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Abstract| The objective of this paper is to demonstrate

the limitations of the variance-time (VT) test as a statistical

tool for inferring long-range dependence (LRD) in network

tra�c. Since the early Bellcore studies [7], [16], LRD has

been in the center of a continuous debate within the teletraf-

�c community. The controversy is typically focused on the

utility of LRD models to predict the performance at network

bu�ers. Our work here is not meant to advocate one model-

ing approach over another, but to point out (experimentally

and theoretically) to the caveats in using the VT test as a

tool for detecting LRD. We do that by deriving simple ana-

lytical expressions for the slope of the aggregated variance in

three autocorrelated tra�c models: M=G=1 process (short-

range dependent (SRD) but non-Markovian), the discrete

autoregressive of order one model (SRD Markovian), and

the fractional ARIMA process (LRD). Our main result is

that the VT test often indicates, falsely, the existence of

an LRD structure (i.e., H > 0:5) in synthetically generated

traces from the two SRD models. The bias in the VT test,

however, diminishes monotonically with the length of the

trace. We provide some guidelines on selecting the mini-

mum trace length so that the bias is negligible.

I. Introduction

One of the controversial issues in current teletra�c re-

search is the relevance of tra�c correlations to the di-

mensioning of network resources (bu�er and bandwidth).

While researchers, in general, agree on the importance of

correlations, they still disagree on how many of these cor-

relations should be captured in a tra�c model [10], [11],

[23]. Earlier tra�c models are Markovian in nature, with

an autocorrelation function (ACF) that drops o� expo-

nentially. Examples of these models are the autoregres-

sive moving-average (ARMA) models, Markov Arrival pro-

cesses (MAP), Markov modulated processes, etc. (see [8],

[1], [17] for surveys of tra�c models). Markovian models

exhibit an exponentially decaying autocorrelation struc-

ture, which makes them short-range dependent (SRD).

An SRD model is one for which the ACF is summable,

i.e.,

P

k

�

k

< 1. Note, however, that an SRD model is

not necessarily Markovian. In fact, several types of non-

Markovian SRD models have been recently studied in the

literature, including the M=G=1 process [19], [14] and a

class of (subexponential) path-based Markov renewal pro-

cesses [12], [15]. The interest in such models is related to

their ability to produce a wide range of correlation struc-

tures, including, as extreme cases, both Markovian and

LRD structures.
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The debate on the signi�cance of tra�c correlations was

spurred by studies conducted at Bellcore and elsewhere,

which indicated the existence of persistent correlations in

various types of network tra�c, including LAN Ethernet

[7], [16], WAN [21], and variable-bite-rate (VBR) video

tra�c [3], [9]. It was argued that such persistence can be

adequately captured by LRD models, for which the ACF

decays slowly (typically as a power function) to the ex-

tent that the correlations now have an in�nite sum, i.e.,

P

k

�

k

= 1. The LRD phenomenon has long been ob-

served in other domains such as hydrology and economics

[13]. In teletra�c studies, advocates of LRD argue that

such a phenomenon has signi�cant impact on network per-

formance, and thus must be accounted for when dimen-

sioning network resources. On the other side, advocates

of Markovian modeling, while acknowledging the presence

of such a phenomenon, argue that for networks with �-

nite bu�ers it is su�cient to incorporate correlations up to

some critical lag that depends on the bu�er size and the

bandwidth capacity [10], [11], [23].

Foremost, the statistical evidence supporting LRD was

based on the estimated value of the Hurst (H) parame-

ter, which is between 0.5 and 1 for LRD models. Several

statistical tests have been used to estimate the H param-

eter, including the R/S statistic, periodogram-based anal-

ysis (i.e., Whittle's estimator), and the VT test (see [2],

for example). In this paper, we consider the VT test. Our

main goal is study the accuracy of this test. In particular,

we show that such a test can give misleading indication

about the true SRD/LRD nature of a given time series,

despite the availability of many data points. The bias in

the VT estimate has been noted before [5], [24] through

empirical studies, but the focus has been mainly on the

bias caused by jumps in the mean of the SRD process or

by slow deterministic trends [25]. Instead, our focus here is

on SRD processes (often, non-Markovian) with a constant

mean and no trends. We provide analytical evidence of the

bias in such processes. Our results are applied to three pro-

cesses with di�erent correlation structures: M=G=1 pro-

cess (SRD but non-Markovian), fractional ARIMA (LRD),

and the discrete autoregressive of order one model (SRD

Markovian). It should be emphasized that our work is not

meant to advocate one model over another, but to point

out to the caveates in using the VT test for inference of

LRD and to provide guidelines on the required number of

data points for which the test is credible.



