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Abstract—Mobile edge computing (MEC) is a promising tech-
nology to support computationally intensive mobile applications
with stringent delay requirements. As MEC applications become
much more diverse and complex, it becomes more challenging
for an edge node (EN) with limited storage to keep the program
codes of all tasks. In this paper, we investigate the problem
of program placement and user association in storage-limited
MEC systems. Formulating the problem as a sequential decision-
making problem, we first derive the solution for a single EN
by transforming the formulation into a multi-armed bandit
(MBA) problem and solving it via a Thompson sampling (TS)
algorithm. We then propose a solution framework for the multi-
EN scenario, where we decompose the original problem into three
subproblems and solve them with low-complexity approaches.
The first subproblem is to learn the task popularity, which we
also formulate as a MAB problem and solve it via a TS algorithm.
The second subproblem is optimizing program placement under
a given user association and we propose a greedy algorithm to
solve it. The last subproblem relates to user association, which
is solved by a dual decomposition-based approach. Simulation
results show that the average latency achieved by our proposed
schemes is 30% to 100% lower than two benchmark schemes and
is on average less than 10% higher than a lower bound.

Index Terms—Mobile edge computing; low-latency applica-
tions; storage-limited systems; program placement optimization;
multi-armed bandit; Thompson sampling.

I. INTRODUCTION

Mobile Internet of Things (IoT) applications (e.g., con-
nected and autonomous vehicles, augmented/virtual reality,
etc.) often require executing delay-sensitive yet computa-
tionally intensive tasks [1], [2]. With limited computational
capability, it is quite challenging for mobile devices to execute
these tasks in a timely manner. Mobile edge computing (MEC)
provides an effective solution to this challenge. By deploying
MEC servers within the radio access network, e.g., close to
base stations (BSs) or access points (APs), the computational
tasks generated by users can be offloaded to and executed by
nearby edge nodes (ENs)1 [3]. Due to their proximity to end
users, ENs can deliver low-latency services.

To execute a task at an EN, the input data (e.g., video clips
taken by the mobile device) and the program that executes
the task (e.g., object recognition software) are required. Many
research papers assume that the programs of all tasks are stored
at each EN. This way, users can always offload any task to

1An EN refers to a combination of an MEC server and a BS/AP.

a nearby EN. It is also often assumed that the programs are
always loaded in the random-access memory (RAM) of each
EN, so that a task can be immediately executed once the input
data has been uploaded by the user, without having to wait for
program loading. However, these assumptions are not practical
for future MEC systems. Specifically, mobile IoT applications
will become more diverse, and their complexity is expected
to increase (e.g., going from Level 1 autonomous driving to
Level 5 autonomous driving), with a corresponding increase
in the sizes of programs associated with these applications.
On the other hand, with the projected massive deployment of
ENs, cheap hardware with relatively small storage will likely
be used to avoid high capital expenditure (CAPEX). Thus, it
is quite unlikely that any EN will need to store all programs
generated by different users. When the program of a requested
task is not stored in a given EN, the task has to be executed
at the user’s own device or handed over to another EN that
has the program. Both options increase the overall latency. To
this end, storage utilization at an EN needs to be optimized in
a way that minimizes the average latency.

Task requests received by different ENs vary in time and
space, depending on the specific application. This means that
ENs must learn to optimize their own program placement
strategy, which includes program storage and preloading.
Intuitively, frequently requested programs should have a higher
priority to be stored and preloaded. However, other factors
need to be taken into account, such as program file size,
computational complexity, and loading time of each program.
In an MEC system with multiple users and ENs, user as-
sociation is a design problem that is coupled with program
placement. On the one hand, users in overlapping coverage
areas of neighboring ENs have multiple choices of which ENs
to offload their tasks. As the ENs vary in program availability,
communication link quality, and computational capability, the
overall latency of a user is dictated by its EN selection. On
the other hand, user association determines the traffic load at
each EN and the associated communication and computational
latencies. Thus, program placement strategies of neighboring
ENs are coupled via user association.

In this paper, we investigate the optimization of program
placement and user association in storage-constrained MEC
systems, aiming to minimize the average latency of all users
over a finite time interval. We develop efficient solutions based



on an online learning framework called multi-armed bandit
(MAB). The main contributions of this paper are as follows:
• We formulate the problem of program placement (includ-

ing program storage and preloading) and user association
as a sequential decision-making problem with coupled
variables.

• We derive an optimal solution for the single-EN sce-
nario by transforming the formulated problem into an
MAB problem, in which a subset of program placement
strategies are regarded as the arms to be played. The
MAB problem is solved using a Thompson sampling (TS)
algorithm.

• We develop a solution framework for the multi-EN sce-
nario by decomposing the original problem into three sub-
problems that are solved with low-complexity schemes
at each time slot. The first subproblem targets learning
task popularity (i.e., the probability that each task will be
requested by a user). This subproblem is formulated as an
MAB problem, and solved by a TS algorithm that only re-
quires ENs to perform a simple parameter update at each
round of learning. The second subproblem is optimizing
program placement under a given user association. We
show that this subproblem is a Knapsack problem, and
accordingly, we solve it via a greedy algorithm. The last
subproblem is user association, for which we propose
a dual decomposition-based approach to derive a near-
optimal solution. The proposed user association solution
is implemented in a distributed pattern and only requires
limited information exchange between users and ENs.
Moreover, we show that the number of iterations is only
a function of the convergence threshold, which enables
low-complexity implementation.

• We evaluate the performance of the proposed schemes
using simulations based on a cellular network setup,
in which the latency performance under different task
profiles (popularity, complexity, and program file size
of tasks) and network scenarios (varying numbers of
ENs and users) are compared. The results show that
the proposed schemes can reduce the average latency
by 30%∼100% compared to two benchmark schemes.
To demonstrate that near-optimal performance can be
achieved, we derive a lower bound on the latency. The
results show that, on average, the latency achieved by our
solution is less than 10% higher than the lower bound.

