
Stateless QoS Routing in IP Networks 

Baoxian Zhang*     Marwan Krunz**     Hussein T. Mouftah*      Changjia Chen*** 
* Department of Electrical & Computer Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada. 

** Department of Electrical & Computer Engineering, University of Arizona, Tucson, AZ 85721. 

*** School of Electronics and Information Engineering, Northern Jiaotong University, Beijing 100044, P.R. China. 

 

Abstract: QoS routing has generally been addressed in the context of 
reservation-based network services (e.g., ATM, IntServ), which 
require explicit (out of band) signaling of reservation requests and 
maintenance of per-flow state information. It has been recognized that 
the processing of per-flow state information poses scalability 
problems, especially at core routers. To remedy this situation, in this 
paper we introduce an approach for stateless QoS routing in IP 
networks that assumes no support for signaling or reservation from 
the network. Simple heuristics are proposed to identify a low-cost 
delay-constrained path. These heuristics essentially divide the end-to-
end path into at most two “superedges” that are connected by a “relay 
node”. Routers that lie on the same superedge use either the cost 
metric or the delay metric (but not both) to forward the packet. 
Simulations are presented to evaluate the cost performance of the 
proposed approach. 

I INTRODUCTION 

A. Motivation 

The growing popularity of real-time and multimedia 
applications over the Internet has stimulated strong interest in 
extending QoS support to existing routing protocols (e.g., 
OSPF, BGP) [1][5]. Several recent studies have acknowledged 
the need for scalable QoS routing solutions [3][20] and have 
given the stimulus to a number of proposals on how to 
integrate QoS routing into a Differentiated Services (DiffServ) 
framework [7][10].  
So far, most work on QoS routing has been carried out under 
the assumption that the underlying QoS architecture is 
reservation based. In such architecture, routers maintain per-
flow state information (e.g., flow identity, the amount of 
allocated bandwidth, priorities, etc.) and end systems use 
explicit reservation messages (e.g., RSVP messages, ATM 
PNNI signaling) to indicate their QoS requirements. The 
advantage of this explicit-reservation model is that it allows 
the service provider to guarantee the requested QoS on an end-
to-end basis with a high degree of accuracy. On the other hand, 
it has been widely recognized that maintaining per-flow state 
information could lead to scalability problems at core routers. 
Accordingly, the focus of the research community has shifted 
to stateless QoS frameworks (e.g., DiffServ) that rely on per-
class service differentiation at core routers, leaving the 
maintenance of the per-flow state information to edge routers. 
A stateless service model seems particularly appealing to 
router vendors. Thus far, the research on stateless QoS has 
mainly focused on packet scheduling issues (e.g., [11][16]). In 
fact, it has been noticed that existing QoS routing solutions 

have been developed “at some distance from the task of 
development of QoS architectures” [8]. In particular, current 
QoS architectural models, including the DiffServ, seem to 
implicitly assume that various classes of traffic are forwarded 
along the same (best effort) path, with service differentiation 
being achieved locally through appropriate packet scheduling. 
Decoupling routing and QoS provisioning can lead to 
“inefficient” selection of routes, hence reducing the likelihood 
of meeting the applications end-to-end QoS requirements.  
In this paper, we propose a simple approach for stateless QoS 
routing in IP networks. This approach is intended to 
complement, and be part of, existing stateless QoS 
architectures, such as the DiffServ. The proposed approach 
requires each router to maintain routing entries for each 
concerned routing metric (e.g., delay, cost, etc.). It involves 
the injection of probe messages for exploration of viable QoS 
paths. No state information is maintained at a router, which 
performs the forwarding function based on information 
contained in the packet header. Protocols and algorithms for 
supporting the proposed stateless QoS routing framework are 
presented. Our approach requires very small extra 
computational overhead beyond what is currently used in best-
effort routing. 
The rest of this paper is structured as follows. In the remaining 
of this section, we present the network model and an 
algorithmic statement of the QoS routing problem. In Section 
2 we present a series of source-based and distributed heuristics 
for delay-constrained path selection. An approach for QoS 
based packet forwarding is presented in Section 3. Simulation 
results are presented in Section 4, following by concluding 
remarks in Section 5. Due to space limitation, proofs are 
omitted from this paper, and they can be found in an 
accompanying technical report. 