The rest of the paper is structured as follows. In Sec-

tion II we briey describe the three processes that are used

in our study. The aggregated variance for each of these

processes is derived in Section III. In the same section,

we discuss the limitations of the VT test. The paper is

concluded in Section IV.

II. Autocorrelated Processes

A. M=G=1 Input Process

The M=G=1 process is the busy-server process of a

discrete-time M=G=1 queue. It can be constructed as fol-

lows (see [14], [19] for details). Start with a discrete-time

M=G=1 queue. During time slot [n; n+ 1) (n = 0; 1; : : :),

�

n+1

new customers arrive into the system. Customer j,

j = 1; : : : ; �

n+1

, is presented to its own server, which be-

gins its service by the start of slot [n + 1; n + 2), with a

service time �

n+1;j

(in number of slots). Let b

n

denote

the number of busy servers, or equivalently, the number

of customers present in the system at the beginning of

time slot [n; n + 1), with b

0

being the initial number of

customers present in the system. It is assumed that the

IN{valued random variables (rvs) b

0

, f�

n+1

; n = 0; 1; : : :g,

f�

n;j

; n = 1; 2; : : : ; j = 1; 2; : : :g and f�

0;j

; j = 1; 2; : : :g

satisfy the following assumptions: (i) they are mutually in-

dependent; (ii) f�

n+1

; n = 0; 1; : : :g are i.i.d. Poisson rvs

with parameter � > 0; (iii) f�

n;j

; n = 1; : : : ; j = 1; 2; : : :g

are i.i.d. rvs with common pmf G on f1; 2; : : :g. Let � be

a generic IN{valued rv distributed according to the pmf G;

assume that E [�] <1. Then, the M=G=1 input process

is simply the busy-server process fb

n

; n = 0; 1; : : :g.

Although fb

n

; n = 0; 1; : : :g is in general not a (strictly)

stationary process, it does admit a stationary and ergodic

version, fb

?

n

; n = 0; 1; : : :g, that can be constructed by

taking: (i) b

0

to be Poisson distributed with parameter

�E [�]; (ii) f�

0;j

; j = 1; 2; : : :g to be i.i.d. rvs distributed

according to the forward recurrence time �̂ associated with

�. The pmf of �̂ is given by

P [�̂ = r]

def

=

P [� � r]

E [�]

; r = 1; 2; : : : (1)

Based on the above construction, several useful properties

of the stationary version fb

?

n

; n = 0; 1; : : :g are readily

obtained [18]:

(i) For each n = 0; 1; : : :, the rv b

?

n

is a Poisson rv with

parameter �E [�];

(ii) The ACF of fb

?

n

; n = 0; 1; : : :g is given by

�

k

= P [�̂ > k] ; k = 0; 1; : : : (2)

By varying G, the process fb

�

n

; n = 0; 1; : : :g can display

various forms of positive autocorrelations, the extent of

which is controlled by the tail behavior of G.

To close this section, we point out that the process

fb

?

n

; n = 0; 1; : : :g can induce both SRD and LRD behav-

iors: From (2), it follows readily [20] that

1

X

k=0

�(k) = E [�̂] =

1

2

+

E

�

�

2

�

2E [�]

: (3)

Consequently, the process fb

�

n

; n = 0; 1; : : :g is LRD (resp.

SRD) if and only if E

�

�

2

�

is in�nite (resp. �nite). In

particular, the M jGj1 input tra�c will be LRD when G

is Pareto, with a shape parameter in the interval (1; 2) [4].