In the remainder of this paper, we overview related work
in Section II. We introduce the system model and problem
formulation in Sections III and IV, respectively. The solution
algorithms for the single-EN and multi-EN scenarios are
presented in Sections V and VI, respectively. We present our
simulation results in Section VII and conclude the paper in
Section VIII.

II. RELATED WORK

As an enabling technology for IoT applications, MEC has
attracted significant attention from both industry and academia.
Early standardization efforts were initiated by the Industry

Specification Group (ISG) of the European Telecommunica-
tions Standards Institute (ETSI) [1]. A literature overview of
MEC can be found in [3]. Recently, an analytical framework
for the fundamental aspects of MEC, including communica-
tion, computation, caching, and control was introduced in [4].

The problem of program placement at ENs has some sim-
ilarities with content caching/prefetching in content delivery
networks (CDNs), where popular content is cached at stations
that are close to end users (e.g., small BSs), allowing such
content to be quickly delivered to these users [8]–[10]. Be-
cause the content popularity profile is often unknown, machine
learning (ML) algorithms have been developed to predict
the content request pattern and optimize caching strategies
(e.g., [11]–[13]). In particular, an MAB-based algorithm was
employed in [13] to learn the file request pattern at a small
BS, and a greedy file placement scheme was proposed based
on the predicted popularity profile. MEC-supported content
caching was considered in some recent works [14]–[17], where
the computing capability of MEC servers was utilized to
improve CDN performance. For example, the MEC server can
preprocess certain files (e.g., perform video transcoding) to
reduce the processing time of users. It can also help compress
files to save storage space. In contrast to these works that
optimize content placement for fast content delivery in CDNs,
we consider optimizing the placement of user programs at
ENs, which determines the task offloading availability, aiming
to fully harvest the benefit of MEC systems in providing low-
latency computing services. In addition, we consider optimiz-
ing the preloading strategy with the goal of minimizing the
processing latency.

User association in MEC systems has been investigated
in recent works. In [19], [20], user association was jointly
optimized with computational resource allocation and power
control, aiming to minimize the total energy consumption.
In [6], joint optimization of EN selection and computing
resources was considered to improve the quality of experience
(QoE) of users. In our problem, user association is coupled
with the program placement strategy of ENs, where we jointly
optimize the two to minimize the average latency of all users.

III. SYSTEM MODEL

A. Problem Setup

We consider an MEC system with J ENs, indexed by
j ∈ {1, . . . , J} , J . These ENs provide task offloading
services to K mobile user equipments (UEs), indexed by
k ∈ {1, . . . ,K} , K. Each EN has a storage space (e.g., disk)
with capacity EH (in bytes) that stores the program codes of
different tasks. Each EN also has a RAM of capacity ER (in
bytes) that loads the programs from disk, allowing the CPU
to read and execute these programs.

We consider a finite time interval that is divided into T
slots t = 1, . . . , T . For analytical tractability, we assume
that the pattern of task request received by each EN remains



the same during each time interval of T slots2. In each
time slot t, each UE randomly requests any one of the N
possible computational tasks. Each task is executed by a
unique program. The tasks and their associated programs are
indexed by i ∈ {1, . . . , N} , N . We assume that the task
generation processes of various UEs are mutually independent
and follow the same probability distribution. This assumption
is justified by the fact that different UEs act independently of
each other. Let θi be the probability that task i is generated by
any arbitrary UE;

∑N
i=1 θi = 1. The task popularity file over

N tasks is denoted by θ = [θ1, . . . , θN ]. Before the learning
process starts, θ is unknown to ENs.

At each time slot t, the programs that are stored on the disk
of EN j and loaded to the RAM are specified by two sets of
binary variables a[t]i,j and b[t]i,j , defined by:

a
[t]
i,j =

{
1, if program i is stored on disk of EN j
0, otherwise

i = 1, . . . , N, j ∈ J , t = 1, . . . , T. (1)

b
[t]
i,j =

{
1, if program i is preloaded to the RAM of EN j
0, otherwise

i = 1, . . . , N, j ∈ J , t = 1, . . . , T.
(2)

Let si be the size of program i (in bytes) and qi be the storage
space occupied by this program (in bytes) when loaded to
RAM, qi > si. Then, for all i ∈ N , a[t]i,j and b

[t]
i,j should

satisfy:{ ∑N
i=1 a

[t]
i,jsi ≤ EH, ∀j ∈ J , t = 1, . . . , T∑N

i=1 b
[t]
i,jqi ≤ ER, ∀j ∈ J , t = 1, . . . , T.

(3)

To update the program storage, each EN downloads the
programs to be added from the core network via backhaul
and deletes the programs to be removed. Each EN must also
decide the set of UEs associated with it. This is indicated by
the following binary variables:

x
[t]
k,j =

{
1, if UE k is associated with EN j
0, otherwise,

k ∈ K, j ∈ J , t = 1, . . . , T. (4)

When UE k is associated with EN j (i.e., x[t]k,j = 1) and it
generates task i at time t, the task will be executed by EN
j only if the program codes of task i are stored at EN j.
Otherwise, the task can only be executed by UE k. Fig. 1
illustrates an example of task offloading with different task
availability scenarios.

The sequence of program placement and user association
strategies of the J ENs for t = 1, . . . , T is called a policy,
which is denoted by π = {π1, . . . , πJ}.

2To capture the time-varying task request pattern, the MEC system will
update its configuration by performing the proposed optimizations in the next
time interval of T time slots.
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Fig. 1. Example of task offloading in a multi-EN system with limited storage.
A UE can offload a computational task to its associated EN only when the
task program is stored at the EN.

