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Abstract

Channel assignment mechanisms in multi-channel wireless networks are of-
ten designed without accounting for adjacent-channel interference (ACI). To
prevent such interference between different users in a network, guard-bands
(GBs) are needed. Introducing GBs has significant impact on spectrum ef-
ficiency. In this paper, we present channel assignment mechanisms that aim
at maximizing the spectrum efficiency. More specifically, these mechanisms
attempt to minimize the amount of additional GB-related spectrum that is
needed to accommodate a new link. Similar to the IEEE 802.11n and
the upcoming IEEE 802.11ac standards, our assignment mecha-
nisms support channel bonding, and more generally, channel ag-
gregation. We first consider sequential assignment (i.e., one link at a time),
and we formulate the optimal ACI-aware channel assignment that maximizes
the spectrum efficiency as a subset-sum problem. An exact exponential-time
dynamic programming (DP) algorithm, a polynomial-time greedy heuristic,
and an ϵ-approximation are presented and compared. Second, considering a
set of links (batch assignment), we derive the optimal ACI-aware exponential-
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time assignment that maximizes the network’s spectrum efficiency. The op-
timal batch assignment is compared with the sequential assignment. Results
reveal that our proposed algorithms achieve considerable improvement in
spectrum efficiency compared to previously proposed schemes.

Keywords: Channel assignment, dynamic programming, ϵ-approximate
algorithms, greedy algorithms, integer programming, multiple subset-sum
problem, spectrum efficiency, subset-sum problem.

1. Introduction

Adjacent-channel interference (ACI) is a form of power leakage that is
attributed to imperfect filters and amplifiers in the radio device. The harm-
ful impact of ACI on the throughput of IEEE 802.11a and IEEE 802.11n
networks was demonstrated in [1] and [2], respectively. Most channel assign-
ment algorithms in the literature do not account for ACI (see Figure 1(a)).
Figure 1(b) shows the actual power spectral density of two channels in a
practical communication system. To mitigate ACI, guard-bands (GBs) are
needed between adjacent channels that belong to different links.

However, introducing GBs constrains the spectrum efficiency. In [3], the
authors studied two models for utilizing GBs in a dynamic spectrum access
(DSA) network: “GB reuse” and “no GB reuse”. According to the “GB
reuse” model, GBs can be shared by two different (interfering) links. In
contrast, in the “no GB reuse” model, two adjacent transmissions require
their own GBs. As explained in [3], the “GB reuse” model is suitable for
discontinuous-OFDM (D-OFDM) systems, whereas the “no GB reuse” model
is suitable for FDM-based systems. In this paper, we adopt the “GB reuse”
model. This model is illustrated in Figure 1(c), where the same amount of
GB is allocated between channels 1 and 2, irrespective of whether link B is
active or not over channel 2. As shown later in this paper, the GB-aware
(GBA) channel assignment algorithm in [3] for the “GB reuse” case does not
achieve the maximum spectrum efficiency.

To support applications with high rate demands, the IEEE 802.11n and
the upcoming IEEE 802.11ac standards have adopted the concept of chan-
nel bonding [4–8]. This concept refers to the bundling of multi-
ple adjacent channels, which can then be treated as a single fre-
quency block whose data rate is approximately the sum of the
data rates of the individual channels. By bonding two 20-MHz
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Figure 1: GBA channel assignment. (a) Ideal power spectral density, (b) power
spectral density in a practical communication system, and (c) power spectral den-
sity under the “GB reuse” model.

3



channels, IEEE 802.11n supports a single 40 MHz channel [9]. In
traditional single-input single-output (SISO) systems (e.g., IEEE
802.11a/b/g), channel bonding causes a reduction in the trans-
mission range and a greater susceptibility to interference [10, 11].
However, with the incorporation of MIMO technology in IEEE
802.11n devices, the problems faced by SISO systems due to chan-
nel bonding can now be mitigated [12, 13]. In [5, 6], the authors
conducted experimental studies in the 5 GHz band to characterize
the behavior of channel bonding. They observed that ACI needs
to be mitigated in order to perform intelligent channel bonding.
The IEEE 802.11ac standard enhances the throughput beyond the
IEEE 802.11n using an 80 MHz channel bonding technique [7, 8].

The concept of channel bonding can be extended to non-adjacent chan-
nels, and is referred to as channel aggregation. For example, LTE-Advanced
employs channel aggregation techniques, allowing 4G mobile oper-
ators to aggregate spectrum from non-adjacent bands to support
links with high demands [14]. With channel aggregation, LTE-
Advanced supports up to 100 MHz system bandwidth, with the
potential of achieving more than 1 Gbps throughput for downlink
and 500 Mbps throughput for uplink [15]. Implementation chal-
lenges of channel aggregation have been studied in [15, 16]. Re-
cently, distributed channel aggregation has been studied in [17–19]
in a game theoretic framework. The proposed schemes in [17–
19] do not account for ACI. Although co-channel interference has
been extensively studied in the context of distributed channel al-
location [20, 21], ACI has been largely overlooked.

Main Contributions–The main contributions of the paper are as fol-
lows:

1. We formulate and obtain the optimal (sequential) GBA channel assign-
ment for a single link, adopting the “GB reuse” setting. The per-link chan-
nel assignment problem is formulated as a subset-sum problem (SSP) [22].
An exact exponential-time dynamic programming (DP) algorithm, a polynomial-
time greedy heuristic, and an ϵ-approximation are presented.

2. We formulate and obtain the optimal GBA channel assignment for mul-
tiple links (batch approach), under the “GB reuse” setting.

