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Abstract—Unlicensed bands offer great opportunities for nu-
merous wireless technologies, including IEEE 802.11-based sys-
tems, 4G Licensed-Assisted-Access (LAA), and 5G New Radio
Unlicensed (NR-U) networks. Achieving harmonious coexistence
between these technologies requires real-time adaptation of their
channel access, which can be facilitated by artificial intelligence
(AI) and machine learning (ML) techniques. However, to leverage
such techniques, we need to characterize the state of unlicensed
wireless channel and the dynamics of the coexisting systems. In
this paper, we introduce the concept of Sensing Fingerprint (SF)
profile to characterize the state of coexisting networks and track
their dynamics over unlicensed bands. We conduct extensive
experiments to show the effectiveness of SF profile in tracking key
network dynamics, including sensitivity thresholds of contending
devices, their mobility, traffic loads, and other channel access
parameters. AI- and ML-based controllers can utilize this tool to
model the state of coexisting networks and track their dynamics.

Index Terms—Feature selection and extraction, intelligent
tracking, machine learning, cross-technology coexistence, 5G New
Radio Unlicensed (NR-U), LAA, IEEE 802.11.

I. INTRODUCTION

Unlicensed spectrum below 7 GHz supports a variety of
heterogeneous wireless technologies, including IEEE 802.11-
based Wi-Fi systems, 4G Licensed-Assisted-Access (LAA),
and 5G New Radio Unlicensed (NR-U) [1][2][3]. In particular,
NR-U/LAA will enable mobile network operators (MNOs) to
increase their data rates by aggregating their licensed carriers
with unlicensed ones. The standalone version of NR-U also
offers a great opportunity for new MNOs that do not own
licensed spectrum to launch new services over unlicensed
bands. Coexistence between these technologies gives rise
to many challenges, including fairness and cross-technology
interference [4]. To access an unlicensed channel in the 5-7
GHz bands, devices rely on Listen-Before-Talk (LBT) proce-
dure whereby each contending device measures the received
signal and compares it with a predetermined threshold, a.k.a.,
sensitivity threshold (ST), to determine the channel is idle. In
executing the LBT procedure, Wi-Fi/LAA/NR-U devices could
adopt different channel access parameters and rely on different
STs, and, consequently, resulting in being unfair to each other.
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To achieve fair access to unlicensed channels and harmonious
coexistence among Wi-Fi and NR-U systems, many opera-
tional parameters, such as the LBT parameters and STs, need
to be adapted in real-time. Artificial intelligence (AI) and
machine learning (ML) algorithms can play a significant role
in this adaptation, but they still require proper features and
measurements to characterize the wireless environment and
track the dynamics of the coexisting systems.

To obtain a proper feature representation of the wireless
channel, we conduct extensive system-level simulations, based
on our customized C++-based discrete-event simulator, to al-
low us to understand how NR-U and Wi-Fi throughputs change
as function of their network dynamics, including mobility,
traffic loads, and channel access parameters (STs and LBT
parameters). The concept of Sensing Fingerprint (SF) profile is
defined to characterize the state of NR-U and Wi-Fi networks
and track their dynamics. We demonstrate the effectiveness
of SF profile as a powerful tool for supporting AI-/ML-based
algorithms that can track the state of the wireless environment.
The SF profile is shown to have a strong correlation with
different channel access parameters as well as the dynamics
of coexisting systems.

To signal changes in network dynamics, we explore various
statistical metrics whereby we evaluate the divergence between
SF profiles captured over different times and under different
scenarios. We evaluate the variance in divergence for the
considered metrics, including the normalized difference in
mean, normalized difference in variance, difference in energy,
Kullback-Liebler, Jensen-Shannon, Hellinger distance, and
Bhattacharayya distance, and find that the Kullback-Liebler
divergence measure and Hellinger distance are the best metrics
to signal changes of vital network dynamics, when applied to
SF profile.

The rest of the paper is organized as follows. In Section
II, we give a background on LBT and STs adopted in NR-
U and Wi-Fi. We present our system model in Section III,
and investigate how NR-U and Wi-Fi throughputs change as
a function of different network dynamics in Section IV. In
Section V, we introduce the SF profile. We evaluate different
divergence measures in Section VI, and review related works
in Section VII.



Fig. 1. System model (we focus on the design of the ‘Feature Extrac-
tion/Selection’ blocks).

II. BACKGROUND

IEEE 802.11-based systems and NR-U rely on different
variants of the Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) procedure, commonly known as LBT,
to access unlicensed channels. In CSMA/CA with exponential
backoff, if the channel remains idle for a certain period of time,
called Arbitration Inter-Frame Space (AIFS) (or Initial Defer-
ment period in NR-U), the device can start its transmission.
Let ρ be the AIFS duration. To detect whether the channel
is idle or not, the device compares the received signal with a
predefined ST. If the channel becomes busy during the AIFS
the device backs off for k idle timeslots, where:

k ∈ {0, · · · ,min{2jWmin,Wmax} − 1} (1)

where Wmin and Wmax are the minimum and maximum
backoff durations, and j is the retransmission attempt (j =
0, 1, · · · ). The device freezes the backoff counter if the channel
becomes busy and resumes counting down when channel be-
comes idle again. Transmission commences once the counter
reaches zero. The effective throughput highly depends on the
adopted LBT parameters and the ST value. Wireless technolo-
gies operating over unlicensed bands adopt different settings
for their STs. LAA and NR-U specifications rely on an energy-
based ST of −72 dBm [5], whereas IEEE 802.11n/ac standards
implement two STs, one that is based on energy detection
(= −62 dBm) while the other is based on signal/preamble
detection, i.e., waveform-based detection (= −82 dBm) [6].
In IEEE 802.11ax/be drafts, devices are expected to adapt
their signal-based STs to improve the spectrum reuse between
overlapping networks [7].

III. SYSTEM MODEL

We consider a coexistence scenario where a 5G NR-U
network shares an arbitrary unlicensed channel with a Wi-Fi
network, as shown in Figure 1. The NR-U network consists
of a set B = {B1, B2, · · · , BNb

} of Nb small-cell base
stations (SBSs) that serve a set E = {E1, E2, · · · , ENe

} of
Ne user equipments (UEs). The Wi-Fi network consists of a
set A = {A1, A2, · · · , ANa

} of Na access points (APs) that
serve a set T = {T1, T2, · · · , TNs

} of Ns stations (STAs). Let
α(u) be the ST adopted by NR-U devices, and α(w) be the ST
adopted by Wi-Fi devices. We consider different values for

α(u) and α(w), including these adopted by the standards. Let
W

(u)
min, W (u)

max, and ρ(u) be the minimum/maximum contention
window and AIFS parameters used in NR-U network, and let
W

(w)
min , W (w)

max, and ρ(w) be their counterpart used in the Wi-Fi
network. NR-U and Wi-Fi devices generate a Poisson traffic.
Let π(u)

i be the traffic intensity of NR-U device i, and π(w)
i be

the traffic intensity of Wi-Fi device i. We consider a discrete
time with a slot duration τ that corresponds to the duration
of a MAC time slot. For instance, τ is set to 9 microseconds
in NR-U specifications and IEEE 802.11 standards operating
over the 5 GHz UNII bands [8][6]. Let ϑ(u)i (n) be indicator
function of NR-U device i to access the channel at an arbitrary
time slot n, and ϑ(w)

i (n) be indicator function of Wi-Fi device
i to access the channel at an arbitrary time slot n. There
are many factors that affect the setting of these indicator
functions at a specific time instant, including mobility, traffic
loads, and channel access parameters. Formulation of these
indicator functions requires notoriously complicated stochastic
geometry analysis and depends on network topology [9]. Let
y
(u)
i (n) be the received signal strength by an NR-U device, say
i, at time n. y(u)i (n) can be expressed as (similar expressions
can be formulated for Wi-Fi devices):

y
(u)
i (n) =

∑
j∈B∪E,j 6=i

PjΛjiϑ
(u)
j (n) +

∑
k∈A∪T

PkΛkiϑ
(w)
k (n)

(2)

where Pj is the transmit power of an arbitrary device j, Λji
is the channel loss between two arbitrary devices j and i
(including path losses, shadowing, and fading). In this paper,
we focus on the design for the ‘Feature extraction/selection’
blocks shown in Figure 1.

IV. OPTIMAL SETTING OF CHANNEL ACCESS
PARAMETERS

As observed in Equation (2), the received signal strength
y(n) depends on many factors, including the STs and LBT
parameters adopted by the two coexisting technologies. Un-
fortunately, formulating the effective throughput as a function
of these channel access parameters is notoriously complicated.
Therefore, we conduct system-level-based simulation exper-
iments to investigate how NR-U and Wi-Fi channel access
parameters need to be set with respect to other network param-
eters to achieve optimal NR-U and/or Wi-Fi performance. Due
to space limit, we focus on the setting of sensitivity thresholds.
We consider an NR-U network of three BSs that serve 15
UEs. The Wi-Fi network has three APs that serve 15 STAs.
Initially, we consider a fixed topology and vary the STs for
NR-U and Wi-Fi devices with fixed transmission rates (i.e.,
Wi-Fi: BPSK with 1/2 code rate, NR-U: QPSK with 1/5 code
rate), as shown in Figure 2(a). We plot the downlink network
throughput versus STs of NR-U and Wi-Fi networks. NR-
U and Wi-Fi networks have multiple local optima. Adapting
STs to achieve one of these local optima might require
cooperation/competition between the two networks until they
reach an equilibrium point.
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Fig. 2. (a) Downlink throughput vs. NR-U and Wi-Fi STs, (b) NR-U throughput vs. NR-U and Wi-Fi STs for two different topologies, and (c) NR-U
throughput vs. ST and traffic load of NR-U for two different ST settings of Wi-Fi.

We study the impact of mobility on the optimal setting
of NR-U and Wi-Fi STs by letting UEs and STAs move in
a random walk fashion for 10 seconds. We plot the NR-U
throughput versus STs of NR-U and Wi-Fi before (Topology
A) and after devices start moving (Topology B), as shown in
Figure 2(b). The optimal value of NR-U throughput changes
due to mobility. The coexisting networks need to be aware of
the mobility of the coexisting devices to properly adapt their
STs. We also investigate the impact of traffic intensity and ST
setting on NR-U throughput under different Wi-Fi ST settings,
as shown in Figure 2(c). For a given traffic intensity, the setting
of NR-U ST could achieve different throughput based on the
ST setting adopted by Wi-Fi. We obtained similar results for
Wi-Fi but we omit them due to space limitation. The above
experiments reveal how it is difficult to achieve an optimal
and fair setting of channel access parameters for NR-U and
Wi-Fi systems.

V. PROFILE OF SENSING FINGERPRINT (SF)

As it is observed from the previous section, to select fair and
optimal channel access parameters of NR-U and Wi-Fi tech-
nologies, we need a global knowledge about the dynamics of
the coexisting networks, including their mobility, traffic loads,
and their channel access parameters. AI-/ML-based algorithms
can be instrumental to learn the optimal operation under such
dynamics, however, they need a proper characterization of the
state of the wireless channel that capture these dynamics. The
SF profile can be used to provide this characterization.

Definition 1. Let L = {l1, l2, · · · , lNr} be the set of Nr
thresholds of received signal strength sorted in ascending
order. Let ξn,i = {1 : y(n) ∈ [li, li+1)} be indicator function
of received signal being at the signal level [li, li+1) at time n.
Let Nm be the number of time slots over which we monitor the
received signal strength. The SF profile S = 〈s1, s2 · · · , sNr

〉
is the normalized histogram of the received signal strengths
that are captured over a duration of Nm time slots, where:

si =
s̃i∑Nr

j=1 s̃j
, and s̃k =

Nm∑
n=1

ξn,k (3)
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Fig. 3. (a) SF profile captured by an arbitrary Wi-Fi STA under the baseline
scenario with Topology A, α(u) = −72 dBm, π(u) = 50 frames/sec, and
NR-U LBT with PC1; the difference between the SF profile captured under
the the baseline scenario and SF profile captured when (b) ST of NR-U is
changed to α(u) = −62 dBm, (c) topology changes, and (d) LBT priority
class of NR-U is changed to PC 2.

We next study the effectiveness of SF profile in tracking
key network dynamics.

A. Track Network Dynamics Using SF Profile

To study the feasibility of using SF profile to track NR-
U and Wi-Fi network dynamics, we conducted system-level-
based experiments in which we consider a baseline scenario
with a fixed topology, and then apply changes to topology,
traffic loads, and channel access parameters. We initially set
the STs of NR-U and Wi-Fi to their standard settings, i.e.,
α(u) = −72 dBm and α(w) = −62 dBm, respectively. The
traffic intensity is set to π(u) = 50 and π(w) = 50 frames per
second. NR-U and Wi-Fi networks contend with their highest
LBT priority class (PC), i.e., PC 1, in which W

(u)
min = 4,

W
(u)
max = 8, and ρ(u) = 24 microseconds, and their Wi-Fi

counterparts are set to W (w)
min = 4, W (w)

max = 8, and ρ(w) = 34
microseconds, respectively. The SF profile constructed by an



Fig. 4. Indoor simulation topology adopted by 3GPP 5G NR-U committee
[8].

arbitrary (tagged) Wi-Fi device under the baseline scenario
over a monitoring time of 5 seconds is plotted in Figure 3(a).

To study the effectiveness of the SF profile to track changes
in ST setting, we change the STs for NR-U devices to −62
dBm and plot the difference between the baseline and updated
SF profiles, as shown in Figure 3(b). The increase in the
ST of NR-U devices triggers them to aggressively access the
channel, which results in an increase of the density for some
signal levels. This also forces other Wi-Fi devices to backoff
for longer duration, resulting in a reduction of the density of
their transmissions. To study the impact of mobility, we let all
UEs and STAs, except the tagged Wi-Fi device, change their
location (i.e., Topology B). The updated SF profile is plotted in
Figure 3(c). As can be observed, mobility can cause significant
change in the shape of SF profile and density of signal levels.

We increase the traffic intensity of NR-U networks to
π(u) = 100 frames per second, and plot the difference between
the baseline and the updated SF profiles in Figure 3(d). The
density of the SF profile has been changed. We also evaluate
the effectiveness of SF profile to capture changes in LBT
parameters. We let NR-U network contend with PC 2, in
which W (u)

min = 8 and W (u)
max = 16. We observe some changes

in the density of some signals levels. These observations
reveal the effectiveness of the SF profile to be used for
tracking and monitoring vital network dynamics, and thus,
it can be considered as a powerful tool for AI-/ML-based
algorithms that are developed to optimize the harmonious
coexistence between NR-U and Wi-Fi networks. We still need
a quantitative measure to value changes in the SF profile.
These quantitative measures can also help in defining rules
to decide on whether different dynamics require adapting any
network parameters or not. We next provide some of these
quantitative measures.

B. Measuring Divergence in SF Profile

We discuss some of the statistical similarity metrics that can
be used to track changes happening in coexisting networks. We
consider two arbitrary SF profiles that are captured over two
different time duration, i.e, S and Q. Let D(η)(S||Q) be the
metric for measuring the difference between SF profiles S and
Q based on the criterion η. We consider the following criteria:
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Fig. 5. (a) Divergence versus NR-U ST (last entry in the x-axis corresponds
to the baseline case), and (b) variance of divergence under ST dynamics.

• Normalized difference in mean D(m)(S||Q):

D(m)(S||Q)
.
=

1

lNr − l1
|mean(S)−mean(Q)| (4)

• Normalized difference in variance D(v)(S||Q):

D(v)(S||Q)
.
=

1

lNr
− l1
|var(S)− var(Q)| (5)

• Difference in energy D(g)(S||Q):

D(g)(S||Q)
.
=

Nr∑
k=1

||sk − qk||2 (6)

• Kullback-Leibler (KL) divergence measure D(KL)(S||Q)
[10]:

D(KL)(S||Q)
.
=

Nr∑
k=1

sk log(sk/qk) (7)

• Jensen-Shannon divergence (JSD) measure
D(JSD)(S||Q) [11]:

D(JSD)(S||Q)
.
=

1

2
D(KL)(S||M) +

1

2
D(KL)(Q||M),

where M = 0.5(S +Q) (8)

• Hellinger distance D(H)(S||Q):

D(H)(S||Q)
.
=

1√
2

√√√√ Nr∑
k

(
√
sk −

√
qk)2 (9)

• Bhattacharyya distance D(B)(S||Q) [10]:

D(B)(S||Q)
.
=

Nr∑
k

√
skqk (10)

The best metric for tracking network dynamics is the
one that provides the highest variance. We next conduct
simulation-based study to investigate the variance of these
metrics under different dynamics in coexisting networks.



1 2 3 4 5 6 7 8 9 10 11 12

Topology Index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

iv
er

ge
nc

e
Mean
Var.
Energy-Diff.
KL
JSD
Hellinger
Bhattach.

(a)

Bhattach

Energy-Diff

Hellin
ger

JSD KL
Mean

Variance
0

0.005

0.01

0.015

0.02

V
ar

ia
nc

e 
in

 D
iv

er
ge

nc
e Mobility

(b)

Fig. 6. Divergence versus topology index (last entry in the x-axis corresponds
to the baseline case), and (b) variance of divergence under mobility dynamics.

VI. EVALUATION AND DISCUSSION

We develop a C++-based discrete-event system-level simu-
lator to study the NR-U and Wi-Fi coexistence. Our simulation
setup, traffic model, channel model, and LBT parameters are in
line with those listed by 3GPP (see Annex A [2] [8]). We con-
sider the indoor topology adopted by the 3GPP standardization
committee, as shown in Figure 4. Every Wi-Fi AP serves five
STAs and each NR-U gNB serves 5 UEs. Our simulator runs
multi-threaded processes that work in parallel and simulate
traffic generation, mobility, channel access procedures, i.e.,
EDCA and CAT4-LBT, of Wi-Fi and NR-U systems.

We evaluate the change in SF profiles captured by an
arbitrary Wi-Fi device (tagged device) under different scenar-
ios. We consider a baseline scenario, and let NR-U devices
deviate from this baseline scenario. We evaluate the divergence
between the SF profile captured in the baseline scenario and
the SF profiles captured under different NR-U dynamics, as
shown in Figures 5, 6, 7, and 8. We plot the metrics that
we discussed in Section V-B versus the different factors. In
plots of Figures 5(a), 6(a), 7(a), and 8(a), we consider the last
entry of the x-axis to be the baseline scenario that we evaluate
changes against. In bar plots of Figures 5(b), 6(b), 7(b), and
8(b), we show the variance for each divergence metric under
different dynamics. These plots provide us good understanding
on how dynamics of STs, mobility, traffic loads, and LBT PCs
of NR-U network affect the shape and statistics of the SF
profile. We are interested in investigating the effectiveness of
the SF profile to track these dynamics, and whether the SF
profile can be a good feature to be considered in the feature
extraction/selection blocks shown in Figure 1. It also helps us
select the best metric that suites the dynamic factor of interest.

In Figure 5(a), we plot the divergence between SF profiles
captured by tagged Wi-Fi device versus the ST values used by
NR-U devices. We observe that changing STs used by NR-
U devices imposes high change in the SF profiles captured
by the tagged Wi-Fi device. The KL divergence measure and
Hellinger distance are the best metrics for characterizing this
change because they have high variance, as shown in Figure
5(b). In Figure 6(a), we plot the divergence versus the topology
index. We change the topology by letting NR-U and Wi-Fi
devices move in a random-walk mobility pattern. We notice
that different metrics express different divergence values under
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Fig. 7. Divergence versus NR-U traffic load (last entry in the x-axis
corresponds to the baseline case), and (b) variance of the divergence under
traffic dynamics.
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Fig. 8. Divergence versus NR-U PCs (last entry in the x-axis corresponds to
the baseline case), and (b) variance of the divergence measures under LBT
dynamics .

mobility, and the KL and Hellinger are the best metrics to
characterize mobility dynamics, as shown in Figure 6(b). In
Figure 7(a), we plot divergence between SF profiles versus
the traffic load of the NR-U network. The change in NR-U
traffic load imposes variation in the divergence values, and
the KL and Hellinger distance are again the best metrics to
indicate dynamics in traffic loads, as shown in Figure 7(b). In
Figure 8(a), we plot divergence between SF profiles versus the
index of the PC adopted by NR-U network (see Table 15.1.1-
1 in [5] for their W (u)

min, W (u)
max, and ρ(u) values). We notice

that changing LBT parameters impose different changes in the
SF profile, and the KL and Hellinger are the best metrics to
represent this change, as shown in Figure 8(b).

VII. RELATED WORK

Previous works on NR-U operation can be found in [12],
[13], [14], [15]. Bayhan et al. [16] discussed the role of AI
and ML in achieving harmonious LAA/Wi-Fi coexistence. Li
et al. [17] proposed an ad-hoc-based framework for adapting
STs used by LAA devices based on monitoring collision rates
experienced by LAA devices. Iqbal et al. [18] conducted
system-level simulations to study the setting of STs for LAA
and Wi-Fi devices, and found that lowering Wi-Fi ST could po-
tentially improve the throughput of LAA and Wi-Fi networks.
Hirzallah et al. proposed AI-based frameworks for reducing
collisions and improving throughput of full-duplex-enabled
Wi-Fi network when coexisting with duty-cycle-based LTE
system [19] and half-duplex-enabled Wi-Fi users [20]. Ajami



et al. [9] presented a stochastic geometry based analysis to
analyze the coexistence between LTE and Wi-Fi systems, and
recommended that Wi-Fi ST need to be adapted to achieve
harmonious LAA/Wi-Fi coexistence. Authors in [21] proposed
an online learning algorithm based on graph coloring evolution
to allocate frequency and network resources among operators
running NR-U service. Haider et al. [22] introduced a Q-
learning based approach for selecting the backoff duration
of LAA devices in which fairness with Wi-Fi systems can
be guaranteed. Authors in [23] introduced a Q-learning based
approach for controlling the channel occupancy time for LAA
and muting LAA transmission overtime in order to improve
the fairness with Wi-Fi systems. To facilitate research and
evaluation of ML techniques in cross-technology coexistence,
authors in [24] developed a framework in Linux OS. Song
et al. [25] presented a cooperative LBT and multi-user zero
forcing interference cancellation framework to reduce collision
rates in NR-U/Wi-Fi coexistence. Authors in [26] introduced a
queuing model to characterize different strategies for splitting
NR-U traffic between millimeter and sub-6 GHz unlicensed
bands. Yang et al. [27] proposed a fuzzy Q-learning based
algorithm to improve the time alignment of sensing slots
between LAA and Wi-Fi systems. Authors in [28] proposed
a chaotic Q-learning algorithm to adapt contention window in
LTE/Wi-Fi coexistence.

VIII. CONCLUSION

In this work, we introduced the concept of SF profile
for modeling the state of unlicensed channel when it hosts
heterogeneous coexisting technologies, such as 5G NR-U and
Wi-Fi. We showed that the SF profile can be used to track
vital changes happening in coexisting networks by computing
the changes in SF profiles captured overtime. AI-/ML-based
algorithms can utilize the SF profile to model and track
the state of the wireless environment when they adapt key
channel access parameters for NR-U and Wi-Fi networks. The
Kullback-Leibler divergence measure and Hellinger distance
are the best metrics to be used to signal changes of different
network dynamics, including changes in ST values, LBT
parameters, traffic loads, and mobility.
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