=
{
p ∈ R2NM

+ |cli(p)
def
= log |I + GrH

i HlrH
ii Ql

i

−1
Hlr
iiG

r
i | = dli,∀ir, , il

}
(6)
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(7)

Pasymp(d)
def
=

{
f ∈ R2NM

+ |∃{pn} ∈ Pfeasible(d) and {νn} → +∞ so that lim
n→∞

pn
νn

= f

}
(8)

P(d)
def
=

f ∈ R2NM
+ |c′li(f)
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=log

1+ tr(GrH
i Gr

i )|HlrH
ii Hlr
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M tr(GlH
j Gl

j)+
tr(HlrH

ij Hlr
ij)
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(9)



rank (this is often the case in a rich-scattering environment) and
its requested rate is not too high. The acceptable multi-user in-
terference is explicitly quantified in (13), and is a function of the
rate demand dli of radio il. For higher rate demands, inequality
(13) becomes stringent, meaning that network interference must
be lowered.

Remark 1: The denominator of (14) captures the interfer-
ence channel gains from radios on both left jl and right jr sides
of all links j 6= i to il. If all FD radios choose to operate in HD
mode, e.g., all left radios Tx and all right radios Rx, then the
second term in the denominator should disappear. Consequently,
the denominator reduces roughly by one half. If (14) holds for
the new denominator for all radios with rate demands dri = d
and dli = 0 (as all left radios Tx) for all i, then when all radios
return to FD mode, (14) should also hold for all radios with
rate demands dri = d − 1 and dri = d − 1. This is because
(2d−1)

2 > 2d−1 − 1. The network throughput in the FD case
is then 2N(d − 1), which is asymptotically twice that of the
HD case (Nd). Hence, we can conjecture that if (14) holds
for all radios, network throughput can double with FD radios.
Conditions in (14) are also in line with the findings in [7] [8]
where the authors observed that FD radios outperforms HD ones
(in terms of network throughput) if network interference is mild
(i.e., interfering links are sufficiently separated from each other).
However, [7] [8] did not quantify how mild network interference
should be for FD radios to double the network throughput.

To analyze the uniqueness of the NE, we rely on variational
inequalities (VI) theory, casting (5) as a VI problem. A tutorial
on VI can be found in [16] and references therein.

Theorem 3: If game (5) has a NE, this NE is unique.
Proof: We prove that the mapping of the equivalent VI problem
of (5) is continuous uniformly-P function. Hence, if a NE exists,
it is unique. See Appendix C for details. �

Remark 2: The conditions in Theorem 2 or inequality (14)
are sufficient but not necessary. FD radios can still double
network throughput even when these conditions do not hold.
Theorem 3 indicates that (5) does not have multiple NEs. In
simulations, the game always converges to its unique NE as
long as the rate demands are not unreasonably high.

C. Best Response
The optimal precoder Gr

i of radio ir is obtained by solving
(5). Notice that (5) is convex, hence can be solved efficiently
with the interior-point method. To gain insights into how power
is allocated over ir’s antennas, we follow the approach in [19]
by using Hadamard inequality [20]. Specifically, the Lagrange
function of (5) is:
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r
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l
i) (15a)
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i GrH
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iiG
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iiE
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where γli , γri are nonnegative Lagrangian multipliers and
ḠrH
i = GrH

i Er
i with Cholesky decomposition QrT

i = Er
iE

rH
i .

The last inequality is obtained by applying Hadamard inequality
[20].

Problem (5) can be solved by finding the maximum of its
lower bound Lri (G̃

r
i , γ

l
i). Inequality (15b) becomes an equality

if there exists an orthonormal matrix Ḡr
i that diagonalizes

Er
i
−1HlrH

ii Ql
i
−1

Hlr
iiE

rH
i
−1. After a few manipulations, we can

prove that the optimal Gr
i must be in the form a generalized

eigen matrix of HlrH
ii Ql

i
−1

Hlr
ii and QrT

i . This is realized by
setting G̃r

i in (10) as a unit-norm generalized eigen matrix of
HlrH
ii Ql

i
−1

Hlr
ii and QrT

i . It follows from [21] that:
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where Πl
i and Ωr

i are diagonal matrices.
The Lagrangian Lri (G

r
i , γ

l
i) becomes:

Lri (G
r
i , γ

l
i) =

M∑
m=1

(diagm(Ωr
i )P

r
i (m,m)− γli log(1 + Pr

i (m,m)diagm(Πl
i))).

The optimal power for data stream m is obtained by equating
the derivative of Lri (G

r
i , γ

l
i) to zero. Accordingly:

Pr
i (m,m) = max

(
0, γli

1

diagm(Ωr
i )
− 1

diagm(Πr
i )

)
(17)

where the Lagrange multiplier γli is found (e.g., using bisection
search) to meet the rate demand dli.