3. We evaluate the exponential-time optimal sequential and batch assign-
ment mechanisms and compare them with polynomial-time heuristics and
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Figure 2: Spectrum status (channel assignment) at a given time instance.

ϵ-optimal approximations.

Paper Organization–The remainder of this paper is organized as fol-
lows. In Section 2, we present the system model followed by the problem
statement. The single-link optimal channel assignment is explained in Sec-
tion 3. Polynomial-time greedy and ϵ-approximate algorithms are also pre-
sented in the same section. In Section 4, we address the problem of optimal
GBA channel assignment for multiple links. We provide an exponential-time
exact algorithm along with an approximate sequential algorithm. We evalu-
ate our assignment algorithms in Section 5. Section 6 gives an overview of
related work. We provide directions for future research in Section 7. Finally,
Section 8 concludes the paper.

2. Problem Statement

We consider a single-hop wireless network with a set of channels M =
{1, 2, . . . ,M} and a set of links L = {1, 2, . . . , L}. Without loss of generality,
we assume all channels to have the same bandwidth, denoted by W (in Hz).
An available (unassigned) channel can be reserved as a GB, or assigned for
data communication. All available channels support a common rate of r
Mbps. In Section 7, we provide directions for extending our work

to a multi-rate setup. Each link j ∈ L has a rate demand dj
def
= αjr

Mbps, where αj is an integer between 1 and M . Given the current spectrum
status, our objective is to satisfy the demands of one or more links in L
while maximizing the spectrum efficiency (defined shortly). Figure 2 shows
an example of a spectrum status.

The spectrum efficiency is defined as the fraction of the available
spectrum that can be used for data communications. Let hij, i ∈M
and j ∈ L, be a binary variable; hij = 1 if channel i is assigned to
link j as a data channel, and zero otherwise. Let ηi be a binary
variable indicating whether or not the ith channel is to be used as a
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GB channel. Then, the network-wide spectrum efficiency, denoted
by ξnet, is defined as follows:

ξnet
def
=

∑L
j=1

∑M
i=1 hij∑L

j=1

∑M
i=1 hij +

∑M
i=1 ηi

. (1)

Similarly, the per-link spectrum efficiency, denoted by ξlink, is
defined as:

ξlink
def
=

∑M
i=1 hi∑M

i=1 hi +
∑M

i=1 ηi
(2)

where hi is a binary variable that indicates whether or not channel
i is assigned for data communication.

In this paper, we consider the following two problems.
Problem 1. Given an arbitrary link with a rate demand d = αr Mbps

and given the current status of the M channels, find the optimal GBA chan-
nel assignment for this link that maximizes ξlink while satisfying the
demand d.

Problem 2. Given the set of links L and their associated rate demands,
and given the current status of theM channels, find the optimal GBA channel
assignment that maximizes ξnet while satisfying the link demands.

The proposed assignment schemes support channel bonding and aggrega-
tion.

3. Optimal GBA Channel Assignment for a Single Link

Consider Problem 1. ξlink in (2) can also be expressed as:

ξlink =
α

α +
∑M

i=1 ηi
. (3)

Equation (3) holds assuming the problem is feasible, i.e., there is a feasible
assignment that can satisfy the link demand d. According to (3), in order
to maximize ξlink, the number of introduced GBs (i.e.,

∑M
i=1 ηi) needs to be

minimized.
Consider the spectrum status in Figure 2. Each set of consecutive idle

channels is grouped into a “frequency block,” as illustrated in Figure 3. Let

N denote the set of idle frequency blocks, and let N = |N |. Let Ri
def
=

βir Mbps denote the rate supported by the ith block (IBi), where βi is an
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Figure 3: Set of idle blocks for the spectrum map in Figure 2.

integer between 1 and M . As justified in [23], we assume that one fixed-
bandwidth GB channel on each side of a data transmission block is sufficient
to prevent ACI, irrespective of the block size. This assumption is motivated
by the results in [23], which showed that the main source of interference
to any demodulated subcarrier are the nearest subcarriers of a neighboring
frequency block that is assigned to another transmission. We remark that, in
general, the difference in the transmission powers of two frequency-adjacent
links impacts the required amount of GB between them. However, in this
paper, we assume that this power difference is small, and one GB on each
side of the frequency block is sufficient to prevent ACI. Next, we show that
in order to minimize the number of introduced GBs (i.e.,

∑M
i=1 ηi) and hence

maximize ξlink, channels need to be assigned on a per-block basis.
Theorem 1. Assigning channels on a per-block basis achieves the opti-

mal per-link spectrum efficiency.
Proof. We show that assigning channels on a per-block basis introduces

at most one additional GB. Consider the set of idle blocks N . There are two
cases to consider:

Case 1: ∃B ⊆ N such that
∑

i∈B Ri = d. This case is exemplified in
Figure 4, where d = 6 Mbps can be met using B = {IB1, IB3} since R1 = 1
Mbps and R3 = 5 Mbps. In this case, the number of introduced GBs is zero
(recall that we assume the “GB reuse” model). This is clearly an optimal
assignment.

Case 2: @B ⊆ N such that
∑

i∈B Ri = d.
In this case, let B ⊂ N be the largest set such that

∑
i∈B Ri < d. We

assign the channels in B to this link. The unfulfilled d −
∑

i∈B Ri demand
is then assigned to channels extracted from the beginning of one of the idle
blocks in N \ B. Consider, for example, the spectrum status in Figure 2.
Suppose that we need to assign channels to a new link with d = 7 Mbps.
This demand cannot be exactly met by any combination of idle blocks. It can
be satisfied using blocks IB1 and IB3, of rates 1 Mbps and 5 Mbps, and one
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Figure 4: Channel assignment with no additional GBs (d = 6 Mbps).