B. Network Model and Problem Formulation 

In many practical situations, the goal of QoS routing reduces 
to finding a low-cost delay constrained path, which can be 
stated as follows: 
Definition 1: Delay-constrained least-cost (DCLC) problem: 
Consider a network that is represented by a directed graph G = 
(V, E), where V is the set of nodes and E is the set of possibly 
asymmetric links. Each link  is associated with 
a cost value C(e) and a delay value D(e). The cost of a link can 
be assigned in various ways (e.g., link utilization, inverse of 
available bandwidth, etc.). Given a delay constraint , the 
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problem is to find a path P from a source node s to a 
destination node d such that: 

1. D(P)  e PD(e)  , and 
2. C(P)  e PC(e) is minimized over all paths 

satisfying the first condition. 
The DCLC problem is known to be NP-hard [4]. Several 
computationally efficient heuristics have been proposed in the 
literature (e.g., [19][15][17][6]). In [19] the author proposed an 
algorithm for finding the optimal solution to the DCLC 
problem, but with worst-case running time that grows 
exponentially with the size of the network. Two -optimal 
approximation algorithms were proposed by Hassin [6] with 
running times of O(loglogB( |E|(|V|/ )+loglogB)) and 
O(|E|(|V|2/ )log(|V|/ )), respectively, where B is an upper 
bound on the optimal cost. Despite the algorithmic elegance of 
these algorithms, they are still too complex to be applied in 
large-scale networks. Furthermore, they all are source based. 
Distributed solutions have been proposed in [15][17], with 
worst-case message complexities of O(|V|2) and O(|V|), 
respectively. In these heuristics, the path finding process 
constructs one node at a time, where in each time the added 
node lies on either the least-cost (LC) path or on the least-
delay (LD) path.  

II PATH SELECTION ALGORITHMS 

To achieve simple QoS-based forwarding, we restrict our 
scope to path selection algorithms in which the computed path 
consists, at most, of two concatenated superedges. A 
superedge is defined as a connected segment of the path on 
which all routers use the same routing metric for packet 
forwarding. First, we consider source based path selection 
heuristics. 

A. Source-based Heuristics 

Consider the DCLC problem. Suppose that a cost-efficient 
delay-constrained path is to be found between a source node s 
and a destination node d. Let Plc(u,v) and Pld(u,v) indicate, 
respectively, the LC and LD paths from node u to node v, 
where u and v are any two nodes in V.  

Heuristic 1 

A trivial heuristic for DCLC is to either choose the LC path or 
the LD path, i.e., the computed path consists of only one 
superedge. Clearly, if D(Plc(s,d))  then the optimal solution 
is given by lc . Otherwise, the LD path is chosen 
provided that D(P

( , )P s d
ld(s,d))  (if , there is no 

feasible path). The computational complexity of this simple 
heuristic is twice that of Dijkstra's, if link-state routing is used. 
If distance-vector routing is used, the complexity is simply 
O(1). 

( ( , ))ldD P s d

Heuristic 2 

Going one step further, we allow the computed path to consist 
of up to two superedges. For each node v V, the algorithm 
considers the four possible paths: Pld(s,v) Pld(v,d), 
Pld(s,v) Plc(v,d), Plc(s,v) Pld(v,d), and Plc(s,v) Plc(v,d). Of 
the 4|V| possible paths, the algorithm selects the one with the 
minimum cost provided that this path satisfies the delay 

