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Abstract—In cognitive radio networks, secondary users (SUs)
face two conflicting objectives. Each SU seeks to minimize the
sensing duration while maximizing the detection probability of
primary users (PU) to avoid interfering with their transmissions.
Both objectives have a substantial effect on energy efficiency.
This paper investigates a noncooperative setting for selecting
the sensing duration when multiple SUs operate in the same
network. Here, each SU has a certain throughput requirement.
The interaction among SUs is captured via a satisfaction strategic
game with explicitly stated throughput demands. We prove that
depending on the throughput requirements, either zero, one
or two Satisfaction Equilibria (SE) exist. We then provide a
fully distributed learning algorithm (SELA) to discover them.
Extensive simulation results show the validity of the proposed
SELA and illustrate the relationship between the throughput
demand and the sensing duration.

Index Terms: Cognitive Radio Networks, Strategic Sens-
ing, Satisfaction Equilibrium, Learning Algorithm, QoS.

I. INTRODUCTION

In Spectrum-adaptive cognitive radio networks (CRNs),
secondary users (SUs) are granted access to the spectrum holes
when the primary users (PUs) are not communicating. To avoid
interfering with PUs, channel sensing is performed by SUs
before attempting any transmission. Sensing techniques fall in
one of the following three categories [1]: energy detection,
matched filtering and feature detection. Cooperative sensing
among multiple SUs may also be used to improve sensing
accuracy and cope with channel fading and interference.

The authors of [2] tackled the problem of uncertain capacity
in CRNs. They provided a QoS model to investigate the
performance of SUs in terms of approximated delay violation
probability and mean time delay. To address sensing errors,
they proposed a framework for collaborative sensing between
SUs. In [3] a spectrum sensing algorithm for CR with QoS
support is proposed. To optimize the sensing duration, parallel
sequential probability ratio tests (SPRTs) were used. The
proposed approach is benchmarked against fixed-sample size
(FSS) detectors and its performance advantage was demon-
strated. In [4] joint optimization of the spectrum sensing and

data transmission with amplify-and-forward relays are consid-
ered. This approach significantly improves SU’s throughput in
comparison with other mechanisms. The work in [5] optimizes
the total throughput of SUs as a trade-off between an access
parameter p and sensing design. The objective is to optimize
the channel assignment to SUs and the associated sensing
times. One interesting feature of this work is its cross-layer
nature. Indeed, both medium access layer (p-persistent CSMA-
based) and physical layer (semi-distributed cooperative spec-
trum sensing) are considered in the optimization. In [6], the
authors cast the spectrum sensing window optimization into
a convex optimization problem. The sensing duration for SUs
operating on Ultra Wide Band (UWB) is optimized subject
to constraints on detection and false-alarm probabilities. A
two-step game for joint sensing and opportunistic access is
presented in [7]. The authors provide a characterization of the
Nash equilibria and a combined distributed learning algorithm
to help SUs determine their optimal payoffs and strategies.

In this paper, we propose a satisfactory sensing approach
based on energy detection. We extend the work of [8] by
providing a distributed mechanism for SUs to discover their
optimal sensing durations based on their satisfaction levels.
These satisfaction levels are expressed in terms of throughput
requirements.

Our contribution is threefold. First, we formulate the prob-
lem of choosing the duration of the sensing period to meet
a given SU’s throughput requirement as a noncooperative
satisfactory sensing game. Second, we prove that the proposed
game has either zero, one, or two satisfaction equilibria (SEs).
Finally, we provide a distributed learning algorithms for the
SUs to obtain their optimal sensing durations along with a
selection approach of satisfaction equilibrium based on the
value of the miss-detection probability.

The remainder of this paper is organized as follows. Section
II presents the channel sensing model and lists the main as-
sumptions. The satisfactory sensing game is presented and its
Nash/Satisfaction equilibria existence and enumeration stated
in Section III, which is followed in Section IV by the proposed
fully distributed Satisfactory Equilibria Learning Algorithm



(SELA). Numerical results are presented and discussed in Sec-
tion V. Section VI provides some conclusions and directions
for future work.

In the rest of the paper, we will use the bold notation for
vectors and normal notation for scalars.

