
Stateless QoS Routing in IP Networks

Baoxian Zhang* Marwan Krunz** Hussein T. Mouftah* Changjia Chen***
* Department of Electrical & Computer Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada.

** Department of Electrical & Computer Engineering, University of Arizona, Tucson, AZ 85721.

*** School of Electronics and Information Engineering, Northern Jiaotong University, Beijing 100044, P.R. China.

Abstract: QoS routing has generally been addressed in the context of
reservation-based network services (e.g., ATM, IntServ), which
require explicit (out of band) signaling of reservation requests and
maintenance of per-flow state information. It has been recognized that
the processing of per-flow state information poses scalability
problems, especially at core routers. To remedy this situation, in this
paper we introduce an approach for stateless QoS routing in IP
networks that assumes no support for signaling or reservation from
the network. Simple heuristics are proposed to identify a low-cost
delay-constrained path. These heuristics essentially divide the end-to-
end path into at most two “superedges” that are connected by a “relay
node”. Routers that lie on the same superedge use either the cost
metric or the delay metric (but not both) to forward the packet.
Simulations are presented to evaluate the cost performance of the
proposed approach.

I INTRODUCTION

A. Motivation

The growing popularity of real-time and multimedia
applications over the Internet has stimulated strong interest in
extending QoS support to existing routing protocols (e.g.,
OSPF, BGP) [1][5]. Several recent studies have acknowledged
the need for scalable QoS routing solutions [3][20] and have
given the stimulus to a number of proposals on how to
integrate QoS routing into a Differentiated Services (DiffServ)
framework [7][10].
So far, most work on QoS routing has been carried out under
the assumption that the underlying QoS architecture is
reservation based. In such architecture, routers maintain per-
flow state information (e.g., flow identity, the amount of
allocated bandwidth, priorities, etc.) and end systems use
explicit reservation messages (e.g., RSVP messages, ATM
PNNI signaling) to indicate their QoS requirements. The
advantage of this explicit-reservation model is that it allows
the service provider to guarantee the requested QoS on an end-
to-end basis with a high degree of accuracy. On the other hand,
it has been widely recognized that maintaining per-flow state
information could lead to scalability problems at core routers.
Accordingly, the focus of the research community has shifted
to stateless QoS frameworks (e.g., DiffServ) that rely on per-
class service differentiation at core routers, leaving the
maintenance of the per-flow state information to edge routers.
A stateless service model seems particularly appealing to
router vendors. Thus far, the research on stateless QoS has
mainly focused on packet scheduling issues (e.g., [11][16]). In
fact, it has been noticed that existing QoS routing solutions

have been developed “at some distance from the task of
development of QoS architectures” [8]. In particular, current
QoS architectural models, including the DiffServ, seem to
implicitly assume that various classes of traffic are forwarded
along the same (best effort) path, with service differentiation
being achieved locally through appropriate packet scheduling.
Decoupling routing and QoS provisioning can lead to
“inefficient” selection of routes, hence reducing the likelihood
of meeting the applications end-to-end QoS requirements.
In this paper, we propose a simple approach for stateless QoS
routing in IP networks. This approach is intended to
complement, and be part of, existing stateless QoS
architectures, such as the DiffServ. The proposed approach
requires each router to maintain routing entries for each
concerned routing metric (e.g., delay, cost, etc.). It involves
the injection of probe messages for exploration of viable QoS
paths. No state information is maintained at a router, which
performs the forwarding function based on information
contained in the packet header. Protocols and algorithms for
supporting the proposed stateless QoS routing framework are
presented. Our approach requires very small extra
computational overhead beyond what is currently used in best-
effort routing.
The rest of this paper is structured as follows. In the remaining
of this section, we present the network model and an
algorithmic statement of the QoS routing problem. In Section
2 we present a series of source-based and distributed heuristics
for delay-constrained path selection. An approach for QoS
based packet forwarding is presented in Section 3. Simulation
results are presented in Section 4, following by concluding
remarks in Section 5. Due to space limitation, proofs are
omitted from this paper, and they can be found in an
accompanying technical report.