Figure 5: Channel assignment with one additional GB (d = 7 Mbps).

channel (channel 27) taken from the 4th idle block. As shown in Figure 5,
this results in one additional GB, which is optimal because any other feasible
assignment will introduce at least one GB (if there is an assignment with no
new GBs, then this contradicts the assumption made in case 2). Hence, the
total number of introduced GBs is either zero or one. �

Having established that assigning channels on a per-block basis results
in the optimal ξlink, Problem 1 can be re-stated as follows: Given the set of
idle blocks N , obtain a combination of idle blocks that either satisfies the
link demand d or achieves the nearest rate to d. This is exactly the subset
sum problem (SSP) [22], where “items” correspond to idle frequency blocks
and the weights of these items correspond to the rates supported by the idle
blocks. Let xi be a binary variable; xi = 1 if idle block i is to be assigned
to the underlying link, otherwise, xi = 0. Then, the optimal GBA channel
assignment can be stated as follows:
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Problem 1 (SSP):

maximize
{xi,i∈N}

{
Rs

def
=

N∑
i=1

Rixi

}
(4)

subject to:

N∑
i=1

Rixi ≤ d (5)

xi ∈ {0, 1},∀i ∈ N . (6)

Let R∗
s denote the optimal solution for the SSP. From (5), R∗

s ≤ d. When
R∗

s < d, we augment the SSP with a post-processing phase to make up for
the demand “deficit”. As stated in Lemma 1 below, after executing the SSP,
each of the remaining idle blocks for sure supports a data rate greater than
d − R∗

s. In the post-processing phase, we assign a portion of (d − R∗
s)/r

channels2 from any of the remaining idle blocks, starting from the beginning
of the block. The assigned channels are followed by a GB, as shown in
Figure 5.

Lemma 1. Let C be the set of assigned blocks that result from solving
the SSP. If R∗

s < d, then Ri > d−R∗
s, ∀i ∈ N \ C.

Proof. We prove Lemma 1 by contradiction. Suppose ∃i ∈ N \ C with
Ri ≤ d − R∗

s. Then, this block will be selected by the solution to the SSP,
because SSP selects a combination of idle blocks that achieves the nearest
rate to d, and by assumption R∗

s is the optimal solution to the SSP. Hence,
i ∈ C, which leads to a contradiction. �

Theorem 2. When augmented with the post-processing phase, SSP
attains the optimal GBA channel assignment that achieves the maximum
ξlink.

Proof. There are two cases to consider.
Case 1: R∗

s = d. In this case, no additional GBs will be introduced, which
is optimal.

Case 2: R∗
s < d. In this case, by Lemma 1 and Theorem 1, one new

GB will be introduced, which is also optimal (there is no any other feasible
assignment that results in a higher ξlink). The reason is that by Lemma 1,
any feasible assignment will introduce at least one additional GB. �

2This number of channels is integer because both d and R∗
s are integer multiples of r.
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R∗
s(i, d̃) =

{
R∗

s(i− 1, d̃), if d̃ < Ri

max
(
R∗

s(i− 1, d̃), R∗
s(i− 1, d̃−Ri) +Ri

)
, if Ri ≤ d̃ ≤ d.

(7)

SSP is an NP-complete problem [22, 24, 25]. In the following subsections,
we present exact and approximate algorithms for solving it.

3.1. Exact Algorithm based on Dynamic Programming (DP)

The idea behind the DP-based approach is as follows. For each subset
of idle blocks, the algorithm finds the maximum achievable rate that is less
than or equal to d. A pseudo-code of the DP-based exact channel assignment
algorithm is shown in Algorithm 1 [25]. Consider a sub-instance of SSP, con-
sisting of idle blocks IB1, . . . , IBi−1 and rate demand d̃. If the rate supported
by IBi exceeds d̃ (i.e., Ri > d̃), then IBi will not be included in the optimal
assignment. Otherwise, IBi will be included in the optimal assignment if this
results in a better solution than excluding it. Let R∗

s(i, d̃) be the optimal so-
lution value of the sub-instance of the SSP, consisting of idle blocks IB1, . . . ,
IBi and demand d̃. Then, the recurrence relation is given by (7) (note that

R∗
s(N, d)

def
= R∗

s).
The DP-based algorithm correctly computes the optimal SSP solution.

It runs in O(Nd) time, so it is pseudo-polynomial [25].

3.2. ϵ-approximate Algorithm

A pseudo-polynomial ϵ-approximate algorithm for SSP was developed
in [24], and is shown here as Algorithm 2. This algorithm selects the combi-
nation of idle blocks that results in a total rate that is closest to d. In the ith
iteration (see the ‘for’ loop in line 3 of Algorithm 2), the algorithm considers
all combinations of i idle blocks. For each such combination, the algorithm
stores their total rate in one of the elements of the ith list, denoted by li. List
li is obtained by merging lists li−1 and li−1, augmented with Ri, using the
MERGE-LISTS function, which combines the two lists into one ascendingly
ordered list with no duplicate elements. The addition operation in line 4 is a
per-element addition operation. The approximate algorithm uses a function
called TRIM, which trims the lists li, i = 1, . . . , N, to reduce their lengths.
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Algorithm 1 DP-based Exact Algorithm for SSP