II. CHANNEL SENSING MODEL

We consider a set N of SUs, with cardinality N , competing
to access a licensed spectrum when it is unused by PUs.
SUs are symmetric in the sense that they will attempt to
transmit if the channel is sensed to be free with the same
probability q. However, SUs have different throughput re-
quirements {ri}i∈N . Each SU controls its sensing duration
before attempting a transmission. The frame duration of SUs
T divides into the sensing and transmission periods.

Throughout this paper, we work under the following as-
sumptions:
• Energy-based spectrum sensing: PUs activity is deter-

mined by measuring the received signal strength. If the
received signal power exceeds a predefined threshold ε,
the channel is declared busy. Otherwise, it is declared idle
and SUs may attempt to transmit.

• Due to imperfect sensing, SUs may either declare idle a
busy channel (miss-detection) or busy an idle one (false-
alarm).

• Frame-based time-synchronized approach: all SUs trans-
mitters start simultaneously at the beginning of each
frame. Each frame consists of a sensing period, followed
by data transmission (if any) for the rest of the frame.

• Homogeneous spectrum environment, i.e, the state of the
PU is the same at both ends of the SU link.

• SUs adopt a slotted aloha-like protocol as their medium
access control protocol.

During primary users’ activities, each SU samples the
received signal at sampling frequency fs. Without loss of
generality, we assume that all SUs use the same sampling
frequency. The discrete received signal at the SU i can be
represented as

yi(t) =

{
hi.s(t) + n(t) : Hypothesis H1(Busy)
n(t) : Hypothesis H0(Idle)

(1)

where s(t) is the transmitted signal, hi is the channel
gain experienced by SU i and n(t) is a circularly sym-
metric complex Gaussian noise with mean 0 and variance
E[|n(t)|2] = σ2. The channel state is considered as the binary
hypothesis test H0 and H1.

Let τ be the sensing duration and M the number of samples.
Thus, we have M = τfs. It follows that the average energy
detected by SU i is

Ti(M) =
1

M

M∑
i=1

|yi(t)|2. (2)

A key performance metric for CRNs is the false-alarm proba-
bility. This metric corresponds to the case where the channel is

declared busy when it is idle in reality. When energy detection
is adopted, the false-alarm probability is given by:

Pfa(τi) =
1

2
erfc(A

√
τi), A ,

(ε− σ2)
√
fs

σ2
. (3)

where erfc(.) is the complementary error function.

III. SATISFACTORY SENSING GAME

The sensing duration setting involves multiple SUs who
choose independently the strategy maximizing their throuhput.
The SU i picks a value within [0, T ] for its sensing duration τi.
From a single SU perspective, there is a trade-off between the
false-alarm probability and the transmission phase duration.
On one hand, as the sensing duration increases, the false-alarm
probability Pfa decreases. On the other hand, the transmission
phase duration and the achievable throughput decrease. Be-
sides, as SUs contend for channel access, the sensing duration
of each SU will impact the overall interference probability and
consequently other SUs achievable throughput. This setup can
be naturally addressed using noncooperative game theory.

A. Mathematical Model

We model the distributed sensing based on energy detection
for SUs as noncooperative strategic satisfactory sensing game:

G = {N , {Ai}i∈N , {Ui}i∈N ,R} (4)

where:
• Ai = [0, T ] Every SU will choose a strategy τi ∈ [0, T ]

for its sensing duration. The strategy profile of the game
G is τ = (τi, τ−i), which denotes the vector of the
strategies chosen by the SU i and the other SUs are
denoted by −i (i.e, −i , N \ i).

• Ui(τi, τ−i) represents the payoff for SU i when selecting
strategy τi, when the other SUs choose the sensing
durations vector τ−i. Specifically, we take Ui as the
average normalized throughput per slot obtained by SU
i.

Ui(τi, τ−i) ,
T − τi
T

q(1−Pfa(τi))
∏
j 6=i

[1−q(1−Pfa(τj))]

× Pr(H0) (5)

From (5) it is straightforward to see that the payoff of SU
i is impacted by its own sensing duration choice but also
by the decisions of the other SUs on how much they will
sense the channel. If Pr(H0) = 0, i.e. there is always at
least one active primary, the SU throughput will always
be zero. On the other hand, if Pr(H0) = 1, there is no
need to do sensing and in this case throughput is only
limited by contention, i.e. Ui = q(1− q)N−1.