B. Network Model and Problem Formulation

In many practical situations, the goal of QoS routing reduces
to finding a low-cost delay constrained path, which can be
stated as follows:
Definition 1: Delay-constrained least-cost (DCLC) problem:
Consider a network that is represented by a directed graph G =
(V, E), where V is the set of nodes and E is the set of possibly
asymmetric links. Each link is associated with
a cost value C(e) and a delay value D(e). The cost of a link can
be assigned in various ways (e.g., link utilization, inverse of
available bandwidth, etc.). Given a delay constraint , the

Ejie),(

1600

0-7803-7206-9/01/$17.00 © 2001 IEEE

0-7803-7208-5/01/$17.00 (C) 2001 IEEE

problem is to find a path P from a source node s to a
destination node d such that:

1. D(P) e PD(e) , and
2. C(P) e PC(e) is minimized over all paths

satisfying the first condition.
The DCLC problem is known to be NP-hard [4]. Several
computationally efficient heuristics have been proposed in the
literature (e.g., [19][15][17][6]). In [19] the author proposed an
algorithm for finding the optimal solution to the DCLC
problem, but with worst-case running time that grows
exponentially with the size of the network. Two -optimal
approximation algorithms were proposed by Hassin [6] with
running times of O(loglogB(|E|(|V|/)+loglogB)) and
O(|E|(|V|2/)log(|V|/)), respectively, where B is an upper
bound on the optimal cost. Despite the algorithmic elegance of
these algorithms, they are still too complex to be applied in
large-scale networks. Furthermore, they all are source based.
Distributed solutions have been proposed in [15][17], with
worst-case message complexities of O(|V|2) and O(|V|),
respectively. In these heuristics, the path finding process
constructs one node at a time, where in each time the added
node lies on either the least-cost (LC) path or on the least-
delay (LD) path.

II PATH SELECTION ALGORITHMS

To achieve simple QoS-based forwarding, we restrict our
scope to path selection algorithms in which the computed path
consists, at most, of two concatenated superedges. A
superedge is defined as a connected segment of the path on
which all routers use the same routing metric for packet
forwarding. First, we consider source based path selection
heuristics.

A. Source-based Heuristics

Consider the DCLC problem. Suppose that a cost-efficient
delay-constrained path is to be found between a source node s
and a destination node d. Let Plc(u,v) and Pld(u,v) indicate,
respectively, the LC and LD paths from node u to node v,
where u and v are any two nodes in V.

Heuristic 1

A trivial heuristic for DCLC is to either choose the LC path or
the LD path, i.e., the computed path consists of only one
superedge. Clearly, if D(Plc(s,d)) then the optimal solution
is given by lc . Otherwise, the LD path is chosen
provided that D(P

(,)P s d
ld(s,d)) (if , there is no

feasible path). The computational complexity of this simple
heuristic is twice that of Dijkstra's, if link-state routing is used.
If distance-vector routing is used, the complexity is simply
O(1).

((,))ldD P s d

Heuristic 2

Going one step further, we allow the computed path to consist
of up to two superedges. For each node v V, the algorithm
considers the four possible paths: Pld(s,v) Pld(v,d),
Pld(s,v) Plc(v,d), Plc(s,v) Pld(v,d), and Plc(s,v) Plc(v,d). Of
the 4|V| possible paths, the algorithm selects the one with the
minimum cost provided that this path satisfies the delay

constraint. The node that connects the two superedges on the
selected path is called the relay node. Note that for an
arbitrary node v, the path Pld(s,v) Pld(v,d) is not necessarily
the LD path from s to d. More specifically, Pld(s,v) Pld(v,d)
may contain a loop (i.e., node v may not be on the LD path
from s to d). Likewise, Plc(s,v) Plc(v,d) is not necessarily the
same as Plc(s,d). However, it is easy to show that the
minimum-cost path returned by the algorithm is guaranteed to
be loop free. The complexity of Heuristic 2 is four times that
of Dijkstra's.
Heuristic 2 can be implemented as follows:
Step 1: Compute the LD path from node s to every node v V.
Step 2: If , return FAILURE (there is no feasible

path). Otherwise, go to Step 3.
((,))ldD P s d

Step 3: Compute the LC path from node s to every node v V.
Step 4: If D(Plc(s,d)) , return the path . Otherwise,

continue.
(,)lcP s d

Step 5: Compute the LD path from every node v V to d.
Step 6: Compute the LC path from every node v V to d.
Step 7: From the resulting 4|V| paths, Pi(s,v) Pj(v,d) where i, j {LC,

LD} and v V, choose the one with the smallest cost provided
that this path satisfies the delay constraint.

