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Abstract—Wireless transmissions are inherently broadcast and
are vulnerable to jamming attacks. Frequency hopping (FH) and
transmission rate adaptation (RA) have been used to mitigate
jamming. However, recent works have shown that using either
FH or RA (but not both) is inefficient against smart jamming. In
this paper, we propose mitigating jamming by jointly optimizing
the FH and RA techniques. We consider a power constrained
“reactive-sweep” jammer who aims at degrading the goodput of
a wireless link. We model the interaction between the legitimate
transmitter and jammer as a zero-sum Markov game, and derive
the optimal defense strategy. Numerical investigations show that
the new scheme improves the average goodput and provides better
jamming resiliency.

Keywords—Dynamic frequency hopping, jamming, Markov de-
cision processes, Markov games, rate adaptation.

I. INTRODUCTION

Due to their broadcast nature, wireless networks are vul-
nerable to various security threats, including jamming attacks.
Adversaries can use readily available off-the-shelf commercial
products to launch stealth jamming attacks [6], [8], [18]. In a
jamming attack, an adversary injects interfering power into the
wireless medium that can hinder legitimate communication in
one of two ways: (i) the jamming power can degrade the signal-
to-interference-plus-noise ratio (SINR) at a legitimate receiver,
and (ii) in carrier sensing networks, continuous jamming may
prevent the legitimate transmitter from accessing the medium,
hence, causing a denial-of-service attack. In this paper, we
consider the attack of the first type.

Common jamming models in the literature include random,
constant, proactive, and reactive jammers [3], [8]. In this paper,
we consider a multi-channel “reactive-sweep” jammer. The
jammer sweeps through channels, jamming m channels at a
time according to a random pattern. The jammer has a listening
capability. It reactively adjusts its actions based on the listening
outcome. Although transmitting continuously at the maximum
power will enable the jammer to cause the maximum harm,
this happens at the cost of high energy consumption and, more
importantly, a high likelihood of being detected. In this work,
we assume a power-constrained jammer.

Frequency hopping (FH) [10], [19] and rate adaptation
(RA) [13], [20] are commonly used techniques to mitigate
jamming. However, these techniques are shown to be inef-
fective when applied separately. In the case of RA with no
FH, it is shown that by merely randomizing its power levels
the jammer can force the transmitter to always operate at the
lowest rate, if the average jamming power reaches a given
threshold [5]. Experiments on IEEE 802.11 networks with

different RA schemes (e.g., SampleRate [9], AMRR [12],
Onoe [11]) also confirm this observation. On the other hand,
FH is shown to be largely inadequate in coping with jamming
attacks in current 802.11 networks [14]. In particular, when
the number of channels is small and channels are not perfectly
orthogonal, experimental studies in [14] show that the jammer
can degrade the link goodput significantly. Our aim in this
paper is to study the effectiveness of a jointly optimized RA
and FH technique in mitigating jamming.

In a multi-channel system, the transmitter can run away
from the jammer by hopping from one channel to another.
However, hopping results in a throughput loss, as the transmit-
ter will not be able to start transmitting on the new channel
instantaneously. Therefore, the hopping rate needs to be set
carefully. If the hopping rate of the transmitter is too high,
a significant throughput loss will be incurred. On the other
hand, the transmitter cannot reside on the same channel for
long time as the sweep jammer may reach that channel. In
adopting the transmission rates, the transmitter faces a similar
dilemma. Using high rates increases the chances of getting
jammed. On the other hand, using low rates will achieve low
throughput. We seek to derive a jointly optimal FH and RA
policy for the transmitter against a reactive-sweep jammer. This
policy informs the transmitter when to hop to another channel
and when to stay on the current channel. Furthermore, it gives
the best rate to use in both cases (hop and stay).

Main Contributions–We model the interaction between
a legitimate transmitter and a power-constrained reactive-
sweep jammer as a zero-sum Markov game. The transmitter
dynamically decides when to switch the operating channel and
what transmission rate to use. The optimal defense strategy
of the transmitter is derived using Markov decision processes
(MDPs), and the structure of the optimal policy is shown to be
threshold type. We analyze the “constrained Nash equilibrium
(NE)” of the Markov game and show that the equilibrium
defense strategy of the transmitter is deterministic.