• R = (r1, . . . , rN ) represents the throughput requirements
for SUs. Consequently, ∀ i ∈ N , Ui(τi, τ−i) = ri.

Solutions of the game G with the property that no individual
deviation will happen are referred to as Nash Equilibrium [9].
A formal definition of Nash Equilibrium is given in Definition
1.



Definition 1. For a game G = {N , {Ai}i∈N , {Ui}i∈N }, a
strategy profile τ = (τi, τ−i) is a pure Nash equilibrium if:

∀ i ∈ N , ∀ τ
′

i ∈ Ai, Ui(τi, τ−i) ≥ Ui(τ
′

i , τ−i).

Depending on the throughput requirements of SUs, NE
might not exist. Even when it does, a SU may end up with the
highest achievable throughput at the expense of longer channel
sensing duration (i.e. shorter transmission period). One can
consider that SUs’ objective is to satisfy their throughput
requirements instead of considering that their aim is to max-
imize their own payoff subject to a set of constraints. Thus,
every strategy profile of the game where all SUs satisfy their
own throughput requirements is considered to be a satisfaction
equilibrium [10]. Let γi(τ ) be the set of feasible strategies for
a given throughput requirements profile R. Then,

γi(τ ) = {τi| Ui(τi, τ−i) = ri, ∀i ∈ N}. (6)

A formal definition for the concept of SE is provided next.

Definition 2. For a satisfactory sensing game G =
{N , {Ai}i∈N , {Ui}i∈N ,R}, a strategy profile τ = (τi, τ−i)
is a SE if:

∀ i ∈ N , τi ∈ γi(τ ).

B. Existence and Enumeration of Nash/Satisfaction Equilibria

We will first tackle the existence issue of the NE for the
game G. We formulate the following proposition:

Proposition 1. There exists a unique NE for game G with no
throughput requirements. We denote the corresponding sensing
profile by µ = (µ1, . . . , µN ).

The detailed proof is provided in [8] and is based on the
concavity of the payoff function along with the dominance
solvability criterion [11]. Both existence and uniqueness of
the NE are verified.

Definition 3. (S-modular game): The strategic form game G
is a supermodular (submodular) game if for every player i:

i) The strategy space is a compact subset of R;
ii) Ui(τi,τ−i) is upper semi-continuous in τi and continuous

in τ−i.
iii) Ui has increasing (resp. decreasing) differences in

(τi,τ−i) i.e., ∂
2Ui(τi,τ−i)

∂τi∂τj
≥ 0 (resp. ∂

2Ui(τi,τ−i)

∂τi∂τj
≤ 0).

S-modular games exhibit very nice mathematical properties
referred to as strategic complementarities. For super-modular
(sub-modular) games, the best response is an increasing (de-
creasing) function of the other players’ strategies. Besides,
simple learning algorithms such as iterated best reply dynam-
ics are guaranteed to converge to one of the extreme equilibria.
The satisfactory sensing game G is S-modular and switches
modularity over the PU frame duration T .

Proposition 2. There exists a unique µi ∈ (0, T ] such as G is
submodular over (0, µi] and supermoduler over [µi, T ] where
µ is the NE profile of the game G.

Proof: Let us compute the mixed second-order derivative
of the payoff Ui(τi,τ−i) for SU i with respect to its own
strategy τi and the strategy of another SU τj .

∂2Ui(τi, τ−i)
∂τi∂τj

= −Be−
A2τj

2 Aq2

8Tπ3/2√τjτi
× C√

2
(7)

where:

C ,(
A
√
2 (T − τi) e−

A2τi
2 + 2

√
π

(
erfc

(
A
√
τi√
2

)
− 2

)
√
τi

)
and

B ,
∏
k 6=i,j

[1− q(1− Pfa(τk))] (8)

When the sensing duration equals the SU’s frame duration T ,
∂2Ui(τi,τ−i)

∂τi∂τj
has the following value:

−
Be−

A2τj
2 Aq2

√
2
(

erfc
(
A
√
T√
2

)
− 2
)

8T
√
τjπ

(9)

We notice that ∂2Ui(τi,τ−i)

∂τi∂τj
|τi=T ≥ 0.