constraint. The node that connects the two superedges on the 
selected path is called the relay node. Note that for an 
arbitrary node v, the path Pld(s,v) Pld(v,d) is not necessarily 
the LD path from s to d. More specifically, Pld(s,v) Pld(v,d) 
may contain a loop (i.e., node v may not be on the LD path 
from s to d). Likewise, Plc(s,v) Plc(v,d) is not necessarily the 
same as Plc(s,d). However, it is easy to show that the 
minimum-cost path returned by the algorithm is guaranteed to 
be loop free. The complexity of Heuristic 2 is four times that 
of Dijkstra's. 
Heuristic 2 can be implemented as follows: 
Step 1: Compute the LD path from node s to every node v V. 
Step 2:  If , return FAILURE (there is no feasible 

path). Otherwise, go to Step 3.                                        
( ( , ))ldD P s d

Step 3:  Compute the LC path from node s to every node v V.   
Step 4:  If D(Plc(s,d)) , return the path . Otherwise, 

continue. 
( , )lcP s d

Step 5:  Compute the LD path from every node v V to d. 
Step 6:  Compute the LC path from every node v V to d. 
Step 7:  From the resulting 4|V| paths, Pi(s,v) Pj(v,d) where i, j {LC, 

LD} and v V, choose the one with the smallest cost provided 
that this path satisfies the delay constraint. 

Steps 1 and 3 require two runs of Dijkstra's algorithm, while 
Steps 5 and 6 require two runs of Reverse Dijkstra's [2]. The 
running time of Step 7 is O(|V|). Therefore, the overall 
complexity of Heuristic 2 is O(|V|2).  
Heuristic 3 
Heuristic 3 represents a tradeoff between the previous two 
heuristics (less computational complexity than Heuristic 2 but 
better performance than Heuristic 1). In here, each node v in 
the network maintains a delay table and a cost table, each 
consisting of |V|-1 entries (one entry for every other node). 
The entry for node vj at node v consists of: 

The address of node vj; 
The delay of the LD path from v to vj; 
The cost of the above path, i.e., C(Pld(v,vj)); and      
The predecessor of vj on the LD path from v to vj, 
ld_lhop(Pld(v,vj)). 

Similar information is maintained in the cost table but with the 
LD path replaced by the LC path.  
Given the above information, the algorithm first verifies that 
there is a feasible path in the network by checking whether 
D(Pld(s,d)) . If so, the algorithm checks if the LC path 
Plc(s,d) is feasible, in which case it returns it as the optimal 
solution. Otherwise, the algorithm proceeds in two phases, as 
shown in Figure 1. In Phase 1, the search proceeds backward 
from the destination node d to the source node s along the LD 
path Pld(s,d) until a relay node v is found for which 
D(Plc(s,v))+ D(Pld(v,d))  . If such a node is found, Phase 1 
returns the path Plc(s,v) Pld(v,d). Otherwise, the returned path 
from this phase defaults to Pld(s,d). Phase 2 attempts to 
improve upon the outcome of Phase 1 by searching for a 
feasible path that consists of a LD segment from s to a relay 
node v followed by a LC segment from node v to node d (i.e., 
the search starts from node d and proceeds along the LC path). 
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/* Phase 1 */ 
1. active_node =: d /*active_node is the node being tested for a relay node */ 
2. PATH =: Pld(s,d) /* PATH is the path returned by the algorithm; Pld(s,d) 

is the first known feasible path */ 
3. while active_node s, do 
4. D(Pld(active_node,d)) =: D(Pld(s,d)) - D(Pld(s,active_node)) 
5. if D(Plc(s,active_node)) + D(Pld(active_node,d))   
6. PATH =: Plc(s,active_node) Pld(active_node,d)  
7. Go to Line 11 
8. else set active_node to predecessor of active_node on Pld(s,active_node)  
9. end if-else   
10.  end while 
/* Phase 2 */ 
11.  active_node =: d 
12.  while active_node s, do 
13. D(Plc(active_node,d)) =: D(Plc(s,d))-D(Plc(s,active_node)) 
14. if D(Pld(s,active_node)) + D(Plc(active_node,d))   
15. if C(Pld(s,active_node)) + C(Plc(active_node,d)) < C(PATH)             

/* C(PATH) is obtained from Phase 1 */ 
16. PATH =: Pld(s,active_node) Plc(active_node,d)               
                                /* a feasible path with a lower cost is found */ 
17. else set active_node to predecessor of active_node on 

Plc(s,active_node); continue while loop 
18. end if-else 
19. else break while loop 
20. end if-else  
21.  end while 
22. return PATH 

Figure 1: Pseudo-code for Heuristic 3. 