Steps 1 and 3 require two runs of Dijkstra's algorithm, while
Steps 5 and 6 require two runs of Reverse Dijkstra's [2]. The
running time of Step 7 is O(|V|). Therefore, the overall
complexity of Heuristic 2 is O(|V|2).
Heuristic 3
Heuristic 3 represents a tradeoff between the previous two
heuristics (less computational complexity than Heuristic 2 but
better performance than Heuristic 1). In here, each node v in
the network maintains a delay table and a cost table, each
consisting of |V|-1 entries (one entry for every other node).
The entry for node vj at node v consists of:

The address of node vj;
The delay of the LD path from v to vj;
The cost of the above path, i.e., C(Pld(v,vj)); and
The predecessor of vj on the LD path from v to vj,
ld_lhop(Pld(v,vj)).

Similar information is maintained in the cost table but with the
LD path replaced by the LC path.
Given the above information, the algorithm first verifies that
there is a feasible path in the network by checking whether
D(Pld(s,d)) . If so, the algorithm checks if the LC path
Plc(s,d) is feasible, in which case it returns it as the optimal
solution. Otherwise, the algorithm proceeds in two phases, as
shown in Figure 1. In Phase 1, the search proceeds backward
from the destination node d to the source node s along the LD
path Pld(s,d) until a relay node v is found for which
D(Plc(s,v))+ D(Pld(v,d)) . If such a node is found, Phase 1
returns the path Plc(s,v) Pld(v,d). Otherwise, the returned path
from this phase defaults to Pld(s,d). Phase 2 attempts to
improve upon the outcome of Phase 1 by searching for a
feasible path that consists of a LD segment from s to a relay
node v followed by a LC segment from node v to node d (i.e.,
the search starts from node d and proceeds along the LC path).

1601

0-7803-7208-5/01/$17.00 (C) 2001 IEEE

/* Phase 1 */
1. active_node =: d /*active_node is the node being tested for a relay node */
2. PATH =: Pld(s,d) /* PATH is the path returned by the algorithm; Pld(s,d)

is the first known feasible path */
3. while active_node s, do
4. D(Pld(active_node,d)) =: D(Pld(s,d)) - D(Pld(s,active_node))
5. if D(Plc(s,active_node)) + D(Pld(active_node,d))
6. PATH =: Plc(s,active_node) Pld(active_node,d)
7. Go to Line 11
8. else set active_node to predecessor of active_node on Pld(s,active_node)
9. end if-else
10. end while
/* Phase 2 */
11. active_node =: d
12. while active_node s, do
13. D(Plc(active_node,d)) =: D(Plc(s,d))-D(Plc(s,active_node))
14. if D(Pld(s,active_node)) + D(Plc(active_node,d))
15. if C(Pld(s,active_node)) + C(Plc(active_node,d)) < C(PATH)

/* C(PATH) is obtained from Phase 1 */
16. PATH =: Pld(s,active_node) Plc(active_node,d)
 /* a feasible path with a lower cost is found */
17. else set active_node to predecessor of active_node on

Plc(s,active_node); continue while loop
18. end if-else
19. else break while loop
20. end if-else
21. end while
22. return PATH

Figure 1: Pseudo-code for Heuristic 3.

B. Probe-Based Distributed Heuristic

The previous heuristics are source based. We now present a
distributed heuristic, called distributed delay-constrained
algorithm (DDCA), which is more suitable for stateless
routing. Similar to the previous heuristics, DDCA is also based
on the previously discussed relay strategy. In essence, DDCA
is an extension of the DCR algorithm [17], which uses the
following procedure to construct a delay-constrained path from
a source node to a destination node. The reservation message
travels along the LD path until reaching a node from which the
delay of its LC path satisfies the delay constraint. From that
node and on, the message travels along the LC path all the way
to the destination. In DDCA, we replace the path construction
process by a path probing process and extend the probing
direction to include both the LC and LD directions.
In DDCA, each node in the network maintains a delay table
and a cost table. These tables are similar to those maintained
in Heuristic 3 except that the entry for the predecessor node to
a destination is replaced by the next hop along the LD (LC)
path, ld_nhop (lc_nhop). Similar information is also
maintained in the algorithms in [15][17]. The information in
the delay and cost tables can be distributed to nodes using
distance (or path) vector protocols.
Initially, the algorithm checks the feasibility of the LC path
from s to d. If D(Plc(s,d)) , the algorithm returns this path.
Otherwise, the algorithm checks if a feasible path is available
(by verifying that D(Pld(s,d))). If so, a probing protocol is
used to discover an appropriate relay node that results in a
low-cost feasible path. According to this protocol, the source

node constructs two probe messages and sends them to a
destination node d. One of these messages is sent along the LD
path to node d, while the other is sent along the LC path. Each
probe message contains the following fields:

- probe_direction: Forwarding direction of the probe
message (LC or LD);

- next_node: Address of next hop on the path of the probe
message;

- relay_node: Address of relay node (initially set to NULL);
- delay_so_far: Accumulated delay of path traversed by the

probe message from node s up to the current node;
- cost_so_far: Accumulated cost of path traversed by the

probe message from node s up to the current router;
- delay_constraint ();
- total_cost: Cost of the best-known feasible path, initially

set to C(Pld(s,d)). Once a relay node is discovered, the
value in this field is adjusted (reduced) to reflect the cost
of the new path;

- type: Type of probe message, which can be a probe query
message or a probe reply message.

Starting from the source, nodes along the LD (LC) path to d
are probed, one at a time. Consider, for example, the probe
message that is sent along the LD path. Node s sets the fields
in this message as follows:

probe_direction LD (bit 0)
next_node ld_nhop (read from the routing tables at node s)
relay_node NULL
delay_so_far D(s, ld_nhop)
cost_so_far C(s, ld_nhop)
delay_constraint
total_cost C(Pld(s,d)) (cost of the first known feasible path)

1. if probe_direction=LD
2. if delay_so_far + D(Plc(v,d)) /* node v is a relay node */
3. if cost_so_far + C(Plc(v,d)) < total_cost /* path is

better than the LD path */
4. relay_node v
5. total_cost cost_so_far + C(Plc(v,d))
6. end if
7. Send a probe reply message to node s
8. else /* node v is not a relay node */
9. delay_so_far delay_so_far + D(v, ld_nhop)
10. cost_so_far cost_so_far + C(v, ld_nhop)
11. Forward probe query message to ld_nhop
12. end if-else
13. else /* probe_direction=LC */
14. if delay_so_far + D(Pld(v,d)) /* node v is a relay node */
15. if cost_so_far + C(Pld(v,d)) < total_cost /* a better path

is found */
16. relay_node v
17. total_cost cost_so_far + C(Pld(v,d))
18. end if
19. delay_so_far delay_so_far + D(v,lc_nhop)
20. cost_so_far cost_so_far + C(v,lc_nhop)
21. Forward probe query message to lc_nhop
22. else /* node v is not a relay node */
23. Send a probe reply message to node s
24. end if-else
25. end if-else

Figure 2: Pseudo-code for DDCA.

1602

0-7803-7208-5/01/$17.00 (C) 2001 IEEE

The probe message that is sent along the LC direction is
initialized in an analogous manner, but with lc_nhop replacing
ld_nhop. Probe messages are sent to the next hop along the LD
and LC paths, respectively. When a node v receives a probe
message, it executes the algorithm in Figure 2.
In lines 7 and 23 Figure 2, the probe reply message contains
the direction of the probe (LD or LC), the identity of the relay
node v, and the total cost of the discovered path. Unless the
cost of the new path is less than C(Pld(s,d)), the value in the
relay_node field will stay at NULL. For the probe message
that is sent along the LD direction, a probe reply is generated
by the first relay node, say v, that satisfies
D(Pld(s,v))+D(Plc(v,d)) . This is because it is not possible to
obtain a lower-cost path than Pld(s,v) Plc(v,d) by selecting
another relay node on the LD path from v to d. This does not
apply to the probe message sent along the LC path, where in
this case the search continues for a possibly better relay node.
However, in this case, the search terminates unsuccessfully
(line 23) if the probe message sent along the LC path
encounters a node v for which D(Plc(s,v))+D(Pld(v,d)) > . This
is because for any subsequent node w on the path Plc(s,d), the
path Plc(s,w) Plc(w,d) cannot be feasible.

When node s receives the two probe reply messages, it selects
the path with the lower cost (if both messages contain NULL
in the relay node field, then node s selects the LD path
between s and d). A probe query message may visit up to |V-1|
nodes. Hence, the worst-case message complexity of DDCA is
O(|V|).

Two approaches can be used to encode the probe messages.
The first one is to encode these messages as ICMP packets.
Currently, intermediate routers do not process the payload
portion of an ICMP packet, so a new ICMP packet “type”
needs to be defined to allow routers to process probe messages
(e.g., insert the IP address of the relay node). The second, and
perhaps more viable, approach is to define a new protocol
type, call it Internet Probe Message Protocol (IPMP), which is
somewhat similar to ICMP except that it requires routers to
process the payload portion of the IPMP packet. Currently, the
protocol field byte in the IP header has several unassigned
values [14], and one of these values can be used for IPMP.