From (17), more power is allocated on data streams with
lower diagm(Ωr

i ) and higher diagm(Πr
i ). This means more

power is allocated to higher-gain streams and less power on
directions that cause higher interference to others.

D. MAC Protocol

We briefly present a MAC protocol, called FD-MAC, that
implements the game (5) in a distributed fashion. Unlike
typical CSMA-based protocols, FD-MAC exploits information
perceived by FD radios to enable concurrent transmissions on
multiple links. Each transmission session in FD-MAC consists
of two phases: a training phase and a data transmission phase.
In the first phase, an FD radio A with packets to send transmits
a hand-shaking message (HSK), containing a training sequence
for CSI estimation purposes to rendezvous with its intended
radio B. HSKs are sent at the lowest rate, referred to as a base
rate, so as to improve the chance it is successfully decoded.

As each FD radio can transmit and receive at the same time
and a two-way channel exists between the two radios of a
bidirectional link, FD radios of a link can instantaneously update
each other regarding CSI as well as noise-plus-interference
covariance matrix. This information is needed to solve (5). If
either A or B fails to transmit or receive at the base rate to hand-
shake with its intended partner, it then holds off for a random
duration before trying again. Upon receiving an HSK, radio B
replies with a message to trigger the training process by solving
problem (5) to achieve the rate demand. The data transmission
phase ensues with multiple packets. Note that under FD-MAC,
radios of different links do not need to coordinate or exchange
any signalling packets, and precoders are computed using only
local information.

To ensure that the training phase in FD-MAC is not too long,
the iterating process should converge after a reasonable time.
Although we cannot prove the convergence of the game (5)
under arbitrary/asynchronous updates, simulations show that the
game converges even if some radios sporadically skip updating



their precoders. The following theorem claims the convergence
of the game to its unique NE under sequential (Gauss-Seidel)
iterations.

Theorem 4: Under the sequential (Gauss-Seidel) iterations,
the game (5) converges to its NE.
Proof: We can follow the routine in [22] [23] to construct a
Lyapunov function of the precoding matrices and show that this
function is non-increasing and lower-bounded. The convergence
point must be a NE; otherwise one user can still unilaterally
reduce its transmit power and that violates the convexity of (5).
�

IV. NETWORK-WIDE PROBLEM

To seek a performance benchmark, in this section, we use
the augmented Lagrange multiplier method [24] to derive the
centralized algorithm for the network-wide problem (3). The
augmented Lagrange of (3) is given in (20), where qli

def
= dli−cli,

qri
def
= dri − cri . p is a positive penalty factor for violating rate

constraints. At an optimal solution, (21) holds.
Since qlj is continuously differentiable w.r.t every entry of

G̃r
j , the third and fourth terms in (21) are also continuously

differentiable [24]. Their derivatives are as follows:
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We use the gradient search algorithm with Armijo step size
[24] to find (Gl

i,G
r
i , γ

l
i, γ

r
i , p) such that (21) holds for all

radios. The running time can be high as it involves NM2

complex variables (or 2NM2 real ones).

V. SIMULATIONS RESULTS

We numerically evaluate the performance of the above cen-
tralized and distributed algorithms using MATLAB simulations.
We compare total network power required to meet a given
set of rate demands of the centralized algorithm with that of
distributed algorithms when FD-capability in capturing spatial
signatures is exploited (game (5), FD-MAC) and not exploited
(game (4), namely “without SPE”). We also compare total
required power under the proposed FD-MAC protocol with that
when FD links take turn to access the channel (i.e., CSMA-
based protocols). 8 pairs of radios are randomly placed in a field
of 500×500 m2. Each radio has 4 antennas. Channel bandwidth
is 20 MHz. Noise floor is set as −90dBm/Hz. The channel
fading is flat with a free-space attenuation factor of 2. All
algorithms have identical initializations of precoding matrices.

Figure 2 shows snapshots of radiation patterns of FD radios
under different algorithms (at their converged points). As can
be seen, when radios cooperate so that (3) can be solved in
a centralized manner, we visually notice that FD radios try to
steer their beams away from other unintended ones. This is also
observed when SPs are exploited in the distributed FD-MAC
algorithm when nodes minimize their Tx power weighted by
SPs of others. Interestingly, the beam patterns of the distributed
FD-MAC are quite similar to that of the centralized algorithm,
suggesting the efficiency of using SPs. These two algorithms
seem induce less network interference, compared with beam
patterns of the case when SPs are not exploited (game (4)).

Fig. 3. Total network transmit power under different algorithms for rate demand
of 40 Mbps per radio.