1: Input: N , d, N × (d+ 1) array M

2: Initialize: M [1, d̃] = 0, ∀d̃ ∈ {0, 1, . . . , d}
3: for i = 1 : N do

4: for d̃ = 0 : d do

5: if d̃ < Ri then

6: M [i, d̃]←M [i− 1, d̃]
7: else

8: M [i, d̃]← max
{
M [i− 1, d̃], Ri +M [i− 1, d̃−Ri]

}
9: end if
10: end for
11: end for
12: Return: M

Algorithm 2 ϵ-approximate SSP Algorithm

1: Input: N , d, ϵ, and q
2: l0 ← ∅
3: for i = 1 : N do
4: li ← MERGE-LISTS (li−1, li−1 +Ri)
5: li ← TRIM (li, ϵ/2N)
6: Remove from li every element that is greater than q
7: end for
8: Let z∗ be the largest element in lN
9: Return: z∗

Basically, TRIM removes an element with value a from the list if there is
another element with value b, such that |a− b| ≤ δ. In [24], δ is set to ϵ/2N .

Note that the ϵ-approximate algorithm may return idle blocks with rates
less than or equal to the remaining unsatisfied demand, i.e., there is some
probability that ∃ an unassigned block i such that Ri ≤ d −

∑N
j=1Rjηj. If

Ri = d −
∑N

j=1Rjηj, then the ϵ-approximate algorithm can be turned into
optimal by searching for such blocks and including them in the assignment.
The ϵ-approximate algorithm runs in O

(
1
ϵ
N2 ln d

)
time [24].
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Table 1: Complexity of various SSP algorithms.

Algorithm Complexity

DP-based exact O (Nd)
ϵ-approximate O

(
1
ϵ
N2 ln d

)
Greedy O (N logN)

3.3. Greedy Scheme

The greedy approach starts with the set of idle blocks, sorted in a de-
scending order of their data rates. It passes through the sorted list and adds
the idle blocks sequentially as long as the total rate does not exceed the de-
mand d. The complexity of the algorithm comes from the sorting phase and
the traversal of the sorted array. This complexity is O(N logN) if one uses a
sorting algorithm with complexity O(N logN) (e.g., merge sort algorithm).

It is to be noted that the above algorithms take as input the number
of idle blocks N , which is typically much smaller than the total number of
idle channels M . Therefore, the exact algorithm can be used to retrieve the
optimal single-link assignment within a reasonable amount of time. Table 1
lists the complexity of various SSP algorithms.

4. Optimal GBA Channel Assignment for Multiple Links

Performing GBA channel assignment on a per-link basis is appropriate
when link demands are to be considered sequentially, according to the times
of arrival of requests. Alternatively, one may “batch” link demands and
consider GBA channel assignment for multiple links. The batch assignment
approach is expected to achieve higher network-wide spectrum efficiency.

In order to attain the network-wide optimal assignment in a distributed
fashion, we follow the access window (AW) concept used in [26, 27], where
each link broadcasts its rate demand in a given slot. Each link waits for a
certain amount of time to collect the demands of other links in the network
before executing the joint assignment problem. This time duration is called
the access window (AW).

An intuitive way of modeling the optimal GBA channel assignment prob-
lem for multiple links is to use the multiple subset sum problem (MSSP) [28,
29]. More specifically, we consider a version of the MSSP with different
capacities. Let xij, where i ∈ N and j ∈ L, be a binary variable, which
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equals one if IBi is assigned to link j, and zero otherwise. Then, the channel
assignment for multiple links may be modeled as follows:

MSSP:

maximize
{xij ,i∈N ,j∈L}

{
Rm

def
=

L∑
j=1

N∑
i=1

Rixij

}
(8)

subject to:

N∑
i=1

Rixij ≤ dj, ∀j ∈ L (9)

L∑
j=1

xij ≤ 1,∀i ∈ N (10)

xij ∈ {0, 1},∀i ∈ N ,∀j ∈ L. (11)

Several approximations and heuristic algorithms for the MSSP have been
proposed in the literature (e.g., [30–32]). In the case of a single-link, SSP
augmented with the post-processing phase achieves the maximum per-link
spectrum efficiency, as proved in Theorem 2. However, in the case of
multiple links, maximizing Rm in (8) does not necessarily achieve the max-
imum network-wide spectrum efficiency. Moreover, MSSP needs to be
augmented with a more complicated post-processing phase, and even then, it
does not result in the overall optimal assignment. To illustrate this, consider
the following example of two links with demands d1 = 3 Mbps and d2 = 7
Mbps. There exists two idle blocks of sizes β1 = 2 and β2 = 11. MSSP will
assign the first idle block to one of the links. Then, in the post-processing
phase, either one channel will be assigned to the first link and seven channels
to the second link, all taken from the second idle block, or three channels to
the first link and five channels to the second link, all taken from the second
idle block. In both cases, two additional GBs will be introduced. However, a
better assignment with higher ξnet can be achieved by assigning three chan-
nels to the first link and seven channels to the second link, all from the second
idle block, without using the first idle block. In this case, only one additional
GB is introduced.

It can be easily seen that MSSP results in the optimal network-wide
assignment only when there exists a block-based assignment that exactly
satisfies the demands of all links. In this case, such block assignment is an
optimal assignment. However, the optimal block-based assignment may not

13



always exist. To obtain the network-wide optimal assignment for a general
setting, the assignment needs to be performed on a per-channel basis instead
of per-block basis. The network-wide optimal GBA channel assignment can
be formulated as follows.