B. Communication Model

We consider a generic cellular network (e.g., LTE or 5G)
in which UEs are served by BS’s acting as ENs. UEs served
by the same EN are assumed to have the same priority, hence
the communication resource is equally allocated to them [18].
At time t, the data rate of UE k when associated with EN j
is given by:

R
[t]
k,j =

W log
(

1 + γ
[t]
k,j

)
∑K
k=1 x

[t]
k,j

(5)

where W is the available bandwidth for each EN, and γ
[t]
k,j

is the uplink signal-to-interference-plus-noise ratio (SINR)
for the transmission from UE k to EN j, which can be
measured by EN j. The successful of reception UE data
requires that γ[t]k,j ≥ γth, where γth is the SINR threshold.
For simplicity, we do not consider multi-rate communications
in this paper. Let Ω

[t]
k denote the set of candidate ENs

that can be used by UE k for task offloading at time t,
Ω

[t]
k =

{
j ∈ J

∣∣∣γ[t]k,j ≥ γth}. Then, x[t]k,j must satisfy:

x
[t]
k,j = 0,∀j /∈ Ω

[t]
k . (6)

C. Computational Models

The computational resource required for executing a task
is determined by the size of input data (in bits) and the
task’s computational complexity, represented in the number
of CPU cycles needed to execute one bit of the task. Let s̃k,i
be the input data size for task i of UE k and let zi be the
computational complexity of task i. Then, the number of CPU
cycles required to complete task i is s̃k,izi.

1) UE Computing Time: Let c(L)k be the computational
capability of UE k, measured in CPU cycles per second. Then,
the execution time for task i at UE k is s̃k,izi

c
(L)
k

. Because UE
k may generate any one of the N tasks, the expected task
execution time (in seconds) at UE k is given by:

D
(L)
k =

N∑
i=1

θi
s̃k,izi

c
(L)
k

. (7)

2) MEC Server Computing: Let c(E)
j be the computational

capability of EN j. We assume that c(E)
j is equally split

between all UEs associated with EN j during each time slot t.



Then, the computational capability allocated to UE k by EN

j at time t is c(E)
k,j

[t]
=

c
(E)
j∑K

k=1 x
[t]
k,j

. Similar to (7), the expected

computing time for executing the task of UE k at EN j is
given by:

D
(E)
k,j

[t]
=

N∑
i=1

θi
s̃k,izi

c
(E)
k,j

[t]
=

N∑
i=1

θi
s̃k,izi

∑K
k=1 x

[t]
k,j

c
(E)
j

. (8)

D. Latency Analysis

Suppose UE k is associated with EN j at time t. Considering
that UE k generates task i with probability θi and the generated
task may be executed by EN j or by UE k depending on the
program availability at EN j, the expected latency of UE k at
time t is given by:

D
[t]
k,j =

N∑
i=1

θi

 s̃k,izi

c
(E)
k,j

[t]
+

s̃k,i

R
[t]
k,j

 a
[t]
i,j +

(
1− a[t]i,j

) s̃k,izi
c
(L)
k

+
(

1− b[t]i,j
)
li,j

]
(9)

where li,j is the loading time of program i at EN j. For
simplicity, the latency for downloading the result of an ex-
ecuted task is ignored due to its small size [6], [7]. In case
the downloading time is non-negligible, it can be calculated
in the same way as the uploading time, and the expression of
D

[t]
k,j can be modified accordingly.
The latency expression in (9) can only be applied to the case

when UE k is associated with one of the J ENs. If UE k is
not associated with any EN, i.e.,

∑J
j=1 xk,j = 0, the UE has

to execute the task by itself, with expected latency of D(L)
k .

Combing the two cases, the latency of UE k is given by:

D
[t]
k =

J∑
j=1

x
[t]
k,jD

[t]
k,j +

1−
J∑
j=1

x
[t]
k,j

D
(L)
k . (10)

IV. PROBLEM FORMULATION

In this paper, we aim to find the optimal policy π (i.e.,
the sequence of program placement and user association
strategies) that minimizes the accumulated average latency of
all UEs over time slots t = 1, . . . , T . With D[t]

k given in (10),
the sum latency of all UEs at time t is given by:

K∑
k=1

D
[t]
k =

K∑
k=1

D
(L)
k +

K∑
k=1

J∑
j=1

x
[t]
k,j

(
D

[t]
k,j −D

(L)
k

)
. (11)

Let ∆
[t]
k,j = D

(L)
k − D

[t]
k,j , ∆

[t]
k,j can be interpreted as the

latency reduction of UE k when associated with EN j. It can
be seen from (11) that minimizing

∑K
k=1D

[t]
k is equivalent

to maximizing
∑K
k=1

∑J
j=1 ∆

[t]
k,j . Thus, we define the system

reward at time t as follows:

R[t]
π =

K∑
k=1

J∑
j=1

x
[t]
k,j∆

[t]
k,j . (12)

Then, the problem of finding the optimal policy that maximizes
the accumulated reward is formulated as:

P1 : max
π

∑T
t=1R

[t]
π (13)

s.t.
∑N
i=1a

[t]
i,jsi ≤ EH, j ∈ J , t = 1, . . . , T, (14)∑N

i=1b
[t]
i,jqi ≤ ER, j ∈ J , t = 1, . . . , T, (15)

b
[t]
i,j ≤ a

[t]
i,j , i ∈ N , j ∈ J , t = 1, . . . , T, (16)∑J

j=1x
[t]
k,j ≤ 1, k ∈ K, t = 1, . . . , T, (17)∑K

k=1x
[t]
k,j ≤ Uj , j ∈ J , t = 1, . . . , T, (18)

a
[t]
i,j , b

[t]
i,j ∈ {0, 1} , i ∈ N , j ∈ J , t = 1, . . . , T, (19)

x
[t]
k,j ∈ {0, 1} , k ∈ K, j ∈ J , t = 1, . . . , T. (20)

In P1, Constraints (14) and (15) reflect the storage capacities
of disk and RAM, respectively. Constraint (16) is due to the
fact that a program must be stored on the disk in order to be
loaded to the RAM. Constraint (17) indicates that each UE can
be associated with at most one EN. Finally, Constraint (18)
specifies an upper bound on the number of UEs that can be
served by EN j.