For very small values of τi we have:

lim
τi→0

∂2Ui(τi, τ−i)
∂τi∂τj

= lim
τi→0

− Be−
A2τj

2 A2q2

8π
√
τiτj

≤ 0 (10)

We inspect the monotonicity of the mixed second-order
partial derivative of Ui(τi, τ−i):

∂

∂τi

[
∂2Ui(τi, τ−i)

∂τi∂τj

]
=

B(Aq)2e−
A2

2 (τi+τj)
(
A2τi(T − τi) + T + 3 τi

)
16Tπ τi3/2

√
τj

(11)

The first-order partial derivative of ∂2Ui(τi,τ−i)

∂τi∂τj
is pos-

itive. Consequently, the mixed second-order derivative of
Ui(τi, τ−i) is non-decreasing in τi.

By continuity and monotonicity of the function ∂2Ui(τi,τ−i)

∂τi∂τj
and from equations (9) and (10), we conclude that there exists
a unique µi ∈ (0, T ] such that:

• Ui(τi, τ−i) is sub-modular on (0, µi]
• Ui(τi, τ−i) is super-modular on [µi, T ]

To prove that µ coincides with the NE of the game G, we
state the first-order optimality condition:

∂ Ui(τi, τ−i)
∂ τi

= 0

⇐⇒

(
q(erfc

(
A
√

τj
2

)
− 2) + 2

)
qB

8T
√
πτi

C = 0



By noting that
(
q(erfc

(
A
√

τj
2

)
− 2) + 2

)
> 0, we have:

∂ Ui(τi, τ−i)
∂ τi

|τi=µi = 0

⇐⇒ ∂2Ui(τi, τ−i)
∂τi∂τj

|τi=µi = 0 ⇐⇒ C = 0,

where:
µi = argmax

τi

Ui(τi, τ−i) (12)

We proceed now to the enumeration of existing satisfactory
equilibria by taking into account the mathematical properties
of the payoff functions. We will use the fact that the game
is S-modular and quasi-concave to enumerate its satisfaction
equilibria, as stated in Theorem 1.

Theorem 1. The satisfactory sensing game G has either zero,
one, or two satisfaction equilibria.

Proof: Without loss of generality, we restrict ourselves to
the satisfaction game played by two SUs i and j. The same
reasoning holds for the general case when N > 2, since no
specific assumption is made about i and j. Let Umaxi denote
the maximum residual capacity of the channel for a given SU.
In order for the game G to possess at least one equilibrium,
the following condition on the sum of required throughputs
must hold: ∑

i∈N
ri ≤

∑
i∈N

Umaxi . (13)

If condition (13) holds, by the concavity of the payoff function
for each player i ∈ N w.r.t its own strategy (sensing duration
τi), Ui(τi, τj) = ri admits:
• One solution if ri = Umaxi or ri < Ui(0, τj), ∀ τj ∈

[0, T ].
• Two solutions if Ui(0, τj) ≤ ri < Umaxi , ∀ τj ∈ [0, T ].
The two possible cases are illustrated in Fig. 1 along with

the extreme payoffs Ui(τi, 0) and Ui(τi, T ). Since Ui(τi, τj) is
strictly increasing in τj , the payoff Ui(τi, τj) will be bounded
by the extreme payoffs.

The first case is straightforward to prove. We investigate
the second case where every user i has two possible choices
τ1i and τ2i with τ1i < τ2i . All the possible combinations
of size M are potential strategies. We argue that among all
the possible combinations, only two solutions, namely: τ =
(τ11 , . . . , τ

1
i , τ

1
M ) and τ = (τ21 , . . . , τ

2
i , τ

2
M ) are satisfaction

equilibria, satisfying the following inequality:

τ ≺ µ ≺ τ (14)

with ≺ being the component-wise order operator.
By Proposition 2, the proposed game has strategic comple-

mentarities. Consequently, if player i decides to play τ2i thus
increasing its sensing duration, then the interest of the others
is to increase their strategies, as the game is supermodular on
[µi, T ]. Conversely, as the game is submodular on (0, µi], if
one player i decides to play τ1i thus decreasing its sensing

NE
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U

 i
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a
y
o
ff

τi

ri=0.124

Ui(τi,T)
Ui(τi,0)

ri =0.117

ri =0.07

Fig. 1. Number of SEs as a function of the required throughput (T=1).

duration, then the interest of the others is to decrease their
strategies as the game has decreasing differences. We conclude
that the satisfactory sensing game G admits two equilibria
{τ , τ} when every SU has two sensing duration choices.