Problem 2:

maximize{
xij ,i∈M,j∈L

ηi,i∈M
}
{

L∑
j=1

M∑
i=1

xij −
1

M

M∑
i=1

ηi

}
(12)

subject to:

M∑
i=1

xij ≤ αj,∀j ∈ L (13)

L∑
j=1

xij ≤ 1, ∀i ∈M (14)

η
(start)
i = x(i+1)j ∧ (1− xij) ∧ (1− ξi),∀i ∈M \ {M}, j ∈ L

(15)

η
(end)
i = (1− xij) ∧ x(i−1)j ∧ (1− ξi),∀i ∈M \ {1}, j ∈ L (16)

ηi = η
(end)
i ∨ η

(start)
i ,∀i ∈M \ {1,M} (17)

η1 = η
(start)
1 (18)

ηM = η
(end)
M (19)

xij ∈ {0, 1}, ∀i ∈M,∀j ∈ L (20)

ηi ∈ {0, 1}, ∀i ∈M (21)

where ‘∧’ and ‘∨’ denote the logical AND and OR operators, respectively.
ηi, i ∈ M, is a binary variable; ηi = 1 if channel i is a newly introduced
GB, and zero otherwise. ξi, i ∈ M, is a given data; ξi = 1 if channel i is
an existing GB, and zero otherwise. η

(start)
1 and η

(end)
1 , i ∈M, are additional

auxiliary variables to simplify the formulation. Because 1
M

∑M
i=1 ηi < 1, the

first term in (12) always dominates the second term.
Constraint (15) ensures using a GB channel to the left of each assigned

frequency block (i.e., before the start of the block) if there is no existing GB
channel. Specifically, this constraint says that if channel i+ 1 is assigned to
link j (i.e., x(i+1)j = 1), channel i is not assigned to link j (i.e., xij = 0),
and channel i is not an existing GB (i.e., ξi = 0), then channel i needs
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to be reserved as a GB channel (i.e., ηi needs to be set to 1). Similarly,
Constraint (16) ensures using a GB channel to the right of each assigned
frequency block (i.e., after the end of the block). Constraint (17) ensures
that ηi = 1 if slot i + 1 is the start of a frequency block or slot i − 1 is
the end of a frequency block. To simplify our formulation, we reformulate
the constraints that contain logical operators (i.e., Constraints (15), (16),
and (17)). Constraint (15) can be reformulated, and equivalently replaced
by the following set of constraints:

η
(start)
i ≤ x(i+1)j,∀i ∈M \ {M}, j ∈ L (22)

η
(start)
i ≤ 1− xij,∀i ∈M \ {M}, j ∈ L (23)

η
(start)
i ≤ 1− ξi, ∀i ∈M \ {M} (24)

η
(start)
i ≥ x(i+1)j + (1− xij) + (1− ξi)− 2, ∀i ∈M \ {M}, j ∈ L (25)

η
(start)
i ≥ 0. (26)

Similarly, constraint (16) can be reformulated as follows:

η
(end)
i ≤ 1− xij, ∀i ∈M \ {1}, j ∈ L (27)

η
(end)
i ≤ x(i−1)j,∀i ∈M \ {1}, j ∈ L (28)

η
(end)
i ≤ 1− ξi,∀i ∈M \ {1} (29)

η
(end)
i ≥ (1− xij) + x(i−1)j + (1− ξi)− 2,∀i ∈M \ {1}, j ∈ L (30)

η
(end)
i ≥ 0. (31)

Constraint (17) can be reformulated as follows:

ηi ≥ η
(start)
i , ∀i ∈M \ {1,M} (32)

ηi ≥ η
(end)
i , ∀i ∈M \ {1,M} (33)

ηi ≤ η
(start)
i + η

(end)
i , ∀i ∈M \ {1,M}. (34)

After reformulating constraints (15), (16), and (17), Problem 2 can be
stated as follows.
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Problem 2 (reformulated):

maximize{
xij ,i∈M,j∈L

ηi,i∈M
}
{

L∑
j=1

M∑
i=1

xij −
1

M

M∑
i=1

ηi

}
(35)

subject to:

M∑
i=1

xij ≤ αj, ∀j ∈ L (36)

L∑
j=1

xij ≤ 1,∀i ∈M (37)

η
(start)
i ≤ x(i+1)j,∀i ∈M \ {M}, j ∈ L (38)

η
(start)
i ≤ 1− xij,∀i ∈M \ {M}, j ∈ L (39)

η
(start)
i ≤ 1− ξi, ∀i ∈M \ {M} (40)

η
(start)
i ≥ x(i+1)j + (1− xij) + (1− ξi)− 2, ∀i ∈M \ {M}, j ∈ L

(41)

η
(start)
i ≥ 0 (42)

η
(end)
i ≤ 1− xij,∀i ∈M \ {1}, j ∈ L (43)

η
(end)
i ≤ x(i−1)j, ∀i ∈M \ {1}, j ∈ L (44)

η
(end)
i ≤ 1− ξi,∀i ∈M \ {1} (45)

η
(end)
i ≥ (1− xij) + x(i−1)j + (1− ξi)− 2, ∀i ∈M \ {1}, j ∈ L

(46)

η
(end)
i ≥ 0 (47)

ηi ≥ η
(start)
i , ∀i ∈M \ {1,M} (48)

ηi ≥ η
(end)
i , ∀i ∈M \ {1,M} (49)

ηi ≤ η
(start)
i + η

(end)
i , ∀i ∈M \ {1,M} (50)

η1 = η
(start)
1 (51)

ηM = η
(end)
M (52)

xij ∈ {0, 1},∀i ∈M,∀j ∈ L (53)

ηi ∈ {0, 1},∀i ∈M. (54)
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In the joint assignment for multiple links, each idle channel before the
assignment will end up being in one of L + 2 states after the assignment:
assigned to one of the L links, reserved as a GB, or left unassigned. Therefore,
obtaining the optimal solution through an exhaustive search approach incurs
an exponential complexity of (L + 2)I , where I =

∑N
i=1 βi and βi = Ri/r

(defined in Section 3). In the following subsection, we present an exponential-
time exact algorithm for the batch assignment, followed by an approximate
sequential assignment algorithm.