B. Discrete Autoregressive of Order One Process

The DAR(1) process is a popular Markovian (hence,

SRD) model that has been used to characterize video tele-

conferencing tra�c [6]. This process can exhibit any arbi-

trary marginal distribution. Its autocorrelation structure is

similar to that of the common AR(1) process. To generate

a DAR(1) process, we start with two mutually indepen-

dent random sequences fV

n

: n = 1; 2; : : :g and fY

n

: n =

1; 2; : : :g. The sample space for fV

n

: n = 1; 2; : : :g is f0; 1g,

and its marginal distribution is given by:

Pr[V

n

= i] =

�

r; if i = 1

1� r; if i = 0

for n = 1; 2; : : :. The process fY

n

: n = 1; 2; : : :g is re-

newal with an arbitrary but countable sample space S

Y

.

Its marginal distribution is de�ned by:

Pr[Y

n

= i]

def

= �

i

; for all i 2 S

Y

Then, the DAR(1) process fX

n

: n = 1; 2; : : :g is de�ned

as follows:

X

n

= V

n

X

n�1

+ (1� V

n

)Y

n

; n = 1; 2; : : : (4)

It is easy to show that fX

n

: n = 1; 2; : : :g constitutes a

Markov chain with an autocorrelation structure of the form

�

k

= r

k

for k = 0; 1; : : :.

C. Fractional ARIMA Process

The last process that we will examine is the popular frac-

tional ARIMA(0; d; 0) process. This LRD Gaussian process

was proposed as a basis for modeling VBR video tra�c [9].

Its ACF is given by

�(k) =

d(1 + d) � � � (k � 1 + d)

(1� d)(2� d) � � � (k � d)

; k = 1; 2; : : : (5)

where 0 < d < 0:5 is the fractional di�erencing parameter

given by d = H � 1=2. As k ! 1, �

k

behaves as k

��

,

where � = 2 � 2H . See [9] for details on how to generate

synthetic F-ARIMA traces.

III. Analysis of Aggregated Variance

Consider a second-order stationary process fX

n

: n =

1; 2; : : :g with mean X and variance v. Let C

k

def

=

cov(X

n

; X

n+k

) = E

�

(X

n

�X)(X

n+k

�X)

�

. The ACF is

de�ned as �

k

def

= C

k

=v, for k = 0; 1; : : :. For m = 1; 2; : : :,

let

X

(m)

n

def

=

P

nm

i=nm�m+1

X

i

m

; n = 1; 2; : : : (6)

so that fX

(m)

n

g is an averaged version of fX

n

g, with the

averaging taken over non-overlapping blocks of length m.



The variance of the new time series is given by:

v

m

def

= var(X

(m)

n

) =

v

m

+

2

m

2

m�1

X

p=1

p

X

q=1

C

q

(7)

We will refer to v

m

as the aggregated variance at levelm. If

fX

n

g is an LRD process, then it must satisfymv

m

!1 as

m!1. More speci�cally, for an LRD process v

m

� m

��

when m is large, where 0 < � < 1 is the same parame-

ter de�ned above. For an SRD process, � � 1. To test

whether a given time series is LRD or not, the empirical

VT test proceeds by plotting log(v

m

=v) versus logm for

various aggregation levels m. The asymptotic slope of the

plot is then taken as an estimate of ��. If � < 1, the

empirical sequence is believed to exhibit LRD. As an ex-

ample, the VT plot for the Star Wars trace is shown in

Figure 1. Its asymptotic slope, ignoring aggregation levels

smaller than 100, is estimated by least-square method to

be 0.43, roughly in agreement with the numbers in [3] and

[9].

Next, we obtain analytical expressions for the slope of

the VT plot in the three examined processes.

A. Aggregated Variance in the M=G=1 Model

Let fX

n

: n = 1; 2; : : :g be an M=G=1 process with an

ACF of the form �

k

= e

��

p

k

. A process with such an

ACF has been used in modeling JPEG video tra�c [14].