B. Probe-Based Distributed Heuristic 

The previous heuristics are source based. We now present a 
distributed heuristic, called distributed delay-constrained 
algorithm (DDCA), which is more suitable for stateless 
routing. Similar to the previous heuristics, DDCA is also based 
on the previously discussed relay strategy. In essence, DDCA 
is an extension of the DCR algorithm [17], which uses the 
following procedure to construct a delay-constrained path from 
a source node to a destination node. The reservation message 
travels along the LD path until reaching a node from which the 
delay of its LC path satisfies the delay constraint. From that 
node and on, the message travels along the LC path all the way 
to the destination. In DDCA, we replace the path construction 
process by a path probing process and extend the probing 
direction to include both the LC and LD directions. 
In DDCA, each node in the network maintains a delay table 
and a cost table. These tables are similar to those maintained 
in Heuristic 3 except that the entry for the predecessor node to 
a destination is replaced by the next hop along the LD (LC) 
path, ld_nhop (lc_nhop). Similar information is also 
maintained in the algorithms in [15][17]. The information in 
the delay and cost tables can be distributed to nodes using 
distance (or path) vector protocols. 
Initially, the algorithm checks the feasibility of the LC path 
from s to d. If D(Plc(s,d))  , the algorithm returns this path. 
Otherwise, the algorithm checks if a feasible path is available 
(by verifying that D(Pld(s,d))  ). If so, a probing protocol is 
used to discover an appropriate relay node that results in a 
low-cost feasible path. According to this protocol, the source 

node constructs two probe messages and sends them to a 
destination node d. One of these messages is sent along the LD 
path to node d, while the other is sent along the LC path. Each 
probe message contains the following fields: 

- probe_direction: Forwarding direction of the probe 
message (LC or LD);  

- next_node: Address of next hop on the path of the probe 
message;  

- relay_node: Address of relay node (initially set to NULL); 
- delay_so_far: Accumulated delay of path traversed by the 

probe message from node s  up to the current node;  
- cost_so_far: Accumulated cost of path traversed by the 

probe message from node s up to the current router;  
- delay_constraint ( );  
- total_cost: Cost of the best-known feasible path, initially 

set to C(Pld(s,d)). Once a relay node is discovered, the 
value in this field is adjusted (reduced) to reflect the cost 
of the new path;  

- type: Type of probe message, which can be a probe query 
message or a probe reply message. 

Starting from the source, nodes along the LD (LC) path to d 
are probed, one at a time. Consider, for example, the probe 
message that is sent along the LD path. Node s sets the fields 
in this message as follows: 

probe_direction  LD (bit 0)  
next_node  ld_nhop (read from the routing tables at node s) 
relay_node  NULL 
delay_so_far  D(s, ld_nhop) 
cost_so_far   C(s, ld_nhop) 
delay_constraint    
total_cost  C(Pld(s,d)) (cost of the first known feasible path) 