C. Equilibrium selection

As mentioned previously, the satisfactory game G has either
zero, one or two satisfaction equilibria. This gives rise to the
problem of selecting the optimal SE when there are two of
them. Indeed, it may be tempting to always choose the smallest
SE to maximize the transmission duration. Nevertheless, in the
imperfect sensing scenario, this could be very degrading to the
primary users if their detection fail.

The IEEE 802.22 standard defines thresholds for the false-
alarm probability (Pfa = Pr(H1|H0)) and miss-detection
probability (Pmd = Pr(H0|H1)) [12]. Typical values range
from 0.01 to 0.1 for Pfa and from 0.05 to 0.1 for Pmd.
To simplify the selection of the SE we propose to take into
consideration the value of Pmd, estimated over a window of
previous slots. The intuition behind this approach is that if
Pmd is very small, then it is safe to sense the channel for a
small duration (the smallest SE) and consequently achieve a
larger transmission time without degrading the primary user’
performance. In contrast, if Pmd is high, then the SUs will
sense the channel for a longer duration (the largest SE) and
will transmit for a shorter period of time in order to not perturb
primary users.

D. Symmetric game analysis

We shift our attention to the symmetric game where all SUs
sense the channel for the same duration τ (scalar value). The
payoff for each SU simplifies to the following:



Ui(τ, . . . , τ) =
T − τ
T

q(1−Pfa(τ))[1−q(1−Pfa(τ))](N−1)

× Pr(H0) (15)

To find the optimal access probability q, we formulate the
first-order optimality condition:

d Ui(τ, . . . , τ)
d q

= − (T − τ) (1 + n (−1 + fa) q)

T (1 + (−1 + fa) q)

× (1 + (−1 + fa) q)
n−1

(−1 + fa)Pr(H0) = 0 (16)

This condition simplifies to:

q∗ =
1

n (1− fa)
. (17)

Note that when the false-alarm probability Pfa = 0, we
arrive at the maximal achievable throughput per user for
slotted aloha: 1

N . Also, the optimal access probability q∗

is independent of the channel idleness probability Pr(H0).
We illustrate in Fig. 2 the evolution of the optimal access
probability q∗ for different values of τ in the case of seven
secondary users.

q
*

Fig. 2. Optimal access probability vs normalized sensing duration (T = 1).

From Fig. 2 we conclude that as the sensing duration
increases, SUs will be less tempted to access the channel since
the transmission phase duration T − τ will decrease.

IV. DISTRIBUTED ALGORITHM FOR LEARNING
SATISFACTION EQUILIBRIA

In centralized learning schemes, each player selects his
strategies sequentially. In each time slot, a player selects
a strategy that represents the best response (BR) to the
strategies chosen by the other players in the previous time
slot. BR-based centralized algorithms such as best reply
dynamics give nice convergence results for a particular
class of games, including submodular/supermodular games.

However, they require that each player knows what strategies
the other players are taking. In our case, the player (SU)
may not be aware of the sensing duration chosen by other
SUs. Thus, a learning mechanism that relaxes this assumption
is needed. Players observe only their own payoff, and own
strategies; the strategies of the others are not needed. We
propose a distributed learning algorithm based on FDTPA
[13] to learn the satisfactory equilibria.

The main ideas of SELA are the following :
• Each SU can observe the sucess/failure of its own trans-

mission attempt.
• SU can learn its effective throughput based on the obser-

vation result.
• The SU computes the deviation of its current throughput

from its own demand (ri). Then, adjusts the sensing
durations to decrease this error to zero.

• On convergence, each SU’s effective throughput satisfies
its own requirement.

Let 1{q,Pfa ,H0,i}
success be an indicator function that takes the

value of one when the transmission for SU i is successful,
given access probability q, false-alarm probability Pfa and
channel idleness probability Pr(H0). The Satisfactory Equi-
librium Learning Algorithm (SELA) is illustrated in Algorithm
1.