It is clearly a SRD process since

P

k

�

k

< 1. With this

choice of the ACF, the service-time distribution (G) has

a Weibull-like form. Now consider the aggregated process

fX

(m)

n

: n = 1; 2; : : :g for m = 1; 2; : : :. The normalized

aggregated variance of this process can be written as [4]:

ev

m

def

=

v

m

v

1

=

1

m

+

2

m

2

m

X

k=1

(m� k)�

k

(8)

Since m is discrete, the instantaneous slope of the curve

that describes log ev

m

as a function of logm is de�ned by

the �rst di�erence:

s

m

def

=

log ev

m+1

� log ev

m

log(m+ 1)� logm

(9)

Without loss of generality, we assume that all logarithms

are to the base ten. Note that in the empirical VT test, s

m

is replaced by its average value that is obtained using least

square �tting. Figure 2 depicts ev

m

, obtained using (8),

versus m when �

k

= e

��

p

k

. Using (9), the corresponding

s

m

is shown in Figure 3. Clearly, s

m

converges very slowly

to �1. In fact, even at an aggregation level of m = 8000,

�s

m

is still smaller than one. Have we not known in ad-

vance that the underlying process is SRD, we would have

mistakenly decided (based on the VT test) that the data

exhibit LRD behavior.

Instead of relying on (8) and (9) to obtain s

m

, we now

provide an almost exact closed-form expression for s

m

. To

do that, we allow m to take any nonnegative real value. To

distinguish it from its discrete-time counterpart, we indi-

cate the variance of the aggregated series in the continuous

case by

e

v

�

, which is given by [4]:

e

v

�

m

=

2

m

2

Z

m

0

(m� h)�

h

dh =

2

m

2

Z

m

0

(m� h)e

��

p

h

dh

(10)

Equation (10) can be written as follows:

e

v

�

m

=

2

m

2

�

m

Z

m

0

e

��

p

t

dt�

Z

m

0

te

��

p

t

dt

�

= e

��

p

m

�

8

�

2

m

+

24

�

3

m

p

m

+

24

�

4

m

2

+

4

�

2

m

�

24

�

4

m

2

�

(11)

Note that as m ! 1,

e

v

�

m

� 4=(m�

2

) = O(1=m), as

expected. The plots of

e

v

�

m

versus logm (not shown) were

found indistinguishable from those in Figure 2. Hence, it

su�cies to use

e

v

�

m

in place of ev

m

. Next, we obtain the

slope of

e

v

�

m

de�ned as:

s

�

m

def

=

d(log

e

v

�

m

)

d(logm)

=

m

e

v

�

m

d

e

v

�

m

dm

(12)

With some basic algebraic manipulations, it is easy to show

that:

d

e

v

�

m

dm

= e

��

p

m

�

�20

�

2

m

2

�

48

�

3

m

2

p

m

�

48

�

4

m

3

�

4

�m

p

m

�

�

4

�

2

m

2

+

48

�

4

m

3

(13)

from which, we conclude that

s

�

m

=

e

��

p

m

h

�20

�

2

m

�

48

�

3

m

p

m

�

48

�

4

m

2

�

4

�

p

m

i

�

4

�

2

m

+

48

�

4

m

2

e

��

p

m

h

8

�

2

m

+

24

�

3

m

p

m

+

24

�

4

m

2

i

+

4

�

2

m

�

24

�

4

m

2

(14)

As m!1, s

�

m

! �1, as expected. From the concavity of

e

v

�

m

, it readily follows that

j s

�

m

j<j s

m

j<j s

�

m+1

j (15)

Let em

def

= �

p

m. Then, (14) can be written as a function of

em:

s

�

m

=

e

�em

h

�20

em

2

�

48

em

3

�

48

em

4

�

4

em

i

�

4

em

2

+

48

em

4

e

�em

h

8

em

2

+

24

em

3

+

24

em

4

i

+

4

em

2

�

24

em

4

(16)

The plot of s

�

m

versus em is shown in Figure 4. From this

�gure, it can been seen that the absolute value of the slope

of the analytically obtained VT plot is always less than

one for a �nite em. This critical observation implies that

when applied to traces of an SRD M=G=1 process with

�

k

= e

��

p

k

, the VT test will always indicate, wrongly, the

presence of an LRD structure irrespective of the length of



these traces. Only when such traces are of in�nite length,

the slope of the VT plot will be �1. If for the sake of

empirical approximation, one is to take j s

�

m

j� 0:95 as an

indication of SRD, then in this case we must have em � 11:2.