Figure 3 depicts total network transmit power required when
all radios demand a rate of 40 Mbps (i.e., 2 bps/Hz). Notice that
the CSMA-based approach where FD links take turn to access
the medium (i.e., only one FD link operates at a time) requires
the least Tx power. This is because in such cases, a link does not
need to cope with interference from others, but at the expense
of the lowest network throughput (equals to that of one FD
link’s, 80 Mbps). The proposed FD-MAC algorithm converges
after about 9 iterations and consumes almost the same (barely
higher than) as total power under the centralized algorithm. This
seems to agree with the radiation behavior observed in Figure
2. Compared with the CSMA-based approach, by advocating
concurrent links’ transmission, FD-MAC requires about 5 times
higher Tx power but attains 640 Mbps network throughput (8
times higher). This gain is very significant due to the fact that
throughput/rate does not scale w.r.t. transmit power.

FD-MAC outperforms CSMA approach as a link does not
give up when the medium is busy. Instead, it proceeds but
in a responsible/careful way by exploiting SPs to minimize
interference to ongoing transmissions. We also observe that for
the same amount throughout 640 Mbps, if SPs are not exploited,
the required transmit power is 77.4 W (compared to 13.1 W
under FD-MAC).

Fig. 4. Convergence of transmit power at different links under FD-MAC.



(a) Centralized Algorithm (b) FD-MAC with SPE (c) Without SPE
Fig. 2. FD radios’ antenna patterns under the centralized, distributed FD-MAC (exploiting SPs), and without exploiting SPs algorithms.

Fig. 5. Convergence of transmit power at different links when SPEs are not
exploited (game (4)).

The convergence of Tx power for different links under FD-
MAC is shown in Figure 4. We notice that links’s Tx power
under FD-MAC converge with different speeds (to the NE) but
all intermediate Tx powers are in range close to Tx power under
the CSMA-based approach (Table I). This is critically important
as FD radios need to sustain before reaching it unique NE. If
intermediate Tx power are excessive e.g., higher than nodes’
power budget (like the case when SPs are not exploited, in
Table I and Figure 5), nodes can not follow the game to reach
its NE, even the NE can be very power efficient later. Figures
V and 5 (and Table I) show that by being responsible for their
interference (using (5) instead of (4)) all links can reduce their
Tx power. It is also seen that radios of game (4) (in Figure 5)
take long time to converge, compared with (5) (in Figure 4)
as higher network interference makes them more dependent on
each other and need more time to “negotiate”.

Figure 6 compares the total transmit power of HD v.s. FD
radios (under FD-MAC) when the rate demand is 40 Mbps for
both directions of a FD link and one direction of HD link (the
other direction’s rate is 0). It is clear that we intend to have FD
radios to produce double network throughput over HD radios
but FD radios require only more than three times power than

TABLE I
LINKS’ TX POWER (IN WATTS).

Links HD CSMA-based FD-MAC without SPE
1 1.45 0.856 2.66 14.2
2 0.0.46 0.744 1.08 1.44
3 0.39 0.29 1.32 16.2
4 0.73 0.268 1.89 12.6
5 0.24 0.327 1.01 7.3
6 0.26 0.46 1.96 10.62
7 0.322 0.43 0.88 1.9
8 0.642 0.63 2.87 13.1

Fig. 6. Total transmit power of HD v.s. FD radios for a rate of 40 Mbps per
link.

HD radios. Note that for a single FD link, double Tx power is
required to double the link throughput. Moreover, as throughput
is not in linearly (but asymptotically in log) scale w.r.t. to Tx
power, FD radios’ doubling throughput at the expense of more
than three time Tx power is very precious.

VI. CONCLUSIONS

By investigating the transmit power minimization problem of
a FD MIMO network subject to rate demands, we established
conditions under which FD radios can double the network
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throughput over HD ones. These conditions quantify exactly
the level of network interference that allows multiple FD ra-
dios/links can efficiently co-exist. Consequently, we developed a
novel MAC mechanism that advocates concurrent transmissions
of FD links while exploiting unique advantages of FD radios
(in learning radio medium at a much finer level than just
carrier sensing and the ability to instantaneously adjust/adapt
transmission behavior) to reduce network interference (that, in
return, facilitates FD links’ co-existence). The developed MAC
is fully distributed and converges to a unique NE whose efficacy
is almost the same as that of the centralized algorithm.
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APPENDIX A
PROOF OF LEMMA 1

We first introduce the following proposition:
Proposition 1: Let P ∗ = tr(GrH

i Gr
i ) and cl∗i = dli be the

transmit power by radio ir and the throughput received by radio
il at a NE of the game (5), then this precoder Gr

i is also a
solution to:

maximize
{Gr

i }
cli

s.t. tr(GrH
i Gr

i ) ≤ P ∗.
(24)

Proof: If Gr
i is not a solution to problem (24) then there exists

a precoder Ḡr
i that requires at most power of P ∗ but achieves a

rate c̄li > dli. In other words, it is possible for radio ir to reduce
its transmit power to achieve a rate of dli. This contradicts to
the fact that Gr

i is the optimal solution of ir at the NE where
no one benefits (i.e., transmit at lower power) from unilaterally
changing their strategies. Thus, Gr

i must be a solution of (24).
�

From the definition of Pfeasible(d) (6), we have the following
inequality ∀i radios:
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where the (25a) comes from the Proposition 1. The RHS
of (25b) is a lower-bound of the rate cli in problem (24),
obtained by allocating all power tr(GrH

i Gr
i ) on the subchannel

eigmax(HlrH
ii Ql

i
−1
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ii ) and zero power on others.