Algorithm 1: Satisfactory Equilibrium Learning Algo-
rithm
Data:
H: Learning horizon;
N : Set of SUs;
q: Channel access probability;
δi: Learning step size for SU i;
Result: Satisfaction Equilibrium profile (τi, τ−i), i ∈ N

1 Initialization: Each SU i, initializes τi,0;
2 while k ≤ H do
3 foreach player i = 1,2,. . . ,N do
4 Uk+1

i := Uki + δk+1
i × 1{q,Pfa ,H0,i}

success × T−τki
T

5 τk+1
i := τki + δk+1

i (ri − Uk+1
i )

6 end
7 k := k + 1;
8 end

V. NUMERICAL RESULTS

For our simulations, we set the energy detection parameters
such that: ( εσ2 − 1)

√
fs = 7. To cope with the transmission

randomness induced by the slotted aloha channel access and
false-alarm probabilities, the simulations were repeated 100
times and the results averaged. We consider the following
scenarios:
• Two SUs (SU1, SU2) with symmetric throughput require-

ments (0.1, 0.1). The channel access probability q takes
the values {0.2, 0.21, 0.22} and the probability of the
channel being idle is Pr(H0) = 0.95.



• Three SUs (SU1, SU2, SU3) with asymmetric throughput
requirements (0.076, 0.08, 0.09) and the SUs payoffs are
the general payoffs conditioned on the channel being idle
(average throughput normalized by Pr(H0)).

First, we numerically compute the normalized SE and NE
for the first scenario when q = 0.2. The results are depicted
in Fig. 3.

(0.273,0.273)

(0.015,0.015)

(0.12,0.12)

U1(τ1,τ2)=r1
U2(τ1,τ2)=r2
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Fig. 3. Sensing durations τ1 and τ2 when r1 = r2 = 0.1, T = 1 and
q = 0.2.

SELA was run with the throughput requirements of the first
simulation scenario. The SE when q = 0.2, 0.21 and 0.22 (to
which SELA converges) are illustrated in Fig.4 and Fig.5. We
first notice that for q = 0.2, SE discovered by SELA are very
close to those computed numerically. For the largest SE, as q
increases the required sensing duration grows proportionally.
Whereas for the smallest SE, the opposite behavior is obtained
and the sensing duration decreases when q increases.
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The largest SE provides better protection to the PU. Indeed,
since the SUs will sense the channel for a longer duration,
their probability of miss-detection Pmd will decrease. Sensing
for a longer time will also result in reducing the false-alarm
probability Pfa . When the sensing capabilities of the SUs are
very good and the standard defined threshold on Pmd very
small, the smallest equilibrium will be interesting to the SUs
as it maximizes the transmission period duration.

In the second scenario, we consider the payoff conditioned
on the channel being idle. We run SELA with the correspond-
ing throughput requirements and obtained convergence for the
two SE. The largest and smallest SE are depicted in Fig. 6
and Fig. 7, respectively.
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Fig. 6. Normalized Satisfaction Duration r1 = 0.076, r2 = 0.08, r3 = 0.09

In Fig. 6 we notice that at the smallest SE, the sensing
duration is an increasing function of the required throughput.
As the SUs throughput requirements grow, SUs should listen
more to the channel. In contrast, for the largest satisfaction
equilibrium illustrated in Fig. 7, the sensing duration is a
decreasing function of the required throughput. SUs with
higher throughput requirements will sense the channel less



often than SUs with smaller requirements.
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Only 2×104 iterations are required for SELA to converge to
the satisfaction equilibria. Fig. 8 illustrates the evolution of the
SUs’ normalized throughput as they discover their satisfaction
equilibria. As SELA converges to SEs, the obtained throughput
becomes identical to the SUs requirements.

One interesting feature of having two SEs is that we
could use the smallest one to enhance the underlay access
in cognitive networks by sensing for a short duration before
attempting to communicate. The largest SE will be used in
traditional overlay CRNs to define the sensing period.
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Fig. 8. Normalized throughput at SE (r1 = 0.076, r2 = 0.08, r3 = 0.09).

VI. CONCLUDING REMARKS

This paper introduced a distributed mechanism for deter-
mining the duration of the sensing period in CRNs. We
modeled the problem as a satisfactory game with a set of
throughput requirements for SUs. First, we provided existence
and uniqueness proofs for the Nash Equilibrium and then
demonstrated that the satisfactory game has either zero, one or
two Satisfaction Equilibria. Then, we proposed a distributed

Satisfaction Equilibrium Learning Algorithm (SELA) and con-
ducted simulations and numerical investigations to corrobo-
rate our theoretical results. We also presented a satisfaction
equilibrium selection approach based on the miss-detection
probability.
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