If � = 0:05 (which is a typical value for video sequences

�tted using anM=G=1 model with �

k

= e

��

p

k

[14]), then

we need at least 50176 data points to correctly infer that

the data exhibit SRD.

B. Aggregated Variance in the DAR(1) Model

Next, we consider the DAR(1) process. Substituting the

expression for the ACF, �

k

= r

k

, in (8), and after some

straightforward manipulations, we obtain:

ev

m

=

1

m

+

2

m

2

�

r(r

m

�mr +m� 1)

(r � 1)

2

�

(17)

As m ! 1, ev

m

� (1 + 2r=(1 � r))=m, which is, as

expected, O(m). By substituting the values for ev

m

and

ev

m+1

in (9), we can plot the �rst-order di�erence s

m

versus

m, as shown in Figure 5. Note that when r is close to one,

the convergence of s

m

to �1 becomes very slow. We will

come back to this issue later in this section.

Next, we provide a closed-form expression for s

�

m

, the

continuous version of s

m

, which was de�ned in (12). By

substituting �

h

= r

h

in (10) and after some manipulations,

we arrive at the following expression for

e

v

�

m

:

e

v

�

m

=

2

m

2

�

r

m

�m ln r � 1

(ln r)

2

�

(18)

where ln(:) is the natural logarithm. As m ! 1 (with

r < 1),

e

v

�

m

� �2=(m ln r), which is O(1=m). As in the

case of the M=G=1 model, the VT plots for the DAR(1)

model in the continuous case are almost indistinguishable

from their dicrete-parameter counterparts. For brevity, we

only show the plots in the continuous case (Figure 6).

Di�erentiating

e

v

�

m

in (18) with respect to m, we obtain

d

e

v

�

m

dm

=

2

(ln r)

2

(m ln r � 2)r

m

+m ln r + 2

m

3

Hence, from (12) s

�

m

for the DAR(1) model is given by

s

�

m

=

(m ln r � 2)r

m

+m ln r + 2

r

m

�m ln r � 1

(19)

As m ! 1, s

�

m

! �1, as expected. The speed of conver-

gence of s

�

m

is this case is rather fast due to the fast decay

of the geometric terms in (19). To get an idea about how

many data points are su�cient to infer SRD/LRD, we �rst

rewrite (19) in terms of the variable x

def

= r

m

as follows:

s

�

m

=

(lnx� 2)x+ lnx+ 2

x� lnx� 1

(20)

Figure 7 depicts the plot of s

�

m

as a function of x. As x! 0,

s

�

m

converges to �1. However, as x ! 1, s

�

m

approaches

zero! So the utility of the VT test as an indicator of the

SRD structure of the DAR(1) model, or any Markovian

model to that extent, depends on the value of x = r

m

.

For a �xed r < 1, the number of points in a Markov-based

trace must be su�cient to ensure a su�ciently large m,

so that r

m

is close to zero. For example, to ensure that

js

�

m

j � 0:95, we must have m � �20:95= lnr. In this case,

if r = 0:999, then we need an aggregation level m � 20936

(i.e., about 21,000 points per block). The size of the data

trace should be at least ten times this number to give a

meaningful sample estimation of the variance

e

v

�

m

.

C. Aggregated Variance in the F-ARIMA Model

Finally, consider the F-ARIMA process described be-

fore. We �rst provide a simple recursive approach for

computing ev

m

for this process. First, we de�ne the sums

X

m

def

=

P

m

k=1

�

k

and Y

m

def

=

P

m

k=1

k�

k

, for m � 1. Equa-

tion 8 can now be written as follows:

ev

m

=

1

m

+

2

m

2

(mX

m

� Y

m

): (21)

Since X

m

= X

m�1

+ �

m

, Y

m

= Y

m�1

+ m�

m

, and

�

m

= (m � 1 + d)=(m � d)�

m�1

, (21) can be computed

recursively starting from X

1

= Y

1

= �

1

= d=(1 � d). Fig-

ure 8 depicts the VT plots for various values of d. It is in-

teresting to note the linearity of the plots, with slopes that

barely change with the aggregation level. (contrast these

plots with their nonlinear counterparts in Figure 2 and 6

for the M=G=1 and DAR(1) models). Moreover, these

plots seem to be distinctly di�erent from the empirical VT

plot for the original Star Wars trace (Figure 1). This says

that from an aggregated variance standpoint, the M=G=1

model (non-Markovian SRD) is more appropriate than the

F-ARIMA model (LRD) in characterizing the JPEG-coded

Star Wars sequence. The slope of the VT plot for the F-

ARIMA model is shown in Figure 9 as a function of m

(obtained using (9)).