Paper Organization–The rest of the paper is organized
as follows. In Section II, we present the transmission and
jamming models. In Section III, the interactions between the
transmitter and jammer are modeled as a zero-sum Markov
game. We study the zero-sum Markov game and derive the
optimal defense strategies in Section IV. Our conducted nu-
merical experiments are discussed in Section V. Finally, we
conclude the paper in Section VI. Due to space limitation, the
proofs of some of the results have been omitted. They can be
found online at [7].



II. TRANSMISSION AND JAMMING MODELS

Consider a legitimate transmitter that communicates with
its receiver in the presence of a jammer. The jammer is within
the transmission range of the receiver, but outside the transmis-
sion range of the transmitter (i.e., the jammer is a hidden node
to the transmitter). The jammer can overhear the receiver’s
messages, but not the transmitter’s messages. This scenario
arises in various wireless communication systems, such as
satellite communications [16]. In a satellite communication
system, a ground station on the earth communicates with a
satellite. The footprint of the satellite beam on the earth is
typically large. Therefore, a jammer on the earth close to the
ground station can overhear the messages from the satellite
to the ground station. However, because of the directionality
of the uplink transmission, the jammer cannot overhear the
messages from the ground station to the satellite.

A. Transmission Model

We consider a time-slotted system. Transmissions are
assumed to be packet-based, i.e., transmissions happen on
disjoint intervals. During each interval, the states of the
transmitter and jammer are assumed to remain unchanged.
The transmitter can communicate on any one of K available
channels in each time slot. Let F = {f1, . . . , fK} denote
the set of non-overlapping channels. We assume that the
transmitter supports M+1 different rates on any given channel.
The set of rates is denoted by R = {R0, . . . , RM}. Without
loss of generality, we assume that R0 < . . . < RM . The
transmitter and receiver are equipped with a single radio. The
transmitter can communicate on one channel in a given slot,
and can either switch to another channel or stay on the same
channel in the next slot. Each channel experiences additive
white Gaussian noise with a fixed noise variance. Without loss
of generality, we assume that the noise variance is the same
across all channels, and denote it by σ2. The jammer injects
additive interference into the channels to degrade the SINR.
On each channel, the rate achieved by the transmitter depends
on the received SINR. Consider a particular channel. Let the
received power from the transmitter over this channel be PR,
and let PJ be the injected power by the jammer. The received
jamming power at the receiver will be attenuated by factor
α, 0 ≤ α ≤ 1. Then, the SINR at the receiver, η, is given by:

η =
PR

αPJ + σ2
. (1)

For a given SINR, only certain rates are supported at the
receiver. The relationship between the achievable rates and
the SINR is shown in Figure 1. When the SINR is between
γi−1 and γi, only rates R0, R1, . . . , Ri are achievable. If the
transmitter transmits at a rate higher than Ri while the SINR at
the receiver is less than γi, the transmitted packet is completely
lost. We assume that there is a feedback mechanism from the
receiver to the transmitter. When the transmission is successful,
the receiver sends an ACK message to the transmitter. On the
other hand, when jamming is successful, the receiver sends
a negative ACK (NACK) to the transmitter. The ACK/NACK
messages can be overheard by the jammer.

Fig. 1: Rate vs. SINR relationship.

B. Jamming Model

We consider a time-slotted multi-channel reactive-sweep
jammer. The jammer sweeps through channels, jamming m
channels at a time according to a random pattern. After
injecting its interference power into the channel, the jammer
listens to overhear any messages over the jammed channel.
The jammer can overhear (i) an ACK, (ii) a NACK, or (iii)
nothing. Detecting an ACK means that the jammer is on the
same channel as the transmitter-receiver but its jamming power
was not sufficient to destroy the legitimate communication. If
the jammer detects a NACK, then the legitimate transmission
was successfully jammed. If no messages were detected by
the jammer, then the jammer is tuned to a different channel
than the transmitter-receiver channel. Based on its listening
outcome, the jammer decides about its actions.

The jammer is power constrained, as in [5] (recall that
only RA was considered in [5]). It can emit on each of
the m channels a maximum power of Pmax in each time
slot. The jammer also has a constraint Pavg on its average
power, where Pavg < Pmax. In each time slot, the jammer
can choose from M + 1 discrete power levels in PJ =
{PJ0

, PJ1
, . . . , PJM

}. Without loss of generality, we assume
that the jammer emits the same power level on all the m
channels. PJi , i ∈ {0, 1, . . . ,M} is calculated by setting η
in (1) to γM−i in Figure 1 and finding the corresponding PJ

in (1). Let M def
= {0, 1, . . . ,M}. PJi is given by:

PJi =

PR

γM−i
− σ2

α
, i ∈ M. (2)

Similar to [5], under an average-power constraint, the
attack strategy is to choose a distribution on the set of available
powers that satisfies the average-power constraint. Let PJ

represents the jammer’s set of pure strategies. Let Js denote the
strategy space of the jammer and Y be an (M+1)-probability
simplex. Then, Js ⊂ Y and is given by:

Js =

{
y = (y0, . . . , yM ),

M∑
i=0

yi = 1,yPT
J ≤ Pavg

}
. (3)

Switching and Jamming Costs–The transmitter hopping
from one channel to another results in an outage period, the
duration of which depends on the device. For example, the
average latency of a channel hop for the Anthros chipset card is
measured to be 7.6 ms [10]. The outage results due to the time
required to reconfigure the devices on the new channel, and



also due to any lack of synchrony between the transmitter and
receiver’s hopping instances. The throughput during the outage
period is zero. We denote the average loss in throughput due to
hopping by C, and refer to it as hopping cost. Outage periods
also occur when the transmitter is jammed. Jamming disrupts
the link between the transmitter and the receiver, which needs
to be re-established through exchanging several packets, that
do not contribute toward the throughput. We denote the average
loss in throughput due to jamming by L, and refer to it as
jamming cost. We account for C and L in deriving the optimal
defense policy of the transmitter.

III. DYNAMIC FH GAME WITH RATE ADAPTATION

In this section, we develop a repeated game model between
the reactive-sweep jammer and the transmitter, and derive the
optimal attack (defense) strategy of the jammer (transmitter).
We first discuss the attack (defense) strategies that can be
adopted by the jammer (transmitter) and setup a game between
them. As noted in [17], the attack and defense strategies
adopted by the jammer and transmitter are like an arms race.
If the jammer improves its attack strategy, the transmitter
counters it with an improved defense strategy, and vice versa.
The strategies adopted by each player also depend on its
hardware and computational capability. Below we discuss
the attack and defense strategies assuming the jamming and
transmission models explained in Section II.

A. Attack and Defense Strategies

For each time slot, the jammer emits power at the beginning
of the slot and listens for an ACK/NACK message at the end
of the slot. If the jammer receives an ACK/NACK on one of
the m jammed channels, it learns that the transmitter is on that
channel1. If there exists only one channel, i.e., K = 1, the only
way for the transmitter to escape from the jammer is to adapt
its rate. In this case, it is shown in [5] that by randomizing its
power levels, the jammer can enforce the transmitter to use the
lowest rate. Therefore, when multiple channels are available, it
is better for the transmitter to hop from one channel to another
and evade the jammer. Accordingly, the jammer will also hop
between channels in searching for the transmitter.

In [17], few rounds of arms race have been discussed. It is
argued that the best strategy for the jammer is to sweep through
all the K channels sequentially, jamming m channels in each
slot, and restart the sweep cycle with a randomly reordered
sweep pattern after completing each cycle. The jammer can
further aggravate its attack strategy making use of its listening
capability. When it overhears either an ACK or a NACK on
a channel, it learns that the transmitter is operating on that
channel. Accordingly, the jammer attacks the detected channel,
allocating all of its power into it, until the transmitter switches
to another channel. Unlike the jammer, the transmitter does
not always learn the presence of the jammer based on the
ACK/NACK messages. If a NACK is received, the transmitter
learns the presence of the jammer on its channel. However,
if an ACK is received, the transmitter does not have this

1A NACK is generated when the transmission fails either due to a jamming
attack or due to the channel being bad (high fading, attenuation, etc.). Since
our focus is on jamming attacks, we restrict our attention to transmission
failures due to jamming attacks.

information2. Therefore, when a NACK is received, it is better
for the transmitter to hop to a new channel; because otherwise
it will be jammed again in the subsequent slot. Being aware
of this, the jammer also leaves the channel after receiving a
NACK and starts a new sweep cycle randomly reordering its
sweep pattern. When the jammer receives an ACK, it continues
to stay on the same channel until it either receives a NACK or
overhears nothing. If a NACK is received, the jammer begins a
new random sweep cycle as earlier, otherwise (i.e., nothing is
received) it continues with the current sweep cycle. We refer to
the jammer that adopts the channel hopping strategy derived in
the last round of the arms race discussed above as a reactive-
sweep jammer.

We consider a jamming game between the transmitter and
the reactive-sweep jammer. Although the hopping decisions of
the jammer are fixed, the jammer still needs to decide about
the amount of power to emit in each slot while satisfying its
average and maximum power constraints. The transmitter’s
decision consists of what transmission rate to use and also
whether to stay on the same channel or to hop to a new
channel. We model the interactions between the transmitter
and the reactive-sweep jammer as a zero-sum game.

B. Frequency Hopping Strategies

As explained above, the hopping pattern of the reactive-
sweep jammer is as follows. The jammer sweeps through
the K channels sequentially, jamming m non-overlapping
channels in each slot. At the end of each slot, the jammer will
take one of the following actions based on what it is overheard:
(i) If nothing is overheard, it continues to jam the next m
channels in the sweep cycle. (ii) If an ACK is overheard on a
particular channel, it continues to jam only that channel in the
next slot, changing its attack from a multi-channel attack to a
single-channel attack. (iii) If a NACK is received or the sweep
cycle ends, a new random cycle is restarted immediately.

For the transmitter, we assume that it does not have any
mean to know the quality of various channels and it does not
assign any priority to any channel. The transmitter-receiver pair
follows a common FH pattern, generated by a pseudorandom
noise (PN) sequence. We note that our optimization of the
transmitter’s channel hopping policy is in terms of how long
it stays on a channel (in number of slots) before it hops to a
new channel3.

C. Reward

Recall that the transmission at rate Ri is successful only if
the SINR at the receiver is at least γi. If an ACK is received
after transmitting at rate Ri, the transmitter obtains a reward of
Ri units. In line with [17], we define the transmitter payoff in
a given slot as the difference between the reward and the costs
it incurs in that slot. Let Un denote the transmitter’s payoff in

2The transmission is successful in the presence of the jammer if the
transmitter uses a rate that is de-codable at the interference power chosen
by the jammer.

3This duration is referred to as the channel residency time in [10].



slot n4. Then,

Un =
M∑
i=0

Ri · 1[successful transmission at rate Ri in slot n]

− L · 1[successful jamming]−C · 1[transmitter hops] (4)

where 1[·] is the indicator function. We note that only one term
can be positive in the summation above, as the transmitter
can use only one rate in each slot. An action taken by the
transmitter in a given time slot affects its payoff in the future
slots. Thus, we will consider a total discounted payoff with
a discount factor δ ∈ (0, 1), which indicates how much the
transmitter values its future payoff over its current payoff. Let
Ū denote the total discounted payoff of the transmitter. Then,

Ū =
∑
n

δn−1Un. (5)

In the next section, we model the interactions between the
transmitter and jammer as a zero-sum Markov game and derive
the constrained NE (recall that the jammer is average-power
constrained). We also characterize the properties of the optimal
policies using Markov decision processes (MDPs).

IV. ZERO-SUM MARKOV GAME

A Markov game is characterized by a state space, an action
space, an immediate reward for each player, and transition
probabilities. The decision epochs are taken at the end of each
time slot, and the effect of the decision takes place at the
beginning of the next slot. The state of the system identifies the
status of the transmitter. First, note that while the transmitter is
operating on a channel, say f , it does not know which channels
the jammer is currently sweeping unless it receives a NACK.
If the transmitter is successful on channel f for k successive
slots, it can only infer that the jammer did not sweep channel
f in the last k slots. Therefore, keeping track of the channels
that the transmitter used in the past, and how many slots it
stayed on each of them is not helpful to the transmitter. We
use these observations to define the state space and derive the
transition probabilities below.

State Space–The state is defined as the number of consec-
utive slots that the transmitter has been successful on a channel
since it last hopped into it. Let X denote the state space. Then,

X =

{
J, 1, 2, . . . ,

⌊
K

m

⌋}
(6)

where J denotes that the transmitter is jammed and i =
1, 2, . . . ,

⌊
K
m

⌋
denotes that the transmitter is successful on the

current channel for the last i slots.

Action Space–At the end of each slot, the transmitter
decides whether to stay on the current channel or hop to a new
channel. It also decides which rate to use from R. Therefore,
the set of actions available to the transmitter for any state in
X is as follows:

A = {(s,R1), . . . , (s,RM ), (h,R1), . . . , (h,RM )} (7)

where (s,Ri) represents the decision to stay on the current
channel and use rate Ri, and (h,Ri) represents the decision

4We specify how the payoff depends on the actions in the next section after
defining the state space.

to hop to a new channel and use rate Ri. For notational
convenience, let si

def
= (s,Ri) and hi

def
= (h,Ri), ∀i ∈ M.

Immediate Reward–Un = Un(x, a1, a2, x
′) represents the

immediate reward the transmitter receives after going from
state x to state x′ when the actions taken by the transmitter
and the jammer are a1 ∈ A and a2 ∈ PJ , respectively. This
reward does not depend on the slot index, hence we drop the
subscript n. For any (a1, a2, x) ∈ A×PJ ×X , the immediate
payoff of the transmitter is given by:

U(·, a1, a2, x′) =
−L− C, if x′ = J, a1 = hi, a2 = PJj , j > M − i
Ri − C, if x′ = 1, a1 = hi, a2 = PJj , j ≤ M − i
−L, if x′ = J, a1 = si, a2 = PJj , j > M − i
Ri, if x′ ̸= J, a1 = si, a2 = PJj , j ≤ M − i
0, otherwise.

(8)

Note that the reward of the transmitter depends only on
the action it takes and the new state it enters, and not on its
current state. Since the jammer cannot observe the state of
the transmitter, it just chooses its power level such that its
average-power constraint is satisfied.

Transition Probabilities–Let P (x′|x, a1, a2) denote the
transition probability to state x′ when the current state is x
and the transmitter chooses action a1 ∈ A while the jammer
chooses action a2 ∈ PJ . First, let us consider the case where
the transmitter’s action involves hopping to a new channel. Let
the transmitter be on channel f after hopping. When action hi

is taken in any state, the state on the new channel can be
either J or 1, ∀i ∈ M. Let x = J . Then, on taking action hi

the system enters state J again only if the jammer also hops
into channel f and uses a power level that does not allow the
transmitter to succeed at rate Ri. Recall that on each successful
jamming the transmitter hops to a new channel, and the jammer
repeats the jamming process with a new sweep pattern that is
independent of its past sweep pattern. Then, the transmitter and
jammer hop to the same channel with probability m/(K− 1).
Hence, P (J |J, hi, PJj ) = 1−P (1|J, hi, PJj ), i ∈ M, is given
by:

P (J |J, hi, PJj ) =

{
m/(K − 1), if j > M − i
0, otherwise. (9)

Taking action hi, i ∈ M, in state x ̸= J , say x = x̃, the
transmitter’s next state can be either x′ = J or 1. x′ = 1 if
any of the following happens: (i) channel f is already swept
by the jammer, (ii) channel f is not swept by the jammer and
the jammer does not hop to it in the next time slot, or (iii)
the jammer hops to f and uses a power level that does not
disrupt the transmission at rate Ri. Let a1 = hi, a2 = PJj

and j > M − i, then the transmitter is successful on f if the
jammer does not hop into f .

P (1|x, hi, PJj ) = 1− P (J |x, hi, PJj )

=
mx

K − 1
+

K − 1−mx

K − 1

{
1− m

K − 1−mx

}
= 1−m/(K − 1). (10)



Therefore,

P (1|x, hi, PJj ) =

{
1−m/(K − 1), if j > M − i
1, otherwise. (11)

For the case where the transmitter decides to stay on its
current channel. Suppose that the transmitter is on channel f
and state x ̸= J , say x = x̃, and takes action si, i ∈ M. Then,
the transmitter enters into state x′ = J or x′ = x̃+ 1. x′ = J
(i) if the jammer did not sweep f in the last x̃ slots, hops into
f in the next slot, and jams at a power that does not allow
decoding at rate Ri, or (ii) if the jammer is already on f and
jams at a power that does not allow decoding at rate Ri. The
probability of the first event can be computed as m/(K−mx̃)
and the probability of the second event is mx̃/K. Note that if
the jamming interference power is PJj in the first case, then
it is mPJj in the second case (i.e., single-channel attack). Let
γ(j,m)

def
= PR

αmPJj
+σ2 . Then,

P (J |x, si, PJj ) = 1− P (x|x, si, PJj )

=


m(x+1)

K , if x < K/m and j > M − i
mx
K , if x < K/m and γ(j,m) < γi
0, otherwise.

(12)

Next, we introduce the required notations5 to define the
transmitter and jammer strategies and their objective functions.
In each time slot, the transmitter takes an action that depends
on its past observation. We will restrict to the Markov station-
ary policies67, where the transmitter takes an action based on
its current state only. The set of Markov stationary policies
of the transmitter is denoted by Fs. Let M(A) denote the
distribution on set A and f : X → M(A) denote the strategy
of the transmitter. Let f(x)

def
= {f(x, a1), a1 ∈ A}, where

f(x, a1) is the probability of choosing action a1 ∈ A in state
x ∈ X . Similarly, let the jammer’s strategy be g : X → PJ ,
and let g(x)

def
= {g(x, a2), a2 ∈ PJ}, where g(x, a2) is the

probability of choosing action a2 ∈ PJ in state x ∈ X . Since
the jammer does not know the state, for any jammer’s strategy
y = (y0, . . . , yM ) ∈ Js, g(x) = y,∀x ∈ X .

Let r : X × A × PJ → R denote the immediate
reward for the transmitter. For any actions a1 and a2 taken
by the transmitter and jammer, respectively, and any state x,
r(x, a1, a2) is given by:

r(x, a1, a2) =
∑
x′

U(x, a1, a2, x
′)P (x′|x, a1, a2). (13)

For given f ∈ Fs and y ∈ Js, the expected discounted
payoff of the transmitter when the initial state is x is:

Ṽ (x, f ,y) = Ef ,y

{∑
n

δnr(Xn, A1n, A2n)| X0 = x

}
(14)

where {(Xn, A1n, A2n) : n = 1, 2, . . .} is a sequence of ran-
dom variables, denoting the state and the actions of the
transmitter and jammer in each slot, respectively. This se-

5We follow the notational convention of [4].
6Note that the state updates according to the past history.
7For any given history-dependent policy, there exists a Markov policy that

is equally good [15][Ch. 4].

quence evolves according to the policy (f ,y). The operator
Ef ,y denotes the expectation over the process induced by the
policies f and y.

The transmitter’s objective is to choose a policy f that
results in the highest expected reward starting from any state
x ∈ X , and is defined as:

VT (x,y) = max
f∈Fs

Ṽ (x, f ,y). (15)

In contrast, the jammer’s objective is to choose a strategy
y that minimizes the transmitter’s expected discounted payoff.

VJ (x, f) = min
y∈Js

Ṽ (x, f ,y). (16)

Note that the strategy space of the jammer is constrained,
whereas the transmitter can choose any stationary policy. A
strategy pair (f∗,y∗) is constrained NE if y∗ ∈ Js and ∀x ∈
X, f ∈ Fs, and y ∈ Js,

Ṽ (x, f ,y∗) ≤ Ṽ (x, f∗,y∗) ≤ Ṽ (x, f∗,y). (17)

Let V ∗(x)
def
= Ṽ (x, f∗,y∗). Then, {V ∗(x), x ∈ X} is

referred to as the value of the zero-sum game8.

Theorem 1: The zero-sum game has a stationary con-
strained NE.