III DYNAMIC FORWARDING MECHANISM

Once a cost-effective constrained path has been identified
using DDCA, or a similar algorithm, the next step is to design
an appropriate forwarding mechanism that implements the
relay concept in a distributed manner. In here, we present one
such mechanism that is based on tunneling and packet
encapsulation. Suppose that a relay node v has been identified.
Without loss of generality, assume that v {s,d}. To forward a
packet from source node s to relay node v along, say, the LD
path, and then from node v to destination node d along, say,
the LC path, the original IP packet is encapsulated into another
(outer) packet. The destination address of the outer packet is
set to the address of the relay node, while the destination
address of the inner packet is set to the address of node d. Let

frm be a function that maps the routing metric (e.g., delay, cost,
etc.) into an appropriate numerical value that is encoded, say,
in some of the unused codepoints in the DS byte. For the outer
packet, frm(delay) is inserted, while for the inner packet
frm(cost) is inserted. The packet is then forwarded in a standard
hop-by-hop manner. The outer packet will be forwarded along
the LD path to node v, which in turn strips off the outer header
and forwards the inner packet to node d along the LC path.
Tunneling the original packet via node v can be achieved using
the IP-within-IP encapsulation technique, originally defined
for Mobile IP [12]. It is also possible to use minimal
encapsulation techniques such as the one defined in [13].
An advantage of the above approach is that once the relay
node is identified, routers forward packets in the same way as
in best-effort routing (the relay node need not process the
forwarding direction field, which is set at the source). Of
course, this comes at the expense of some overhead associated
with packet encapsulation and tunneling and with sending
probe messages.

IV SIMULATION RESULTS

We studied the cost performance of the previously presented
heuristics using simulated random topologies that were
generated using Waxman’s method [18]. For each experiment,
500 random graphs were created. In each random network, we
tried to set up delay-constrained paths between all possible
source-destination pairs.
In the first experiment, we study the performance of the
source-based path selection heuristics, which include Heuristic
1, Heuristic 2, Heuristic 3, and LDP (Least Delay Path). We
use the optimal (but exponentially complex) CBF algorithm
[19] as a point of reference. More precisely, we define the
inefficiency of an algorithm X as the difference between the
cost of the path returned by algorithm X and the cost of the
path returned by CBF, normalized to the cost of the path
returned by CBF. Figure 3 depicts the performance of various
source-based heuristics for an average node degree of 10.
Clearly, LDP results in a very costly path. The three other
heuristics have reasonable costs, with Heuristic 2 being the
most efficient and Heuristic 1 the least efficient of the three.
We noted that the relative inefficiency in Heuristics 1 and 3
relative to CBF increases with the average degree of a node
(the connectivity of the network), while Heuristic 2 seems to
be less sensitive to the node degree. The reason why Heuristic
2 achieves good average cost performance is due to its larger
search space. Note that all three source-based algorithms (and
also DDCA) have the same success rate since they all return a
path if one exists.
In the second experiment, we compare the cost performance of
four distributed heuristics: DDCA, DCR [17], DCUR [15], and
LDP. As before, the cost of CBF is used as a reference. The
relative inefficiency of these algorithms is depicted in Figure
4. Except for LDP (which is here implemented in a distributed
manner), the three tested algorithms provide satisfactory cost
performance, with DDCA being the most efficient, followed
by DCR, and finally DCUR. Of the three algorithms, DDCA

1603

0-7803-7208-5/01/$17.00 (C) 2001 IEEE

involves the least exchange of control messages. Moreover, it
is the only algorithm that allows for stateless routing. For
DDCA, increasing the delay constraint leads to a reduction in
the average number of control messages. This is because when
the delay constraint is large, the LC path from s to d will
probably satisfy this constraint, avoiding the need for further
probing.

Figure 3: Performance of source path selection algorithms.

Figure 4: Performance of distributed path selection algorithms.