 
1. if probe_direction=LD 
2. if delay_so_far + D(Plc(v,d))   /* node v is a relay node */ 
3. if cost_so_far + C(Plc(v,d)) < total_cost            /* path is 

better than the LD path */  
4. relay_node  v 
5. total_cost  cost_so_far + C(Plc(v,d)) 
6. end if 
7. Send a probe reply message to node s 
8. else /* node v is not a relay node */ 
9. delay_so_far  delay_so_far + D(v, ld_nhop) 
10. cost_so_far  cost_so_far + C(v, ld_nhop) 
11. Forward probe query message to ld_nhop  
12. end if-else 
13. else    /*  probe_direction=LC  */ 
14. if delay_so_far + D(Pld(v,d))   /* node v is a relay node */ 
15. if cost_so_far + C(Pld(v,d)) < total_cost           /* a better path 

is found */ 
16. relay_node  v 
17. total_cost  cost_so_far + C(Pld(v,d)) 
18. end if 
19. delay_so_far  delay_so_far + D(v,lc_nhop)    
20. cost_so_far  cost_so_far + C(v,lc_nhop) 
21. Forward probe query message to lc_nhop 
22. else /* node v is not a relay node */ 
23. Send a probe reply message to node s    
24. end if-else 
25. end if-else 

Figure 2: Pseudo-code for DDCA. 
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The probe message that is sent along the LC direction is 
initialized in an analogous manner, but with lc_nhop replacing 
ld_nhop. Probe messages are sent to the next hop along the LD 
and LC paths, respectively. When a node v receives a probe 
message, it executes the algorithm in Figure 2. 
In lines 7 and 23 Figure 2, the probe reply message contains 
the direction of the probe (LD or LC), the identity of the relay 
node v, and the total cost of the discovered path. Unless the 
cost of the new path is less than C(Pld(s,d)), the value in the 
relay_node field will stay at NULL. For the probe message 
that is sent along the LD direction, a probe reply is generated 
by the first relay node, say v, that satisfies 
D(Pld(s,v))+D(Plc(v,d))  . This is because it is not possible to 
obtain a lower-cost path than Pld(s,v) Plc(v,d) by selecting 
another relay node on the LD path from v to d. This does not 
apply to the probe message sent along the LC path, where in 
this case the search continues for a possibly better relay node. 
However, in this case, the search terminates unsuccessfully 
(line 23) if the probe message sent along the LC path 
encounters a node v for which D(Plc(s,v))+D(Pld(v,d)) > . This 
is because for any subsequent node w on the path Plc(s,d), the 
path Plc(s,w) Plc(w,d) cannot be feasible.  

When node s receives the two probe reply messages, it selects 
the path with the lower cost (if both messages contain NULL 
in the relay node field, then node s selects the LD path 
between s and d). A probe query message may visit up to |V-1| 
nodes. Hence, the worst-case message complexity of DDCA is 
O(|V|). 

Two approaches can be used to encode the probe messages. 
The first one is to encode these messages as ICMP packets. 
Currently, intermediate routers do not process the payload 
portion of an ICMP packet, so a new ICMP packet “type” 
needs to be defined to allow routers to process probe messages 
(e.g., insert the IP address of the relay node). The second, and 
perhaps more viable, approach is to define a new protocol 
type, call it Internet Probe Message Protocol (IPMP), which is 
somewhat similar to ICMP except that it requires routers to 
process the payload portion of the IPMP packet. Currently, the 
protocol field byte in the IP header has several unassigned 
values [14], and one of these values can be used for IPMP.  

III DYNAMIC FORWARDING MECHANISM 

Once a cost-effective constrained path has been identified 
using DDCA, or a similar algorithm, the next step is to design 
an appropriate forwarding mechanism that implements the 
relay concept in a distributed manner. In here, we present one 
such mechanism that is based on tunneling and packet 
encapsulation. Suppose that a relay node v has been identified. 
Without loss of generality, assume that v {s,d}. To forward a 
packet from source node s to relay node v along, say, the LD 
path, and then from node v to destination node d along, say, 
the LC path, the original IP packet is encapsulated into another 
(outer) packet. The destination address of the outer packet is 
set to the address of the relay node, while the destination 
address of the inner packet is set to the address of node d. Let 