So far, we have examined the behavior of the aggregated

variance analytically, without involving any statistical esti-

mation. One may question whether the trends observed in

the previous �gures still hold when the empirical VT test

is used. To verify this point, we applied the empirical VT

test to synthetic traces from the M=G=1 and F-ARIMA

models. Figures 10 and 11 depict the results for two repre-

sentative traces. For the M=G=1 trace, we set � = 0:076

in �

k

= exp(��

p

k), which produced a good �t for the

empirical ACF of the Star Wars sequence [14]. For the

F-ARIMA trace, we took d = 0:3. The M=G=1 trace con-

sisted of 1,000,000 data points, while the F-ARIMA had

500,000 points (the computational complexity involved in

generating M=G=1 traces grows linearly with the trace

length, while this complexity grows quadratically in the

case of F-ARIMA traces). Figure 10 for the M=G=1 trace

indicates an asymptotic slope of about 0.59 (starting with

aggregation level of 10

2:5

= 317), which according to the

VT test, should suggest that the underlying data exhibit

LRD. However, we know that the data were generated from

an SRDM=G=1model! Despite the length of theM=G=1

trace (longer than any of the empirical video records ever

tested), the VT test is wrongly suggesting the presence of



LRD in this trace. The trends in both �gures are in line

with our previous analysis of the aggregated variance. For

the F-ARIMA trace (Figure 11), the slope of the VT plot

is estimated at �0:58, which is surprisingly close to that

of the M=G=1 trace. Although v

m

(also, the ACF) of a

F-ARIMA is expected to behave as k

�0:4

when k !1, it

takes extremely long time to reach this asymptotic behav-

ior.

Figure 12 depicts the negative of the slope of the VT

plot as a function of the �rst aggregation level (S) for the

original Star Wars sequence and the M=G=1 trace (only

aggregated variances with aggregation levels m � S are

used in �tting the VT plot). For the M=G=1 trace, the

slope increases very slowly with S, and expectedly tends

to �1 as S ! 1. However, the convergence is quite slow,

that even for traces 1,000,000-long, the VT plot can give

misleading conclusions about the exsitence of SRD/LRD

structure in the data.

IV. Conclusions

Evidence supporting the existence of LRD in network

tra�c has been based on statistical techniques for estimat-

ing the Hurst parameter. In this paper, we examined the

reliability of the VT test. We analyzed the aggregated vari-

ance in three, di�erently correlated random processes. Our

main result is that this technique in inherently biased, and

can often lead to incorrect conclusions about the true corre-

lation structure of the examined data. This is true even in

the absence of shifts in the mean of the process. Our �nd-

ing can have signi�cant implications on capacity planning

and bu�er engineering practices in QoS-based networks.

The bias in the VT test gradually diminishes with the size

of the data. For the examined models, we provided some

guidelines on the required number of data points that are

needed to render the bias insigni�cant. As a byproduct

of our study, we noted that from an aggregated variance

standpoint, a non-Markovian SRD M=G=1 model with

ACF of the form �

k

= exp(��

p

k) is more appropriate

for modeling the JPEG-coded Star Wars trace than the

LRD F-ARIMA model proposed in [9]. Our future work

will focus on producing more reliable variance-type tests

for inference of LRD. One such attempt is found in [22].
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Fig. 1. Empirical VT plot for the Star Wars trace.
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m

versus m for the

M=G=1 process.
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versus m for the DAR(1) model.
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Fig. 8. Analytically obtained VT plot for the LRD F-ARIMA(0; d; 0)

model.
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versus aggregation level m in the F-ARIMA(0; d; 0)

model.
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Fig. 10. Empirical VT plot for a synthetic M=G=1 trace.
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Fig. 11. Empirical VT plot for a synthetic F-ARIMA trace.
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