V. SOLUTION FOR THE SINGLE-EN SCENARIO

We first consider the scenario in which ENs are not densely
deployed, hence the coverage areas of neighbor ENs do not
overlap. In this case, the user association strategies of different
ENs are mutually independent. As a result, the program
placement strategy can be optimized from the perspective of a
single EN. Without loss of generality, we consider the program
placement optimization at EN j:

P2 : max
πj

∑T
t=1

∑K
k=1x

[t]
k,j∆

[t]
k,j (21)

s.t.: (14)− (16) and (19).

Problem P2 is a time-series decision-making problem with
two sets of coupled decision variables. To solve it, we first
transform the Problem P2 into an MAB problem. Then,
we apply the Thompson sampling (TS) algorithm to obtain
a policy that converges to the optimal program placement
strategy.

The program placement strategy at time t can be expressed
by a 2N × 1 vector [a

[t]
1,j , . . . , a

[t]
N,j , b

[t]
1,j , . . . , b

[t]
N,j ]. As the

elements of this vector are binary variables, the total number
of possible values (strategies) is 22N . We denote the various
possible strategies by zm, m = 1, . . . , 22N . If we model all
22N program placement strategies as arms in a MAB problem,
the complexity of the problem would be prohibitively high
when N is large. To this end, we reduce the dimensionality
of the problem by treating the feasible program placement
strategies that are possibly optimal as arms. These feasible
strategies are obtained with the following steps:

(a) Among all vectors zm, m = 1, . . . , 22N , we select the ones
that satisfy all the constraints (14)-(16).
(b) Among all the vectors selected by step (a), we keep the
ones that satisfy the following conditions: if the value of



any a
[t]
i,j or b[t]i,j is changed from 0 to 1, one of the storage

constraints in (14) and (15) would be violated. The other
vectors are removed since they cannot be the optimal solution.3

(c) Let M be the number of the remaining program placement
strategies after steps (a) and (b). We denote the set of these
strategies as F = {z1, . . . , zM}. Then, the M strategies in F
are the arms to be played and learned. The objective of the
MAB problem is to find the arm with the largest mean reward.

After the set of arms have been determined, we apply the TS
algorithm in [21] to solve the MAB problem. In the formulated
MAB problem, the reward for playing each arm m is a random
variable that takes values in [0, 1], and can be generated from
any arbitrary distribution with mean ρm. Here, ρm is defined
as the normalized expected latency reduction that results from
applying the mth program placement strategy, given by:

ρm =
∆j (aj(m),bj(m))

∆j
′ (22)

where ∆j (aj(m),bj(m)) is the expected latency reduction
for UEs associated with EN j under the mth program place-
ment strategy, denoted by aj(m) = [a1,j(m), . . . , aN,j(m)]
and bj(m) = [b1,j(m), . . . , bN,j(m)]; ∆j

′ is the reference
latency reduction, which is calculated by setting all elements
in aj(m) and bj(m) to 1. Note that ∆j (aj(m),bj(m)) and
∆j
′ are calculated based on the long-term average value of

the per-bit offloading time, i.e., the expected value of 1
Rk,j

for
UEs served by EN j.

Since the mean rewards of playing different arms (ρm, m =
1, . . . ,M ) are not known a prior, EN j has a “belief” for
the distribution of each ρm, which is updated when arm m
is played. In the TS algorithm [21], the prior distribution of
ρm (“belief”) is updated based on the outcome of a Bernoulli
trial. Thus, the beta distribution is a conjugate prior of the
distribution of ρm, as the posterior distribution is still a beta
distribution after each update. Let η[t]m be the prior distribution
for ρm at time t, it follows beta distribution with parameters
α
[t]
m and β[t]

m , i.e., η[t]m ∼ Beta(α
[t]
m , β

[t]
m ), m = 1, . . . ,M , t =

1, . . . , T . For a beta distribution Beta(α, β) that is conjugated
with a Bernoulli trial, α and β are the numbers of observed
successes and fails of the Bernoulli trial, respectively. The
mean of Beta(α, β) is α/α + β, and the higher α and β,
the tighter the distribution is concentrated around its mean. In
our problem, the initial prior distributions of η[t]m are set to
be η[1]m ∼ Beta(1, 1), m = 1, . . . ,M , which correspond to a
uniform distribution.

At each time step t, the EN samples η
[t]
m from

Beta(α
[t]
m , β

[t]
m ) and records the sampled values η̂

[t]
m , m =

1, . . . ,M . Then, the EN plays the arm m∗ = arg max
m

η̂
[t]
m

and observes the reward r[t]. The observed reward is the

3When one more program is added to a strategy and both storage constraints
are still satisfied, the resulting new strategy must be a feasible strategy that
outperforms the original strategy. Thus, it is certain that the original strategy
is not optimal.

Algorithm 1: TS Algorithm for Optimal Program
Placement Strategy in Single-EN Scenario

1 Initialize: η[1]m ∼ Beta(1, 1), m = 1, . . . ,M ;
2 for t = 1 : T do
3 for m = 1 :M do
4 Sample η[t]m from Beta(α

[t]
m , β

[t]
m ) ;

5 end
6 Play arm m∗ = argmax

m
η̂
[t]
m and observe reward r[t] ;

7 Perform a Bernoulli trial with success probability r[t]

and record output r̃[t] ;
8 if r̃[t] = 1 then
9 α

[t+1]
m∗ = α

[t]
m∗ + 1 and β[t+1]

m∗ = β
[t]
m∗ ;

10 else
11 α

[t+1]
m∗ = α

[t]
m∗ and β[t+1]

m∗ = β
[t]
m∗ + 1 ;

12 end
13 end

normalized latency reduction achieved by all UEs associated
with EN j, given by:

r[t] =
∆j (aj(m

∗),bj(m
∗))

[t]

∆j
′ . (23)

Based on r[t], EN j performs a Bernoulli trial with success
probability r[t] and observes the outcome r̃[t]. Then, it updates
the parameters of the distribution of η[t]m∗ by:

(α
[t+1]
m∗ , β

[t+1]
m∗ ) =

{
(α

[t]
m∗ + 1, β

[t]
m∗), if r̃[t] = 1

(α
[t]
m∗ , β

[t]
m∗ + 1), otherwise.

(24)

The distributions of other arms (m 6= m∗) remain the same.
The sampling and update processes are repeated from time
t = 1 to t = T . Given a sufficiently large T , the optimal
program placement strategy can be obtained. The TS algorithm
for the single-EN scenario is summarized in Algorithm 1.

VI. SOLUTION FOR THE MULTI-EN SCENARIO

With the trend of network densification in cellular networks,
the ENs are expected to be densely deployed with overlapping
coverage areas. As a result, a UE may have multiple choices of
ENs for task offloading, and it can optimize its EN selection
depending on the program availability, communication link,
and computational capability of nearby ENs. On the other
hand, user association determines the load distribution among
ENs and the latency performance of users associated with each
EN. Thus, joint optimization of program placement and user
association is necessary to achieve the full potential of latency
reduction.

A. Solution Overview

As the decision variables for program placement strategy
are binary integers, the number of feasible strategies of all
ENs grows exponentially with the number of ENs. As a
result, the TS-based solution algorithm in Section V cannot be
applied in the multi-EN scenario due to the prohibitively large
number of arms to be played. To derive an effective solution,
we decompose the original problem into three subproblems

Mingjie Feng




to be solved at each time t and iteratively solve them to
obtain a near-optimal solution. Specifically, we first apply a TS
algorithm to learn the task popularity profile at time t, denoted
by θ[t]. With θ[t], the optimization of program placement and
user association is formulated as follows:

P3 : max
{a[t],b[t],x[t]}

∑K
k=1

∑J
j=1x

[t]
k,j∆

[t]
k,j (25)

s.t.
∑N
i=1a

[t]
i,jsi ≤ EH, j ∈ J , (26)∑N

i=1b
[t]
i,jqi ≤ ER, j ∈ J , (27)

b
[t]
i,j ≤ a

[t]
i,j , i ∈ N , j ∈ J , (28)∑J

j=1x
[t]
k,j ≤ 1, k ∈ K, (29)∑K

k=1x
[t]
k,j ≤ Uj , j ∈ J , (30)

x
[t]
k,j = 0, k ∈ K, ∀j /∈ πk, (31)

x
[t]
k,j ∈ {0, 1} , k ∈ K, j ∈ J , (32)

a
[t]
i,j , b

[t]
i,j ∈ {0, 1} , i ∈ N , j ∈ J . (33)

where a[t], b[t], and x[t] are the matrices [a
[t]
i,j ]i∈N ,j∈J ,

[b
[t]
i,j ]i∈N ,j∈J , and [x

[t]
k,j ]k∈K,j∈J . We decompose P3 into two

levels of subproblems. The lower-level subproblem is program
placement under a given user association, and we propose
a greedy algorithm to solve it. The higher-level subproblem
is user association given that the program placement strategy
is applied, we propose a dual decomposition-based approach
solve it.

B. Task Popularity Profile Acquisition

To obtain θ[t], we consider a Bernoulli bandit problem
by regarding the N programs as the arms to be played,
and the mean reward for playing arm i is θi. The values
of θi are learned via the same TS algorithm presented in
Section V. Let φ[t]i be the prior distribution of θi at time t,
it follows beta distribution with parameters α[t]

i and β[t]
i , i.e.,

φ
[t]
i ∼ Beta(α

[t]
i , β

[t]
i ), i ∈ N . The initial distribution of φ[t]i is

set to be φ[t]i ∼ Beta(1, 1), i ∈ N . We assume all ENs send
their task request records to an agent. At time t, the agent
samples φ

[t]
i from Beta(α

[t]
i , β

[t]
i ) and records the sampled

values φ̂[t]i , i ∈ N . Then, it plays the arm i∗ = max
i
φ̂
[t]
i

and observes the reward. The reward is the proportion of UEs
that have requested task i∗ at time t, given by:

r[t] =
Θ

[t]
i∗∑N

i=1 Θ
[t]
i

(34)

where Θi is the number of requests for task i at time t. Then,
the agent performs a Bernoulli trial with probability r[t] and
observes the outcome r̃[t]. Finally, the distribution of φi is
updated by:

(α
[t+1]
i , β

[t+1]
i )=


(α

[t]
i + 1, β

[t]
i ), if i = i∗& r̃[t] = 1

(α
[t]
i , β

[t]
i + 1), if i = i∗& r̃[t] = 0

(α
[t]
i , β

[t]
i ), if i 6= i∗

(35)

Algorithm 2: TS Algorithm for Obtaining Task Pop-
ularity Profile

1 Initialize: φ[1]
i ∼ Beta(1, 1), i ∈ N ;

2 for t = 1 : T do
3 for i = 1 : N do
4 Sample φ[t]

i from Beta(α
[t]
i , β

[t]
i ) ;

5 end
6 Play arm i∗ = argmax

i
φ̂
[t]
i and observe reward r[t] ;

7 Perform a Bernoulli trial with success probability r[t]

and record outcome r̃[t] ;
8 if r̃[t] = 1 then
9 α

[t+1]
i∗ = α

[t]
i∗ + 1 ;

10 else
11 β

[t+1]
i∗ = β

[t]
i∗ + 1 ;

12 end
13 end

The process for learning θ[t] is summarized in Algorithm 2.

C. Program Placement with Given User Association

With given φ[t]i , the program placement optimization at time
t is a Knapsack problem, which is generally NP-hard. Since
such a problem needs to be solved at each time step, only a
low-complexity solution can be implemented. To this end, we
propose a heuristic program placement strategy that greedily
allocates storage space to the programs with the highest
request probability per occupied space. Specifically, we first
sort the programs by the descending order of φ[t]i /(si + qi)
and put them into the RAM according to such order until the
storage space of RAM is full, i.e.,

∑N
i=1 b

[t]
i qi > ER. Then,

we sort the remaining programs by the descending order of
φ
[t]
i /si and put them into the disk according to such order until

the storage space of disk is full, i.e.,
∑N
i=1 a

[t]
i si > EH.

D. Dual Decomposition-Based User Association

Let ∆̃k,j(x
[t]) be the value of ∆

[t]
k,j if the greedy program

placement strategy in Section VI-C is applied under user
association x[t]. The user association problem is formulated
as:

P4 : max
{x[t]}

∑K
k=1

∑J
j=1x

[t]
k,j∆̃k,j(x

[t]) (36)

s.t.: (29)− (32)

Problem P4 is an integer programming problem, which is
generally NP-hard. To develop an effective solution algorithm,
we first relax the integer constraint by allowing all x[t] to take
values in [0, 1]. Let P4-Relexted be the relaxed problem, it
can be verified that the objective function of P4-Relexted is
concave and the feasible region defined by all constraints is
convex. Thus, P4-Relexted is a convex optimization problem
and we apply a dual decomposition approach to obtain its
optimal solution.

The decision variables of P4-Relexted are coupled with
each other via the quadratic terms in the objective function.
To this end, we introduce a set of auxiliary variables V [t]

j =



∑K
k=1 x

[t]
k,j , j ∈ J , which are the traffic loads of ENs. At each

iteration of the dual decomposition algorithm, we first fix the
traffic loads and find the optimal solution of user association.
The solution is then used to update the traffic loads, which
will be used in the next iteration. With given {V [t]

1 , . . . , V
[t]
J },

we have the following problem:

P5 : max
{x[t]}

∑K
k=1

∑J
j=1x

[t]
k,j∆̃k,j(x

[t]) (37)

s.t.: (29)− (32)∑K
k=1x

[t]
k,j = V

[t]
j , j ∈ J , (38)

Let λ[t] = [λ
[t]
1 , . . . , λ

[t]
J ] be the Lagrangian multipliers for

the constraints (38). Applying a partial relaxation on these
constraints, we have the following Lagrangian function:

L
(
x[t],λ[t]

)
=

K∑
k=1

J∑
j=1

x
[t]
k,j∆̃k,j(x

[t]) +
J∑
j=1

λ
[t]
j

(
K∑
k=1

x
[t]
k,j − V

[t]
j

)
. (39)

The corresponding dual problem of P5 is given by:

P5-Dual: min
{λ[t]}

g(λ[t]) (40)

where g(λ[t]) is given by:

g(λ[t]) = max
{x[t]}

L
(
x[t],λ[t]

)
. (41)

The problems given in (40) and (41) are solved iteratively.
At each iteration, x[t] and λ[t] are calculated and updated by
UEs and ENs, respectively.

Based on the expression of L(x[t],λ[t]), the problem of
maximizing g(λ[t]) can be decomposed into K independent
subproblems that are solved by each UE. Let τ = 1, 2, . . . be
the index of iteration for the dual decomposition algorithm.4

At the τ th iteration, each UE solves its subproblem by
selecting the EN j∗[t](τ) that satisfies:

j∗[t](τ) = arg max
j∈πk

{
∆̃k,j(x

[t](τ))− λ[t]j (τ)
}
. (42)

where j∗[t](τ), x[t](τ), and λ[t]j (τ) are the optimal selection of
j[t], the matrix x[t], and value of λ[t]j at iteration τ , respectively.

After completing the selection, each UE notifies the selected
EN via a message. Receiving the messages from UEs, each
EN updates x

[t]
j = [x

[t]
1,j , . . . , x

[t]
K,j ] by:

x
[t]
k,j(τ) =

{
1, j = j∗[t](τ)
0, otherwise,

(43)

On the other hand, Problem P5-Dual can be decomposed
into J subproblems, each to be solved by the corresponding
EN. At iteration τ , each EN updates λ[t]j (τ) by:

λ
[t]
j (τ + 1) = λ

[t]
j (τ)− ε[t]j (τ)ϕ

[t]
j (τ) (44)

4The updates indexed by τ = 1, 2, . . . are performed within each time
period t, i.e., the updates indexed by t = 1, . . . , T are the outer loop that is
performed with a larger time scale.

Algorithm 3: Dual Decomposition-Based User Asso-
ciation Algorithm

1 Initialize V[t] and λ[t] ;
2 do
3 for k = 1 : K do
4 UE k selects EN according to (42) and notifies the

selected EN ;
5 end
6 for j = 1 : J do
7 EN j updates x

[t]
j with (43) ;

8 Updates ϕ[t]
j with (45) ;

9 Updates λ[t]
j with (44) ;

10 Updates V [t]
j with (47) ;

11 end
12 τ ++

13 while (x[t] does not converge);

where ϕ[t]
j (τ) is the gradient of λ[t]j (τ), given by:

ϕ
[t]
j (τ) = V

[t]
j (τ)−

∑K
k=1x

[t]
k,j(τ) (45)

where ε[t]j (τ) is the step size, given by:

ε
[t]
j (τ) =

g(λ[t](τ))− g(λ∗[t])∥∥ϕ[t](τ)
∥∥2 . (46)

With the updated λ[t]j (τ), each EN updates V [t]
j (τ) by:

V
[t]
j (τ + 1) = min

{∑K
k=1x

[t]
k,j(τ), Uj

}
. (47)

Finally, all ENs broadcast the updated values of λ
[t]
j (τ)

and V
[t]
j (τ). Each UE then performs EN selection for the

next iteration with (42). The updates performed by UEs
and ENs continue until convergence is achieved. The dual
decomposition-based user association algorithm is summa-
rized in Algorithm 3.

Lemma 1. Algorithm 3 converges with a rate faster than the
sequence {1/

√
τ}.

Proof. λ[t](τ))− g(λ∗[t](τ)

The optimality gap of λ[t] satisfies:

‖λ[t](τ + 1))− λ∗[t]‖2

=

∥∥∥∥∥λ[t](τ)− g(λ[t])− g(λ∗)

‖ϕ[t]‖2
ϕ[t] − λ∗[t]

∥∥∥∥∥
2



=
∥∥∥λ[t](τ)−λ∗[t]

∥∥∥2+

(
g(λ[t](τ))−g(λ∗[t])

‖ϕ[t](τ)‖2
ϕ[t](τ)

)2 ∥∥∥ϕ[t]
∥∥∥2

− 2
(
λ[t](τ)− λ∗[t]

)T g (λ[t](τ)
)
− g

(
λ∗[t]

)
‖ϕ[t](τ)‖2

ϕ[t](τ)

(a)

≤ ‖λ[t](τ))− λ∗[t]‖2 − 2

(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))2
‖η[t](τ)‖2

+

g
(
λ[t](τ)

)
− g

(
λ∗[t]

)
‖η[t](τ)‖2

2

‖ϕ[t](τ)‖2

≤ ‖λ[t](τ)− λ∗[t]‖2 −

(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))2
ϕ̂2 .

Inequality (a) is due to the convexity of prob-
lem P5-dual, given by g

(
λ[t](τ)

)
− g

(
λ∗[t]

)
≤(

λ[t](τ)− λ∗[t]
)T
ϕ[t](τ). Variable ϕ̂ is an upper bound for

ϕ[t](τ). Since lim
τ→∞

λ[t](τ + 1) = lim
τ→∞

λ[t](τ), we have

lim
τ→∞

g
(
λ[t](τ)

)
= g

(
λ∗[t]

)
. Summing this inequality over

τ , we have:
∞∑
τ=1

(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))2
≤ ϕ̂2

∥∥∥λ[t](1)− λ∗[t]
∥∥∥2 .

(48)

Suppose for contradiction, g
(
λ[t](τ)

)
converges slower than

{1/
√
τ}. Then, lim

τ→∞

√
τ
(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))
> 0.

Therefore, there exists a positive number π and a sufficiently
large τ ′ such that:

√
τ
(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))
≥ π,∀τ > τ ′. (49)

Taking the square sum of (49) from τ ′ to ∞, we have:
∞∑
τ=τ ′

(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))2
≥ π2

∞∑
τ=τ ′

1

τ
=∞. (50)

This contradicts with the fact given in (48). We conclude that
g
(
λ[t](τ)

)
converges faster than the sequence {1/

√
τ}.

Lemma 2. The complexity of Algorithm 3 is upper bounded
by 1/ω2, where ω is the threshold of convergence for λ[t].

Proof. According to Lemma 2, for a sufficiently large τ and
a sufficiently small ω, g

(
λ[t](τ)

)
− g

(
λ∗[t]

)
is guaranteed

to be smaller than ω. Thus, it takes less than 1/ω2 steps for
the sequence λ[t] to achieve a optimality gap that is smaller
than ω.

VII. SIMULATION RESULTS

In this section, we validate our proposed schemes with
simulations. We consider multiple ENs and users randomly
located in a 400 m × 400 m rectangular area. The channel is
modeled by a distance-dependent path loss 140.7+36.7log10d

in dB and Rayleigh fading [6], where d is the distance between
an EN and a UE in meters. The UE transmission power is
20 dBm and the noise density is −174 dBm/Hz. The system
bandwidth for uplink transmission is 10 MHz. The input data
size follows a truncated normal distribution in the range of
[400, 600] Kb with a mean of 500 Kb. The complexity of a
task is uniformly distributed in [500, 1500] CPU cycles/bit.
The computational capabilities of UEs and ENs are 1 GHz
and 20 GHz, respectively. The storage spaces of disk and
RAM of each EN are in the ranges of [50, 200] GB and
[5, 10] GB, respectively. The size of each program follows
a truncated normal distribution within the range of 100 MB
around its mean. The number of programs N ranges from 100
to 500. Unless otherwise stated, the default mean program
size and the number of programs are 500 MB and 200,
respectively; the default storage spaces of disk and RAM are
100 GB and 8 GB, respectively. The task popularity profile
follows a Zipf distribution [22]. Without loss of generality, let
θ1 ≥ θ2 ≥ · · · ≥ θN . Then, θi is calculated by:

θi = i−γ/
∑N
i=1i

−γ , i ∈ N (51)

where γ is the parameter indicating the “skewness” of popular-
ity profile. When γ = 0, the popularity is uniformly distributed
among all tasks. As γ grows, the popularity becomes concen-
trated on a few popular tasks. We set the default value of γ
to be 0.2. At each round of the simulation, we first generate
the parameters of each task i by sampling si, zi, s̃k,i, and θi
according to the corresponding distributions. Then, each UE
generates one of the N tasks according to the values of θi.
We focus on evaluating the long-term average latency of all
users, which is the time-averaged cumulated average latency

from t = 1 to t = T by T , i.e.,
∑T

t=1

∑K
k=1D

[t]
k

T

A. Single-EN Scenario

We first evaluate the performance of different schemes
in the single-EN scenario. We make comparisons with two
benchmark schemes. The first scheme is random placement,
in which the programs are randomly selected and put into the
disk and RAM of each EN. The second scheme is greedy
placement, in which we first apply Algorithm 2 to obtain the
task popularity at each time t, then apply the greedy program
placement strategy in Section VI-C. Note that the complexity
of the greedy scheme is similar to the proposed scheme, since
both of them adopt TS to learn the task popularity (one is
direct and the other is indirect).

We first plot the average latency versus the number of users
in Fig. 2(a). It can be seen that the average latency increases as
the number of users grows, since both the communication and
computing resources are shared among an increased number of
users, resulting in longer offloading and computing time. The
proposed scheme outperforms other schemes as the optimal
program placement strategy obtained from the TS algorithm
is applied. The average latency under different values of γ
is plotted in Fig. 2(b). Due to similar reasons, the proposed
scheme achieves the lowest average latency. As γ grows, the
latency of the random placement scheme increases while the
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Fig. 2. Performance evaluation results. (a) Average latency vs. number of users for single-EN scenario. (b) Average latency vs. γ for single-EN scenario.
Number of users is 20. (c) Convergence comparison between the proposed and greedy placement strategy. Number of programs is 50. (d) Average latency
vs. number of ENs. (e) Average latency vs. number of users. (f) Average latency vs. γ for multi-EN scenario. (g) Average latency vs. EN storage space. (h)
Average latency vs. average program size. (i) Average latency vs. total number of programs.

latency of the other two schemes decreases. This is because
when γ is large, only a few tasks will be frequently requested,
the advantage of storing popular tasks becomes significant.

Fig. 2(c) shows the convergence property of different
schemes. The greedy placement scheme converges faster, since
it only needs to learn the task popularity, which corresponds
to solving an MAB problem with N arms. In contrast, the
proposed scheme needs to learn a subset of feasible program
placement strategies by solving an MAB problem with a much
larger number of arms, resulting in slow convergence.

B. Multi-EN Scenario

In the multi-EN scenario, we compare with two benchmark
schemes and a lower bound of latency. The first scheme is
random placement, which is the same scheme as described
in the single-EN scenario. The second scheme is Heuristic
UA, in which each user is associated with the EN with

the highest SINR. For a fair comparison, the proposed dual
decomposition-based user association is applied to the random
placement scheme; the proposed program placement strategy
is applied to the Heuristic UA scheme. The lower bound of
latency is derived by relaxing all integer constraints in Problem
P3 and solving the resulting linear programming (LP). The
value of the objective function under the optimal solution of
the LP is a lower bound for the sum latency of all UEs.

The average latency versus the numbers of ENs is shown
in Fig. 2(d). We observe that as the number of ENs grows,
the average latencies of all schemes decreases, since more
UEs can employ nearby ENs for task offloading. Without
optimizing program placement, the random placement scheme
achieves a quite limited latency reduction compared to other
schemes. The proposed scheme outperforms the heuristic UA
scheme, because load balancing is achieved with our dual



decomposition-based user association, which contributes to
lower average latency. Furthermore, the performance of the
proposed scheme is close to the lower bound, showing that
our solution is near-optimal. The average latency versus the
number of UEs in the area is shown in Fig. 2(e). We observe
that the latencies of all schemes are increased as more UEs
join the system. This happens because the communication and
computational resources are shared among all UEs. Besides,
ENs receive stronger aggregated interference caused by the
uplink transmission of UEs served by neighboring ENs. The
proposed scheme outperforms other schemes since both user
association and program placement are optimized.

The impact of γ on average latency is presented in Fig. 2(f),
where similar trends exhibit in the single-EN scenario are
observed. In particular, when γ is sufficiently large, the average
latency of the proposed scheme becomes closer to the lower
bound. This is because the task popularity is concentrated
on a few tasks when γ is large, hence the greedy program
placement strategy presented in Section VI-C is highly likely
to be optimal. The average latency versus the storage space
of EN is shown in Fig. 2(g). As the storage space increases,
the latencies of our proposed scheme and heuristic UA scheme
drop much faster than the random placement scheme, since the
storage space is allocated to the programs that are frequently
requested and occupy relatively small storage space, resulting
in improved utilization. When the storage space is sufficiently
large, the tension caused by limited storage is mitigated, all
schemes can achieve relatively low latency.

The average latency versus the average program size is
shown in Fig. 2(h). When the average program size is small,
the ENs are able to store most of the programs, hence the
latencies of all schemes are low. As the programs get larger,
the latencies of the proposed scheme and heuristic UA scheme
grow at a slower rate than the random placement scheme,
due to the optimized program placement. The average latency
versus the total number of programs is shown in Fig. 2(i),
where similar trends are observed.

VIII. CONCLUSION

In this paper, we investigated the problem of optimizing
program placement and user association in storage-constrained
MEC systems. We formulated such a problem as a sequential
decision-making problem. We first considered the single-EN
scenario and proposed an MAB-based solution to derive the
optimal solution. Then, we proposed a solution framework for
the multi-EN scenario, in which we decomposed the original
problem into three subproblems and solved them iteratively.
Simulation results show that the proposed schemes reduce the
average latency by 30%∼100%.
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