frm be a function that maps the routing metric (e.g., delay, cost, 
etc.) into an appropriate numerical value that is encoded, say, 
in some of the unused codepoints in the DS byte. For the outer 
packet, frm(delay) is inserted, while for the inner packet 
frm(cost) is inserted. The packet is then forwarded in a standard 
hop-by-hop manner. The outer packet will be forwarded along 
the LD path to node v, which in turn strips off the outer header 
and forwards the inner packet to node d along the LC path. 
Tunneling the original packet via node v can be achieved using 
the IP-within-IP encapsulation technique, originally defined 
for Mobile IP [12]. It is also possible to use minimal 
encapsulation techniques such as the one defined in [13]. 
An advantage of the above approach is that once the relay 
node is identified, routers forward packets in the same way as 
in best-effort routing (the relay node need not process the 
forwarding direction field, which is set at the source). Of 
course, this comes at the expense of some overhead associated 
with packet encapsulation and tunneling and with sending 
probe messages.  

IV SIMULATION RESULTS 

We studied the cost performance of the previously presented 
heuristics using simulated random topologies that were 
generated using Waxman’s method [18]. For each experiment, 
500 random graphs were created. In each random network, we 
tried to set up delay-constrained paths between all possible 
source-destination pairs.  
In the first experiment, we study the performance of the 
source-based path selection heuristics, which include Heuristic 
1, Heuristic 2, Heuristic 3, and LDP (Least Delay Path). We 
use the optimal (but exponentially complex) CBF algorithm 
[19] as a point of reference. More precisely, we define the 
inefficiency of an algorithm X as the difference between the 
cost of the path returned by algorithm X and the cost of the 
path returned by CBF, normalized to the cost of the path 
returned by CBF. Figure 3 depicts the performance of various 
source-based heuristics for an average node degree of 10. 
Clearly, LDP results in a very costly path. The three other 
heuristics have reasonable costs, with Heuristic 2 being the 
most efficient and Heuristic 1 the least efficient of the three. 
We noted that the relative inefficiency in Heuristics 1 and 3 
relative to CBF increases with the average degree of a node 
(the connectivity of the network), while Heuristic 2 seems to 
be less sensitive to the node degree. The reason why Heuristic 
2 achieves good average cost performance is due to its larger 
search space. Note that all three source-based algorithms (and 
also DDCA) have the same success rate since they all return a 
path if one exists. 
In the second experiment, we compare the cost performance of 
four distributed heuristics: DDCA, DCR [17], DCUR [15], and 
LDP. As before, the cost of CBF is used as a reference. The 
relative inefficiency of these algorithms is depicted in Figure 
4. Except for LDP (which is here implemented in a distributed 
manner), the three tested algorithms provide satisfactory cost 
performance, with DDCA being the most efficient, followed 
by DCR, and finally DCUR. Of the three algorithms, DDCA 
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involves the least exchange of control messages. Moreover, it 
is the only algorithm that allows for stateless routing. For 
DDCA, increasing the delay constraint leads to a reduction in 
the average number of control messages. This is because when 
the delay constraint is large, the LC path from s to d will 
probably satisfy this constraint, avoiding the need for further 
probing. 
 

 
Figure 3: Performance of source path selection algorithms.  
 

 
Figure 4: Performance of distributed path selection algorithms. 
 

V CONCLUSIONS 

In this paper, we presented an approach for stateless QoS 
routing in IP networks. Our approach is based on simple 
heuristics for finding a low-cost delay-constrained path in a 
network. The returned path consists of at most two superedges 
that are connected at a relay node. Within a superedge, a 
packet is routed hop-by-hop using a given routing metric (cost 
or delay). The routing metric may be switched at the relay 
node. We presented simple source-based and distributed path 
selection heuristics that implement the relay strategy. To 
implement the relay strategy in an IP network, we provided an 
approach that relies on a probing protocol and that uses 
tunneling and packet encapsulation. Simulation results were 
presented to evaluate the performance of the proposed 

heuristics and contrast them with previously proposed 
solutions. 
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