4.1. Exponential-time Exact Algorithm

We implement the optimal assignment of multiple links that results in the
maximum assigned rate with the minimum number of introduced GBs by fol-
lowing an exhaustive search approach that benefits from some pruning rules.
A tree is used for this exhaustive search, in which each node is represented
by a state vector that contains the states of the I channels. Node i corre-
sponds to a state vector ni = (s1, s2, . . . , sI), where si ∈ {D,G, 1, 2, . . . , L}
represents the state of channel i with D means channel i is left idle, G means
that is reserved as a GB, and k ∈ L, means that it is assigned to link k.
The depth of a node on the search tree represents the number of determined
variables in that node, i.e., the states of the first i channels, s1, . . . , si, for all
nodes of depth i are determined. To decrease the search space while ensuring
the feasibility conditions, such as the required GBs for the assigned channels,
we introduce the following pruning rules. Denote the current set of partially
served links by P . Then,

1. If idle channel i is at the beginning of an idle block, si ∈ {D, u}, where
u ∈ P .

2. If idle channel i is not at the beginning of an idle block, then,

• if idle channel i− 1 has been assigned to link y (i.e., si−1 = y), then,

∗ if y ∈ P , si ∈ {G, y}.
∗ if y /∈ P , si = G.

• if idle channel i − 1 has been reserved as a GB (i.e., si−1 = G), then,
si ∈ {D, u}, where u ∈ P .
• if idle channel i−1 has not been assigned (i.e., si−1 = D), then, si = D.

3. Let Ai be the total number of assigned channels in node i located at
depth t in the tree. If Ai < Abest + t− I, where Abest is the total number
of assigned channels in the current best solution, then we do not branch
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Table 2: Complexity of the multi-link assignment algorithms.

Algorithm Complexity

Exact (batch) O
(
(L+ 2)I

)
MSSPexact O

(
LN

)
SEQASC, SEQDSC, SEQRND O (LN logN)

further from node i, because this will not improve the current best solu-
tion. There can be multiple solutions that result in the maximum total
number of assigned channels. All these solutions will be recorded, and the
one that introduces the minimum number of GBs will be selected.

Adding the above pruning rules reduces the running time of the brute
force search significantly. However, the running time is still long, so we limit
our simulations in Section 5.2 to small numbers of idle channels and links.

4.2. Approximate Sequential Assignment Algorithm

Given the high complexity of the exact algorithm, we instead propose
assigning channels to links sequentially. Each link can be assigned using any
of the algorithms proposed in Section 3. The fast greedy algorithm for SSP
can be used to assign channels to each individual link. The links can be
assigned in different orders. In here, we implement three different ordering
approaches: start with the link that has the smallest demand (denoted by
SEQASC), start with the link with the largest demand (denoted by SEQDSC),
or follow a random ordering of links (denoted by SEQRND). For the com-
parisons in Section 5.2, we have also implemented a version of the sequential
assignment that uses the algorithm in [3] for each individual link assignment.
This algorithm selects existing GBs and minimizes the number of assigned
frequency blocks. Table 2 shows the complexity of various multi-link
assignment algorithms.

5. Performance Evaluation

In this section, we evaluate the proposed channel assignment algorithms.
All proposed algorithms were implemented in C++. In addition, we imple-
mented the channel assignment scheme in [3], which we refer to as “Choose
all existing GBs” in the legends of the simulation figures. In this scheme, the
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Table 3: Simulation parameters for the single link assignment algorithms.

Parameter Value

d 10 Mbps

pbusy 0.25

L 1

M 50

objective function is to minimize the number of assigned idle blocks that are
required to meet a certain rate demand. This scheme selects all existing GBs.
In the figures for multi-link assignment, “Choose all existing GBs” refers to
a sequential assignment approach with a random order, where each link is
assigned channels according to the scheme in [3]. Our results are averaged
over 50 runs, and the 95% confidence intervals are indicated in the figures.

5.1. Single-link Assignment Algorithms

All single-link assignment algorithms are simulated in a common setup,
shown in Table 3, and using a common spectrum status. pbusy in Table 3 is
the probability that a given channel is already assigned to another link.

Figure 6 depicts the spectrum efficiency vs. pbusy for various single-link
assignment schemes. As shown in this figure, SSP algorithms achieve higher
ξlink than the scheme in [3]. This is attributed to the fact that SSP-based
assignment schemes are per-block, so they inherently try to use existing GBs
and avoid introducing any new GB, hence maximizing the ξlink. As pbusy
increases, the number of existing GBs increases. This improves the perfor-
mance of the SSP-based schemes; because the sizes of idle blocks become
smaller, which increases the chances of finding a subset of idle blocks whose
sum rate is equal to the rate demand d. The performance of the scheme
proposed in [3] also improves with pbusy because of the reduction in the sizes
of idle blocks. The idle blocks selected by this scheme may not change with
increasing pbusy, but the probability that the first and last channels of these
blocks are existing GBs increases, which results in a higher ξlink. As shown in
Figure 6, the ϵ-approximate and greedy algorithms achieve comparable ξlink
to the optimal DP algorithm. Figure 7 shows the ξlink vs. the rate demand
d. SSP-based assignment algorithms outperform the one in [3] for all values
of d.
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Figure 6: Spectrum efficiency ξlink vs. pbusy (single-link assignment).
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Figure 7: Spectrum efficiency ξlink vs. d (single-link assignment).