Besides, let Vl
ii be the unitary matrix that diagonalizes matrix
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i contain eigenvalues
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Then we have equations (27b),(27c),(27d),(27e). (27b) fol-
lows by recalling the noise-plus-interference covariance matrix
on the LHS of (26b) and applying the identity tr(A)

n ≥ |A|1/n
[21] (for any n×n positive semi-definite matrix A) to the RHS
of (26b). (27d) follows from applying the identity tr(AB) ≤
tr(A)tr(B) to the LHS of (27c).

From inequalities (27e) and (25b), we get (27a). We then
have:
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N ), tr(GrH
N Gr

N )]T .

where the inequality (28a) comes from the assumption Γ is a
P-matrix, hence invertible [18].

Hence the RHS in (28a) is bounded or rate demands can be
fullfilled with a bounded power allocation vector p. In other
words, Pfeasible(d) contains at least one bounded p. �

APPENDIX B
PROOF OF LEMMA 2

For f ∈ Qasymp(d), by the definition of limit directions,
sequences {pn} and {νn} exist so that we have (27f). Then,
(27g), (27h), and (27i) follow from (27e), (10), and the defini-
tion of d, respectively. Lemma 2 is proved. �
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Variational Inequality (VI) problem: [16] Given a subset
K of the Euclidean n-dimensional space Rn and a mapping
F : K→ Rn, a VI(K,Rn) problem is to find a vector xopt ∈ K
so that:

(x− xopt)TF (xopt) ≥ 0, ∀x ∈ K. (29)

If the set K has a Cartesian structure, i.e., K = K1×K2×. . .×
KN (where Ki ∈ Rni and

N∑
i=1

ni = n), we have the following

theorem regarding the existence and uniqueness of a solution
to the above VI problem [16].

Theorem 5: If set K has a Cartesian structure, the
VI(K,Rn) problem has a unique solution xopt provided Ku
is closed and convex and F is continuous uniformly-P function,
i.e, there exists a positive constant α such that:

max
{1≤i≤N}

(xi − x′i)
T (F (xi)− F (x′i)) ≥ α‖xi − x′i‖

2
,

∀xi,x′i ∈ Ki.
(30)

To cast the game (5) as a VI problem, we use the vec()
operator in (22) to map the complex matrix in (5) to the
Euclidean domain, by stacking columns (from left to right) of
an m× n matrix to form an mn× 1 vector. The gradient of a
matrix function (.) w.r.t Gr

i is in (23).
If the condition in Theorem 2 holds, the strategic space of

player ir, denoted by Qri ∈ CM×M , is nonempty. Moreover, it
can be verified that Qri is convex and bounded. Hence, problem

(5) is convex. The following inequality captures the necessary
(and also the sufficient) condition for strategy Ĝr

i to be the
optimal response:

(Gr
i − Ĝr

i ) • ∇Uri ≥ 0 ∀Gr
i ∈ Qi (31)

where A •B
def
= vec(A)T vec(B) and Uri

def
= tr(Gr

iQ
r
i
TGrH

i )

Define Q def
= Ql1 ×Qr1 . . . QlN ×QrN and F def

= F l1 × F r1 . . .×
F lN×F rN with F li

def
= ∇U li . By comparing (31) with the definition

of a VI problem, the set Ĝ
def
= [Ĝl

1 × Ĝr
1 . . .× Ĝl

N × Ĝr
N ] is a

NE of the game (5) iff Ĝ is a solution of the VI(Q,F ) problem.
Let G

def
= [Gl

1×Gr
1 . . .×Gl

N×Gr
N ] and Ĝ

def
= [Ĝl

1×Ĝr
1 . . .×

Ĝl
N × Ĝr

N ] be two different strategy sets of the strategic space
Q of the game (5), then:

F (Ûr
i ) = [(Sri + I)Ĝr

i ] (32)

Consequently:

vec(Ĝr
i −Gr

i )
T vec(F (Ĝr

i )− F (Gr
i ))

≥ eigmin(Sri + I)||vec((Ĝr
i −Gr

i ))||2
(33)

where (33) follows from the fact that ||Aa|| ≥ eigmin(A)||a||.
Since Sri + I is positive definite, eigmin(Sri + I) > 0. Hence,

VI(Q, F̄ ) problem or game (5) has a unique NE. �


