
Latency Prediction for Delay-sensitive V2X
Applications in Mobile Cloud/Edge Computing

Systems
Wenhan Zhang1, Mingjie Feng1, Marwan Krunz1, and Haris Volos2

1Dept. Electrical & Computer Engineering, University of Arizona, Tucson, AZ,
{wenhanzhang, mingjiefeng, krunz}@email.arizona.edu

2Silicon Valley Innovation Center, DENSO International America, Inc., San Jose, CA,
haris_volos@denso-diam.com

Abstract—Mobile edge computing (MEC) is a key enabler of
delay-sensitive vehicle-to-everything (V2X) applications. Deter-
mining where to execute a task necessitates accurate estimation
of the offloading latency. In this paper, we propose a latency
prediction framework that integrates machine learning and
statistical approaches. Aided by extensive latency measurements
collected during driving, we first preprocess the data and divide
it into two components: one that follows a trackable trend over
time and the other that behaves like random noise. We then
develop a Long Short-Term Memory (LSTM) network to predict
the first component. This LSTM network captures the trend in
latency over time. We further enhance the prediction accuracy of
this technique by employing a k-medoids classification method.
For the second component, we propose a statistical approach
using a combination of Epanechnikov Kernel and moving av-
erage functions. Experimental results show that the proposed
prediction approach reduces the prediction error to half of a
standard deviation (STD) of the raw data.

I. INTRODUCTION

As a key component of future intelligent transportation sys-
tems (ITS), connected and autonomous vehicles (CAVs) have
attracted intensive research from both academia and indus-
try. Typical forms of CAV communications include vehicle-
to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-
network (V2N), and vehicle-to pedestrian (V2P), which are
collectively referred to as vehicle-to-everything (V2X) [1].
V2X enhances the situational awareness of vehicles, facili-
tating both beyond line of sight (BLOS) safety applications,
such as accident/merge alerts and collision prevention, as well
as non-safety applications, such as cruise control, multimedia
services, and self-parking, among others.

In many instances, V2X applications require executing
low-latency yet computationally intensive tasks. For exam-
ple, objects recognition from images (e.g., pedestrians, other
vehicles, etc.) often involves extensive, real-time processing
by a deep convolutional neural network [10]. Such processing

This research was supported in part by NSF (grants CNS-1910348 and
CNS-1813401) and by the Broadband Wireless Access & Applications Center
(BWAC). Any opinions, findings, conclusions, or recommendations expressed
in this paper are those of the author(s) and do not necessarily reflect the views
of NSF.

would be quite prohibitive for the in-vehicle embedded pro-
cessor [2]. One approach for this challenge is to offload V2X
computational tasks to a remote cloud server. However, due to
network dynamics and connection intermittency, the end-to-
end communication latency between the vehicle and the cloud
server can be excessively high. Alternatively, the task may be
offloaded to a mobile edge computing (MEC) server [3], [4].
Exploiting MEC servers that are close to base stations (BS)
or roadside units (RSUs) results in significant reduction in the
communication latency. At the same time, these servers are
unlikely to have the same computational resources as a cloud
server. To harness the benefits of both MEC and cloud servers,
the offloading decision should be made adaptively according
to the properties of a task.

Determining where to execute a V2X task necessitates
accurate prediction of both its communication and computing
latencies. While the computing latency can be estimated
based on task size and the computational resources of the
MEC/cloud server, estimating the communication latency is
more challenging due to the uncertainty of the wireless envi-
ronment. In most existing works, such latency is approximated
by the data transmission time [5], [6], obtained from the
task size and data rate. Such approximation overlooks the
channel access latency and the round-trip time (RTT) between
a vehicle and a MEC/cloud server. In reality, as shown in
our measurements, the RTT is quite significant and is also
highly dynamic [7]. Unlike data transmission latencies which
can be estimated a priori, there is no obvious relationship
between the access latency and the system parameters. Due to
the dynamics of the wireless channel, the access latency varies
rapidly over time. To accurately capture the underlying pattern
of the access latency as well as its instantaneous randomness,
intelligent exploitation of historical data is required.

The main contributions of this paper are as follows. We
first develop a smartphone app called Delay Explorer and
implement it on a Google Pixel 2 phone. Using this app,
we then collect thousands of traces of real-time RTT data
in different locations over a period of four months. By
applying an appropriate filter, we divide the raw data into

(a)

 Route 1

 Route 2

 Fixed-location

(b)

Fig. 1. (a) Interface of Delay Explorer app. (b) locations and routes of our
measurements.

a trackable pattern (trend) and its residual. Using the k-
medoids algorithm, we cluster the data of the first component
into multiple sets according to the signal strength. An ex-
tensively trained Long Short-Term Memory (LSTM) network
is then designed for each cluster, allowing for predicting
the future values of the trend component. For the second
component, we propose a hybrid statistical approach, based
on a combination of Epanechnikov Kernel function-based
probabilistic sampling and moving average function-based
prediction. Performance evaluation shows 50% reduction in
the prediction error compared to a sample-mean predictor. By
decomposing the original problem, we increase the accuracy
of each part prominently, e.g., achievable LSTM root mean
square error (RMSE) during training decreases from 40% to
10%. Moreover, data points with very high latency can be
detected when we include the signal strength parameters into
the designed LSTM network. By adding classifiers into the
network, clustered data are trained with respective feature
groups to further reduce RMSE.

II. LATENCY AND MEASUREMENTS

To collect real data for the communication latency between
a vehicle and MEC/cloud servers, we developed a smartphone
app called Delay Explorer. This app sends a stream of ping
packets to the IP addresses of the edge node and the cloud
node, respectively. The ping messages are sent via an AT&T
LTE network. The interval between two consecutive messages
is set to 500 ms. Ping is a typical measure of the network
response latency between a user and a server, and is a key
indicator for many delay-sensitive applications, e.g., multi-
player online video games. Because MEC servers are typically
located close to mobile users (e.g., collocated with BS),
the IP address of the first node that responds to the ping
message can be regarded as the location of MEC server. In
our measurements, the cloud node is the Amazon Web Server
(AWS), located at the Amazon cloud service center. Delay
Explorer also records other system parameters besides RTT,
including received signal strength indicators (RSSI), velocity,
GPS information, and others. In our prediction framework,
we use LTE signal strength (SS), reference signal received
power (RSRP), and reference signal received quality (RSRQ)

(a) PDF of cloud node latency (b) PDF of edge node latency

Fig. 2. Distributions of cloud-node latency and edge-node latency based on
all measurements.

indicators to help classify the signal and predict the latency.
These parameters will be explained later. Fig. 1(a) shows the
interface of Delay Explorer.

Our measurements were taken at fixed locations and also
in mobile scenarios. More than 1,600,000 data points were
collected. The fixed-location scenarios include an office and
an apartment (see Fig. 1(b)). For the mobile scenario, latency
measurements were taken while driving along the route in
Fig. 1(b). These measurements represent realistic vehicular
conditions, whereby node and traffic densities as well as
channel conditions change along the route. Furthermore, data
collection was conducted over different time periods (includ-
ing weekdays, weekends, mornings, afternoons, etc.), thus
providing a good representation of many practical use cases.
The measurements are divided into a training part and a testing
part, with the latter part used to evaluate the performance of
the proposed predictors. Fig. 2 shows the distributions and
statistics of MEC and cloud nodes’ RTTs. As expected, the
edge node has a lower average RTT than the cloud node, but
it has a higher standard deviation (STD) for its RTTs.

III. OVERVIEW OF PREDICTION FRAMEWORK

Our latency measurements show significant fluctuations.
However, if we observe the data over long time intervals,
we can see trackable trends in the daily latency values. This
may due to the fact that the traffic load of the cellular network
fluctuates according to certain diurnal and weekly patterns [8].
Based on such an observation, we decompose the latency into
two components: one that exhibits a trackable pattern over
time and another that behaves like random noise, but possibly
with certain autocorrelations.

To separate the two components, we apply a filter to the
original data, aiming to average out the noise-like part. The
latency obtained after filtering is the first component and
the residual part is the second component. We considered
three window sizes for the filter: 10, 100, and 1000. Fig. 3
depicts the autocorrelation for the raw data as well as the
averaged traces. For the raw data, it always shows weak
autocorrelation, which makes it hard to abstract the context
information by time dependence. By applying a window filter,
the autocorrelation increases visibly. It is clear that the filtered
component is more trackable by the dependency of latency in
the time domain. Obviously, the window size of the filter plays
a major role in the first component’s prediction accuracy. We
will explore such impact in the simulations.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
S

a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

0 2 4 6 8 10 12 14 16 18 20

Lag

(a) Raw data

-0.2

0

0.2

0.4

0.6

0.8

1

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

0 2 4 6 8 10 12 14 16 18 20

Lag

(b) Filtered data with W = 10

-0.2

0

0.2

0.4

0.6

0.8

1

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

0 2 4 6 8 10 12 14 16 18 20

Lag

(c) Filtered data with W = 100

-0.2

0

0.2

0.4

0.6

0.8

1

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

0 5 10 15 20

Lag

(d) Filtered data with W = 1000

Fig. 3. Autocorrelation of raw and filtered data.

The structure of the proposed prediction framework is
shown in Fig. 4. The first component, obtained after filtering,
is called baseline. A time-series LSTM model is developed to
predict the baseline after classifying the data samples accord-
ing to the received signal feature. The second component is
called residual, which approximately follows a t-distribution.
The residual part is predicted using a hybrid statistical ap-
proach that combines several predictors. These predictors are
based on sampling from the approximated pdf of measured
residuals obtained by Epanechnikov Kernel functions. The
final prediction of the residual part is a weighted sum of these
predictors. The coefficients of the predictors can be adapted
in an online fashion based on the instantaneous prediction
error. Details of both components of the latency predictor are
provided in the following two sections.

IV. LSTM-BASED PREDICTION OF BASELINE LATENCY

In this section, we introduce the clustering-based LSTM de-
sign for predicting the baseline component. In contrast to the
standard time series LSTM network, our proposed approach
classifies the input data by signal features before training.
By this way, our prediction approach have a prior expectation
according to the signed label. Weak signal environments could
also be detected by such a classifier. The classification is based
on parameters related to access latency; specifically, RSRP,
RSRQ, and SS. During the training phase, the input data
are labeled and placed into different groups according to a
combination of these access parameters. The LSTM networks
are trained independently for various groups. For the testing
phase, the input is classified based on the same common
criteria, and then assigned to the corresponding trained LSTM
network for prediction.

A. Data Classification

In a wireless environment, the received signal strength is
a good indicator of channel conditions. It also impacts the
response time between the transmitter and receiver. In our
measured data, the average latency was observed to be lower

Fig. 4. Architecture of the proposed LSTM-integrated latency prediction
framework.

when the signal quality is better. Furthermore, the signal
strength fluctuates at a slower pace than the instantaneous
latency. Based on this observation, before performing latency
prediction, we classify the collected data into multiple groups
according to the RSSI. We then develop a respective predic-
tion training model for each group.

However, classifying data based on a single RSSI metric
does not always provide good performance. Instead, we
make use of the three available RSSIs for robust prediction
performance, namely, SS, RSRP, and RSRQ. The SS is the
transmission power of the serving LTE BS. RSRP is the
average power over multiple LTE resource elements that
carry cell-specific reference signals within the considered
measurement frequency band. RSRQ is a measure of the
signal quality, defined as the RSRP per OFDM resource
block, which is used when RSRP is not sufficient to make
a reliable handover decision. To classify data based on SS,
RSRP, and RSRQ, we apply a clustering method called
k-medoids [13]. Essentially, k-medoids is a distance-based
unsupervised learning algorithm that clusters the input data
into K groups with different labels. The k-medoids algorithm
is described as follows:

1) In the three-dimensional sample space S, randomly
generate K medoids m, m ∈ M;

2) Calculate the Euclidean distances between all the data
points in S and medoids in M. Then, assign each data
point to the cluster with the minimum distance;

3) In each cluster, test each data point as a potential medoid
m by examining if the average distance is reduced;

4) If so, every data point in S is then assigned to a cluster
with the updated m;

5) Repeat steps 2 through 4 until the minimum average
distance is achieved.

Applying the k-medoids algorithm, the original data set is
classified into several clusters according to the values of SS,
RSRP, and RSRQ. Naive Bayes filter and Support vector ma-
chine can also solve such a classification problem. However,
these methods rely on splitting the problem into k sub-binary
classifications, with exponentially increasing complexity but

Fig. 5. Clustering measured latencies based on different RSSIs.

with comparable prediction accuracy to k-medoids [12]. As
shown in the example in Fig. 5, the clusters with better signal
quality are more likely to achieve lower latency.

B. Architecture of the LSTM Network

Our measurements reveal that the latency at a given time
is impacted by both short-term as well as long-term historical
information, and the latency follows a trackable pattern over
time once the small-scale variations are filtered out. This
motivates us to employ the LSTM algorithm for our prediction
problem. LSTM is an advanced recurrent neural network
(RNN) architecture that can intelligently combine long-term
and short-term information. It stores the memory in the hidden
layers and controls the information flow (i.e., determines what
to remember and what to forget) by adapting the parameters
of several gates. In each hidden layer, there is a forgetting
function that decides the weight of the latest input. LSTM
is also computationally efficient compared to other neural
network architectures, such as convolutional neural networks
(CNNs) and multi-layer perceptron (MLP). In our case, we
can achieve a prediction accuracy of less than 10% of the
RMSE with only 20 hidden units.

To train an LSTM network, all data should be normalized.
The collected data points are divided into two parts: one for
model training (90% of data) and one for testing (10% of
data). The number of features is set to one, as the model only
depends on historical latency data to make its prediction. For
the time series prediction, first several samples contributes
less for trends capture. Such that the initial learning rate is
set to 0.005 and the learning rate drop factor is set to 0.2. The
measured ith latency is denoted as Xi, and the total number
of measurements is n. The classification function g(·) can
be expressed as: g(x) = xk, if x belongs to cluster k, k =
1, 2, ...,K

After clustering, we divide the input into K groups: X1,
X2,..., XK . For each group Xk, the predicted ith latency can
be represented as Yk,i:

Yk,i = f(g(Xk)) = f(Xk,i−1, Xk,i−2, ..., Xk,1) (1)

where f(·) is a mapping between the measured latency
values up to Xk,i−1 and the predicted value. This mapping
is determined by the parameters and setting of the LSTM
network. A typical LSTM network consists of multiple LSTM
cells that determine the parameters of the hidden layers. The

σ

σ σ

tanh

tanh

+*

* *

Forget Gate

Input Gate Output Gate

�(!)

Fig. 6. Architecture of an LSTM cell used in this paper.

architecture of a cell is shown in Fig. 6. At each time step t,
g(xt) is the classified system input and ht is the output of the
LSTM cell. The cell output at the previous time step, ht−1,
is combined with the current system input g(xt) to form the
input for the current cell. The state of each cell is Ct, which
records the system memory. Ct is updated at each time step.
To control the information flow through the cell, several gates
are applied, including an input gate (it), output gate (ot), and
forget gate (ft). Each gate generates an output between 0 and
1, where the value of the output is calculated by a sigmoid (σ)
function. An output of 0 indicates that the input of the gate is
totally blocked while an output of 1 indicates all information
of the input is kept in the cell. The input, output, and forget
gates are calculated as follows:

it = σ(Wig(xt) + Uiht−1 + bi)

ot = σ(Wog(xt) + Uoht−1 + bo)

ft = σ(Wfg(xt) + Ufht−1 + bf)

(2)

where Wi, Wo, and Wf are the weights of the three gates;
Ui, Uo, and Uf are the corresponding recurrent weights; and
bi, bo, and bf are the bias values of the three gates.

Similar to the gate function, we combine the current inputs
and previous cell state Ct−1 to update the cell state. The
difference is that instead of a sigmoid, the inputs will be
processed by a hyperbolic tangent function that generates an
output between −1 and 1:

C̃t = tanh(Wc · g(xt) + Uc · ht−1 + bc) (3)

After the update, C̃t is multiplied by the output of the input
gate, which is then used as the first component to update the
cell state. Another component for updating the cell state is
the previous cell state, which is processed by the forget gate
to determine how past data is to be utilized. With the two
components, the cell state at time t is updated as:

Ct = ftCt−1 + itC̃t (4)

The output of the cell ht, which will be used at time t + 1,
is calculated by the multiplication of the output gate and the
tanh function of the current cell state:

ht = ot tanh(ct) (5)

C. LSTM Network Training and Testing

The training procedure is performed offline while the
prediction is performed online with the trained LSTM net-
works. Based on the outcome of K clusters of the k-medoid

algorithm, we set K independent LSTM networks. For each
network, we first normalize the input data as follows:

Xi
′ =

Xi − X̄i∑n
i=1

1
n (Xi − X̄i)2

, for i = 1, 2, ..., n (6)

where X̄i is the sample mean latency of the set.
Each LSTM network is trained to find the optimal re-

gression model between the input and output sequences. The
number of cells is set to 20. Cell features will periodically flow
into the next layer to evaluate the system state. In each training
iteration, the weights of the input and output are adapted by
multiplying the cell state matrix, and the feedback of error
is then used to update the cell states and the parameters of
the corresponding LSTM network. The training is completed
when RMSE reaches the target threshold.

V. PREDICTION OF THE RESIDUAL COMPONENT

A. Predictor Design

To capture the impacts of long- and short-term historical
latencies, we propose to use a combination of three predictors
for the residual that remains after subtracting the baseline
component.

1) PDF Approximation: From Fig. 2, we observe that
the histograms of cloud and edge node latencies can be
approximated by a combination of two normal distributions.
By fitting the data, we can perform sampling according to
these approximate PDFs and use the outcome for prediction.
However, the exact distributions are unknown and cannot be
expressed in closed form. Thus, we investigate and evaluate
several approaches that aim at finding a good approximation
for the latency PDF. Specifically, the probability that the
latency equals to x is calculated using the following Epanech-
nikov Kernel function:

f̂ws
(x) =

1

n

n∑
i=1

Kws
(x− xi) =

1

nws

n∑
i=1

K

(
x− xi
ws

)
(7)

Recall that n is the total number of samples, xi is the ith
data point, and Kws

is a non-negative Epanechnikov Kernel
function with window size ws > 0. After applying the
Epanechnikov Kernel function, the distribution of the original
data can be approximated by a PDF of a continuous variable.

A predicted latency value corresponding to a higher f̂hk
(x)

will be selected with higher probability during sampling. This
way, the probabilistic sampling is a repetition of the actual
process that generates latency values. Considering that the
time dependence is stronger with shorter sample distance, we
introduce two predictors: short-term sampling (STS) and long-
term sampling (LTS). STS is using the most recent latency
distribution as sample space, whereas LTS can make full
use of all the collected latency. The prediction value is then
represented as YSTS and YLTS.

2) Moving Average: To make use of the correlation in
latency over time and to better capture the instantaneous
latency pattern, we augment the previous two predictors with
moving average (MA) predictor, given by the weighted sum

of latency values over a sliding window. In this paper, we
employ an exponentially weighted moving average (EWMA)
approach over the given window size. We evaluate the pre-
diction performance under different window sizes in our
experiments. The predicted latency can be expressed as:

Yi = Yi−1 + α(Xi − Yi−1) (8)

where α is a coefficient that can be expressed as α = 2
wm+1

and wm is the window size of EWMA function. The predicted
value by moving average function is denoted as YMA

B. Combining Multiple Predictors

From the collected data, it can be observed that during
the periods when the latency changes rapidly, recent laten-
cies have a more significant impact on the current latency
compared to latencies taken several hours before. During the
online prediction process, the weights assigned to the predic-
tors can be adjusted according to the prediction error. This
way, we can dynamically optimize the relative importance of
short- and long-term information. In addition, as a key system
parameter, the size of the sliding window should be evaluated
to optimize the prediction performance.

Let’s consider combine YSTS, YLTS, and YMA to make
full use of each part’s merit. Let a, b, and c be the weights
(coefficients) of the three predictors, where a + b + c = 1.
Then, the final prediction outcome is given by:

Yi = aYSTS + bYLTS + cYMA. (9)

C. Coefficients Adaption

To get the best forecasting results, the coefficients a, b, and
c in equation (9) are updated using a Kalman filter. Let ai,
bi, and ci denote the values of these coefficients at the ith
step. We define the error matrix Ei as Yi − Xi. Ei is used
to record the prediction error and provide feedback for the
prediction in the next step. Consider j sets of coefficients,
{a1, b1, c1}, ..., {aj , bj , cj}. Yi can be written as:

Yi =
[
YSTS YLTS YMA

]
·

a1 a2 ... aj−1 aj
b1 b2 ... bj−1 bj
c1 c2 ... cj−1 cj

 .
(10)

After observing the actual latency Xi, the controller cal-
culates Ei =

[
E1 E2 Ej−1 Ej

]
and determines

j′ ∈ {1, 2, ..., j} that minimizes Ej :

j′ = arg min
j′∈{1,2,3,...,j}

Ej (11)

The coefficients {aj′ , bj′ , cj′} is used for the next step pre-
diction.

VI. PERFORMANCE EVALUATION

A. Impact of Filter Settings

We first evaluate the impact of the window size that is used
to split the data between baseline and residual. The RMSE
performance of the baseline part under different window sizes
is shown in Fig. 7(a). We can see that the RMSE decreases

0 10 10^2 10^3 10^4

Filter Window Size

0

0.2

0.4

0.6

0.8

1

R
M

S
E

 i
n
 B

a
s
e
li

n
e

(a) RMSE of baseline vs. window size
of filter

0 10 10^2 10^3 10^4

Filter Window Size

0

0.2

0.4

0.6

0.8

1

R
M

S
E

 i
n
 R

e
s
id

u
a
l

(b) RMSE of residual vs. window size
of filter

Fig. 7. RMSE performance under different window sizes.

quickly with filter window size, and then stabilizes. This
is because the rapidly varying component is removed from
the original data, making the baseline part more trackable.
Besides, the RMSE tends to be concentrated around its mean
as the window size increases, indicating that the prediction
performance is becoming more stable. The impact of the
window size on the prediction error for the residual part is
plotted in Fig. 7(b). To obtain more accurate latency estimates
without significantly increasing complexity, we choose a
window size of 1000 in the remaining experiments, which
achieves an RMSE of less than 10%.

By separating the ‘noisy” component from desired trends,
we remove the interference of irrelevance. Such that the
training process of the designed LSTM network requires less
computational resources. As introduced in parameter setting,
cell matrix and layer number are downsized, meanwhile, error
rate can still be controlled into the desired range.

B. Evaluation of The Proposed Prediction Approach

In the performance evaluation, prediction methods are com-
pared by the measurement data reserved for testing. Measured
latencies are collected at fixed location and during driving as
described previously. We define the prediction error (e) as the
difference between predicted value and actual latency. Both
the mean error (e) and error STD (θ) are reported. We compare
all the methods with a sample-mean predictor. The ratio of
the mean error and the error STD between tested methods and
the sample-mean predictor are denoted ε and µ, respectively.

Fig. 8 compares different methods in terms of their rel-
ative prediction error and STD of this error. The LTS and
STS methods decrease ε by 20%, which indicates a weak
performance if we depends only on sampling predictors.
The classical approaches for comparison, including Kalman
Filter (KF) and Partial Filter (PF), can achieve a relatively
low prediction mean error. However, µ value is around 85%
for both of them, showing that these approaches are not
guaranteed to perform well in all scenarios. The proposed
approach achieves the best performance in both relative mean
error and relative error STD and can reduce the mean error by
45%, which achieve around half of the benchmark. Besides,
the error STD is reduced by 25%, showing that our approach
can achieve the best performance in terms of both prediction
error and stability among all methods.

300 600

Window Size (sample times)

50

55

60

65

70

75

80

85

R
el

at
iv

e
M

ea
n
 E

rr
o
r

R
at

e
(%

)

LTS

STS

EWMA

KF

PF with 300 Particles

LSTM + Statistical Method

(a) Relative mean error (ε) comparison

300 600

Window Size (sample times)

50

60

70

80

90

100

110

120

R
el

at
iv

e
E

rr
o
r

S
T

D
 R

at
e

(%
)

LTS

STS

EWMA

KF

PF with 300 Particles

LSTM + Statistical Method

(b) Relative error STD (µ) comparison

Fig. 8. ε and µ comparison between different prediction methods using
collected measurements

VII. CONCLUSION

In this paper, we proposed an LSTM-integrated latency
prediction framework for MEC supported delay-sensitive V2X
applications. We first perform latency measurements from
both fixed location and mobility scenarios in an LTE-based
MEC network. Based on the observation of collected latency
data, we develop a prediction model based on a combination
of LSTM and statistical approaches. Performance based on
real-time collected data shows that both the integrated LSTM
can achieve lower the prediction error with more stability.

REFERENCES

[1] NGMN Alliance, “V2X white paper,” Jun. 2018.
[2] V. John et al., “Estimation of steering angle and collision avoidance for

automated driving using deep mixture of experts,” IEEE Transactions
on Intelligent Vehicles, vol. 3, no. 4, pp. 571-584, Dec. 2018.

[3] 5GAA, “Toward fully connected vehicles: Edge computing for advanced
automotive communications,” White Paper, Dec. 2017.

[4] Y. Xiao, M. Krunz, H. Volos, and T. Bando, “Driving in the fog: Latency
measurement, modeling, and optimization of LTE-based fog computing
for smart vehicles,” in Proc. IEEE SECON’19, Boston, MA, June 2019,
pp. 1–9.

[5] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Trans. Veh. Technol., vol.
68, no. 5, pp. 5031–5044, May 2019.

[6] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no.
3, pp. 4005–4018, June 2019.

[7] 3GPP, “LTE; requirements for Evolved UTRA (E-UTRA) and Evolved
UTRAN (E-UTRAN),” 3GPP TR 25.913, Feb. 2010.

[8] H. Volos, T. Bando and K. Konishi, “Latency modeling for mobile edge
computing using LTE measurements,” IEEE VTC’18, Chicago, IL, pp.
1–5.

[9] Y. Wang, Y. Shen, S. Mao, X. Chen, and H. Zou, “LASSO & LSTM
integrated temporal model for short-term solar intensity forecasting,”
IEEE Internet Things J., vol.6, no.2, pp.2933–2944, Apr. 2019.

[10] X. Wang, Z. Yu, and S. Mao, “Indoor localization using magnetic
and light sensors with smartphones: A deep LSTM approach,” Mobile
Networks and Applications (MONET) Journal, DOI: 10.1007/s11036-
019-01302-x.

[11] I. Burago, M. Levorato, and A. Chowdhery, “Bandwidth-aware data
filtering in edge-assisted wireless sensor systems.” in Proc. IEEE
SECON’17 pp. 1–9. June 2017.

[12] C. Kyrkou, C. Bouganis, T. Theocharides and M. M. Polycarpou,
“Embedded Hardware-Efficient Real-Time Classification With Cascade
Support Vector Machines,” IEEE Trans. Neural Netw. Learn. Syst., vol.
27, no. 1, pp. 99-112, Jan. 2016.

[13] E. Schubert and P. J. Rousseeuw. “Faster k-Medoids clustering: im-
proving the PAM, CLARA, and CLARANS algorithms.” in Proc. In-
ternational Conference on Similarity Search and Applications. Springer,
Cham, pp. 171-187, 2019.