The number of introduced GBs is depicted in Figure 8 for different values
of pbusy. SSP-based algorithms introduce smaller numbers of GBs (≤ 1),
which is consistent with the result in Theorem 2. Figure 9 shows the number
of introduced GBs for different values of d. SSP-based assignment algorithms
outperform the one in [3] for all values of d. When the channel availability
decreases with increasing pbusy, the chance of not meeting the link demand
increases. Figure 10 shows the fraction of the 50 runs that report infeasibility
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for different values of pbusy. The infeasibility ratio of all considered schemes
can reach up to 0.45 when pbusy = 0.4. The infeasibility ratio is also shown
for various values of d in Figure 11.
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Figure 8: Number of introduced GBs vs. pbusy (single-link assignment).
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Figure 9: Number of introduced GBs vs. d (single-link assignment).
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Figure 10: Infeasibility ratio vs. pbusy (single-link assignment).
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Figure 11: Infeasibility ratio vs. d (single-link assignment).

5.2. Multi-link Assignment Algorithms

First, we simulate the optimal and the heuristic sequential assignment
algorithms using the parameters in Table 4. The rate demands are generated
uniformly between dmin and dmax.

Table 5 shows the fraction of runs in which SEQASC, SEQDSC, and SEQRND

result in a sub-optimal solution, for different values of L. The performance
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Table 4: Simulation parameters for the multi-link assignment algorithms (experiments vs.
L).

Parameter Value

pbusy 0.4

M 50

dmin 1 Mbps

dmax 5 Mbps

gap between the sequential greedy algorithms and the exact algorithm in-
creases with L.

Table 5: Fraction of runs with sub-optimal results.

SEQ Alg. L = 2 L = 4 L = 6 L = 8 L = 10

SEQASC 0.04 0.28 0.6 0.78 0.84
SEQDSC 0.20 0.34 0.18 0.22 0.20
SEQRND 0.08 0.34 0.46 0.48 0.48

Define the service ratio (SR) as follows:

SR =

∑L
j=1

∑N
i=1Rixij∑L

j=1 dj
. (55)

Figure 12 depicts SR vs. L for the optimal and sequential algorithms.
The sequential greedy approaches achieve close-to-optimal SR, even when the
number of sub-optimal runs in Table 5 is large. The number of introduced
GBs and ξnet are plotted in Figures 13 and 14, respectively. The performance
of the three sequential algorithms depends on the states of the channels
and link demands. This is the reason for the large intersecting confidence
intervals. The average behavior shows that SEQDSC outperforms SEQASC

and SEQRND in terms of ξnet and SR, especially for a large L.
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Figure 12: Service ratio vs. L (multi-link assignment).
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Figure 13: Number of introduced GBs vs. L (multi-link assignment).
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Table 6: Simulation parameters for the multi-link assignment algorithms (experiments vs.
pbusy).

Parameter Value

L 10

M 150

dmin 2 Mbps

dmax 10 Mbps
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Figure 14: Spectrum efficiency vs. L (multi-link assignment).

Next, we simulate the exact MSSP and the heuristic sequential algorithms
using the parameter values in Table 6. The rate demands are generated
uniformly between dmin and dmax.

Figure 15 depicts SR vs. pbusy. SR decreases with pbusy. All algorithms
achieve very close SRs, but they achieve different performance in terms of
the number of introduced GBs and ξnet, as shown in Figures 16 and 17, re-
spectively. MSSP achieves a better average performance than the sequential
algorithms; because, even though it is not optimal, it assigns channels to
links jointly considering all demands. MSSP and the sequential algorithms
outperform the scheme in [3]. As shown in Figure 16, the inefficient perfor-
mance of the scheme in [3] is more noticeable when pbusy is small, which leads
to idle blocks of large sizes. Since the algorithm in [3] aims at minimizing
the number of assigned blocks, larger blocks will be preferable over smaller
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blocks, which introduces more GBs and reduces ξnet. The increase in the
number of introduced GBs also reduces the SR, given in (55).
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Figure 15: Service ratio vs. pbusy (multi-link assignment).
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Figure 16: Number of introduced GBs vs. pbusy (multi-link assignment).
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Figure 17: Spectrum efficiency vs. pbusy (multi-link assignment).

6. Related Work

To support applications with high rate demands, the IEEE 802.11n
and the upcoming IEEE 802.11ac standards have adopted channel
bonding [4–8]. By bonding two 20-MHz channels, IEEE 802.11n
supports a single 40 MHz channel [9]. In [5, 6], the authors con-
ducted experimental studies in the 5 GHz band over an IEEE
802.11n testbed to characterize the behavior of channel bonding.
They observed that ACI needs to be mitigated in order to perform
intelligent channel bonding. The IEEE 802.11ac standard enhances
the throughput beyond the IEEE 802.11n using an 80 MHz chan-
nel bonding technique [7, 8]. In [7], the authors compared static
and dynamic channel access schemes, applied to the IEEE 802.11ac
standard. In the dynamic scheme, radios can switch between dif-
ferent bandwidths (20, 40, and 80 MHz), whereas in the static
scheme radios tune to a fixed bandwidth. Several resource alloca-
tion schemes with channel bonding have been considered in [33–35]
for OFDMA systems. However, none of the above schemes account
for ACI through GBs.