V CONCLUSIONS

In this paper, we presented an approach for stateless QoS
routing in IP networks. Our approach is based on simple
heuristics for finding a low-cost delay-constrained path in a
network. The returned path consists of at most two superedges
that are connected at a relay node. Within a superedge, a
packet is routed hop-by-hop using a given routing metric (cost
or delay). The routing metric may be switched at the relay
node. We presented simple source-based and distributed path
selection heuristics that implement the relay strategy. To
implement the relay strategy in an IP network, we provided an
approach that relies on a probing protocol and that uses
tunneling and packet encapsulation. Simulation results were
presented to evaluate the performance of the proposed

heuristics and contrast them with previously proposed
solutions.

REFERENCES

[1] G. Apostolopoulos et al., “QoS routing mechanisms and OSPF

extensions,” IETF RFC 2676, Aug. 1999.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows: Theory,

algorithms, and applications. Prentice Hall, Inc., 1993.

[3] S. Chen and K. Nahrstedt, “An overview of quality-of-service routing

for the next generation high-speed networks: Problems and solutions,”

IEEE Network, Vol. 12, No. 6, pp. 64-79, November-December 1998.

0

20

40

60

80

100

120

15 20 25 30 35 40 45 50 55

Delay Constraint

In
ef

fi
ci

en
cy

 (
%

) Heuristic-1

Heuristic-2

Heuristic-3

LDP

[4] M. R. Garey and D. S. Johnson, Computer and Intractability A guide to

Theory of NP-Completeness. CW. H. Freeman and Company, New

York, 1979.

[5] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, “A framework for

QoS-based routing in the Internet,” Internet Engineering Task Force

RFC 2386 (Informational), Aug. 1998.

[6] R. Hassin, “Approximation schemes for the restricted shortest path

problem,” Mathematics of Operations Research, Vol. 17, No.1, pp. 36-

42, February 1992.

[7] J. Heinanen, “Differentiated services in MPLS networks,” IETF Internet

Draft, June 1999 (draft-heinanen-diffserv-mpls-00.txt).

[8] G. Huston, “Next steps for the IP QoS architecture,” IETF Internet Draft

(draft-iab-qos-02.txt), Aug. 2000 (Informational).

0

20

40

60

80

100

120

15 20 25 30 35 40 45 50 55
Delay Constraint

In
ef

fi
ci

en
cy

 (
%

) DDCA

DCR

DCUR

LDP

[9] J. Jaffe, “Algorithms for finding paths with multiple constraints,”

Networks, Vol. 14, No. 1, pp. 95-116, 1984.

[10] B. Jamoussi et al., “Constrained-based LSP setup using LDP,” IETF

Internet Draft, Aug. 1999 (draft-ietf-mpls-cr-ldp-02.txt).

[11] T. Nandagopal, V. Venkitaraman, R. Sivakumar, and V. Bharghavan,

“Delay differentiation and adaptation in core stateless networks,” in

Proceedings of the IEEE INFOCOM 2000 Conference, pp. 421-430,

March 2000.

[12] C. Perkins, “IP encapsulation within IP,” IETF RFC 2003 (Standards

Track), Oct. 1996.

[13] C. Perkins, “Minimal encapsulation within IP,” IETF RFC 2004

(Standards Track), Oct. 1996

[14] J. Postel, “ASSIGNED NUMBERS,” IETF RFC 790, Sep. 1981.

[15] D.S. Reeves and H.F. Salama, “A distributed algorithm for delay-

constrained unicast routing,” IEEE/ACM Transactions on Networking,

Vol. 8, No. 2, pp. 239-250, April 2000.

[16] I. Stoica and H. Zhang, “Providing guaranteed services without per flow

management,” in Proceedings of the ACM SIGCOMM '99 Conference,

pp. 81-94, September 1999.

[17] Q. Sun and H. Langendoerfer, “A new distributed routing algorithm for

supporting delay-sensitive applications,” Internal Report, Institute of

Operating Systems and Computer Networks, TU Braunschweig,

Bueltenweg 74/75, 38106 Braunschweig, Germany, March 1997.

[18] B.M. Waxman, “Routing of multipoint connections,” IEEE Journal on

Selected Area in Communications, Vol. 6, No. 9, pp. 1617-1722,

December, 1988.

[19] R. Widyono, “The design and evaluation of routing algorithms for real-

time channels,” Technical Report TR-94-024, Tenet Group, Department

of EECS, University of California at Berkeley, 1994.

[20] X. Xiao and L. M. Ni, “Internet QoS: A big picture,” IEEE Network,

Vol. 13, No. 2, pp. 8-18, March/April 1999.

1604

0-7803-7208-5/01/$17.00 (C) 2001 IEEE

	Globecom 2001
	Return to Main Menu