The concept of channel bonding can be extended to non-adjacent
frequency channels, and is referred to as channel aggregation. LTE-
Advanced supports channel aggregation for 4G cellular networks
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by allowing mobile operators to aggregate spectrum from non-
adjacent bands to support links with high demands [14]. Implemen-
tation challenges of channel aggregation were studied in [15, 16].
Recently, distributed channel aggregation was studied in [17–19]
within a game-theoretic framework. In [17], the authors modeled
the problem of distributed channel selection with aggregation as
a stochastic game with incomplete information. They have shown
that by adopting learning automata, the radios converge to a Nash
equilibrium. A spatial spectrum sharing-based channel aggrega-
tion was studied in [18] from a game-theoretic perspective. In [18],
the authors considered a model where an operator can access and
aggregate the licensed spectrum of other operators upon payment
of a certain fee. They modeled the channel aggregation problem
as a pricing game. They related the pricing game to a power con-
trol game, and derived the Stackelberg equilibrium for the pricing
and power optimization problem. In [19], the problem of dynamic
inter-network channel aggregation was studied, where mobile op-
erators decide whether to allow a portion of their spectrum to be
used by other operators for a given duration. They modeled the
problem as a Bayesian game with incomplete information. A dis-
tributed algorithm that approaches a neighborhood of a Bayesian
Nash equilibrium was proposed. Although co-channel interference
was extensively studied in the context of distributed channel allo-
cation (e.g., [20, 21]), most existing works on channel allocation,
including the schemes that support channel aggregation, do not
account for ACI.

In [36], the amount of required GBs was determined based on the differ-
ences in the capacity limits of the used spectrum. A designated spectrum
broker was used to manage spectrum sharing among different users with
different priorities. In [37], a centralized adaptive GB configuration, called
Ganache, was proposed to account for ACI. Ganache does not support chan-
nel aggregation. Our proposed channel assignment schemes support both
channel bonding and aggregation, while mitigating ACI.

7. Future Research

Due to multi-path fading and shadowing, the channel quality
in wireless networks is often uncertain and time-varying. In this
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case, it makes sense to model the channel quality (i.e., achievable
rate) as a stochastic process. Each time the channel assignment is
performed, the rates of various channels would be sampled from
probability distribution functions. In this section, we provide di-
rections for extending our sequential and batch channel assignment
schemes to the case when the rates of various channels are treated
as random variables.

7.1. Sequential Channel Assignment Under Uncertainty
We propose using stochastic programming techniques to formu-

late the channel assignment problem under uncertain channel rates.
For deterministically known channel rates, the sequential channel
assignment problem is given by Problem 1 ((4)- (6)). When the
channel rates are random, the feasible region in Problem 1 be-
comes also random. Different stochastic optimization approaches
have been proposed in the literature to deal with the uncertainty in
the feasible region of an optimization problem [38]. One approach
that we plan to pursue is the “chance constraint approach.” In
this approach, the constraints that include random variables are
enforced to be satisfied with a probability greater than a given
threshold. In Problem 1, when the rates are random, constraint (5)
becomes random. Using a chance constraint, the link demand can
be probabilistically satisfied. Moreover, the objective function in
Problem 1 becomes random. We account for this randomness by
replacing the channel rates by their expected values. Although
the rates are random, their distributions are usually known prior
to channel assignment. Adopting the chance constraint approach,
the channel assignment problem under channel uncertainty can be
formulated as follows:

Chance-constrained SSP:

maximize
{xi,i∈N}

N∑
i=1

E[R̃i]xi (56)

subject to:

Pr

{
N∑
i=1

R̃ixi ≥ d

}
≥ β (57)

xi ∈ {0, 1},∀i ∈ N (58)
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where R̃i is the rate supported by the ith frequency block. xi, N,N ,
and d are as defined in Problem 1. Based on the distribution of the
channel rates, the chance constraint in (57) can be reformulated.
Further investigation of this problem is left for future research.

7.2. Batch Channel Assignment Under Uncertainty

One way to tackle the batch channel assignment problem under
channel uncertainty is to generalize the above chance-constrained
SSP formulation to multiple links. This can be done by introducing
a chance constraint for each link demand, which leads to a chance-
constrained MSSP formulation:

Chance-constrained MSSP:

minimize
{xij ,i∈N ,j∈L}

L∑
j=1

N∑
i=1

E[R̃i]xij (59)

subject to:

Pr

{
N∑
i=1

R̃ixij ≥ dj

}
≥ β, ∀j ∈ L (60)

L∑
j=1

xij ≤ 1,∀i ∈ N (61)

xij ∈ {0, 1},∀i ∈ N , j ∈ L. (62)

Recall that in the case of deterministic channel rates, MSSP
does not always achieve the optimal (spectrum efficient) assign-
ment. Therefore, chance-constrained MSSP may not be the opti-
mal stochastic channel assignment scheme. Further investigation
of this problem is left for future research.

8. Conclusion

In this paper, we proposed GBA channel assignment algorithms that ac-
count for ACI in multi-channel wireless networks with channel bonding/aggregation.
Both single-link (sequential) as well as multiple links (batch) assignments
were considered. For a single link, the optimal assignment problem was for-
mulated as an SSP, and exact and approximate solutions were presented. We
also obtained the optimal assignment for multiple links. To avoid the high
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complexity of the exact multi-link assignment algorithm, a polynomial-time
sequential assignment was presented, which adopts a greedy strategy for each
link. Our numerical results showed that the greedy sequential assignment
achieves a near-optimal performance. The approximate greedy approach is
still better than a previously proposed approach in [3, 39].
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