Proof: While the jammer aims to minimize the transmit-
ter’s payoff, it needs also to meet its average-power constraint.
Since the jammer does not know the value of the current
state, its average-power constraint for any strategy y (i.e.,
yPT

J ≤ Pavg) can be equivalently written as a constraint on an
expected discounted cost as follows:

Cβ(f ,y) = (1−β)Ef ,y

{∑
n

βn−1C(Xn, A1n, A2n)

}
≤ Pavg

for some β ∈ (0 1). C(Xn, A1n, A2n) denotes the cost for
the jammer, which is the power it chooses in slot n, i.e.,
C(·, ·, A2n) = A2n. Further, by choosing a strategy y′ such
that y′0 = 1, the constraint on the expected discounted cost
is strictly met. Thus, strong Slater condition in [2] is verified
and the existence of stationary constrained NE follows from
Theorem 2.1 in [2].

A. Transmitter Optimal Defense Strategy

In this section, we study the properties of the transmitter’s
optimal defense strategy against a fixed jammer’s strategy. The
expected reward of the transmitter when the jammer’s strategy
is y is denoted by ry : X × A → R. For a given state-action
pair (x, a), ry(x, a) is given by:

ry(x, a) =
M∑
i=0

yir(x, a, PJi). (18)

Let Py(x
′|x, a) denote the probability that the transmitter

8If (f̃ , ỹ) is another equilibrium, it also results in the same value of the
game [4][Sec. 3.1].



enters state x′. Then,

Py(x
′|x, a) =

M∑
i=0

yiP (x′|x, a, PJi). (19)

Let f∗
y(X) denote the policy that maximizes the expected

discounted reward function when the jammer uses strategy y.
Since y does not depend on the state, the optimal policy f∗

y(X)
can be obtained by solving a single player MDP with the
reward and transition probabilities defined in (18) and (19),
respectively. Then, f∗

y(X) is a deterministic policy [15], i.e,
f∗
y : X → A. For notional convenience, we do not explicitly

mention this dependency on y, and write V (x)
def
= VT (x,y).

We use the value iteration [15][Ch. 6] method to derive
the optimal defense strategy and its properties. The well-
known Bellman equations for the expected discounted utility
maximization problem in (15) are written as follows:

Q(x, a) = ry(x, a) + δ
∑
x′∈X

Py(x
′|x, a)V (x′)

=
∑
x′∈X

Py(x
′|x, a) (ry(x, a, x′) + δV (x′)) (20)

V (x) = max
a∈A

Q(x, a).

Note that in our formulation states J and K are equivalent,
because the jammer will start the sweep cycle afresh and the
transmitter can only take hop decisions in these states. Hence,
when the transmitter begins in either state (J or K), it will
get the same total discounted reward, i.e., V (J) = V (K).
From (20), for any x = J, 1, . . . ,K − 1, V (x) is expressed
in terms of V (J) and V (x + 1). Below we establish the
monotonicity of V on the state space X \ J by restricting
the transmitter’s reward in state K, and use this monotonicity
property to establish the structure of the optimal policy9.

Lemma 1: V (·) is a decreasing function over
{1, 2, . . . ,K}.

From (9) and (10), we note that when the transmitter takes
action hi, i ∈ M, the probability of entering into state J or
1 does not depend on the current state. We make use of this
observation and the monotonicity of the function V (·) to derive
the following structure of the optimal policy.

Proposition 1: The optimal policy f∗ satisfies:

• ∃ constants K∗ ∈ {1, . . . ,K − 1} and i∗ ≤ M such
that:

f∗(x) = hi∗ for K∗ ≤ x ≤ K−1 and f∗(0) = si∗ .

• For any integers x and y, if 1 ≤ x < y < K∗, f∗(x) =
sj , and f∗(y) = sk, then j ≥ k.

• If ry(J, si) is increasing in the index i, then i∗ = M .

Proof: The idea of the proof is as follows. Note that
Q(hi) = Q(x, hi) does not depend on x, ∀i ∈ M. We show
that Q(x, si) is decreasing in x,∀i ∈ M. Then, for any
i ∈ M, ∃x ∈ X such that Q(x, si) is smaller than the largest
Q(hi). The detailed proof can be found online at [7].

9This assumption is made only to establish the structure of the policy
analytically. Our simulations show that the same property holds in general.

The above proposition says that when the transmitter hops
to a new channel it will hop again only after either it is jammed
or it spent K∗ successive slots on that channel. While it stays
on a given channel, the transmitter adapts its transmission rate–
the transmitter reduces its rate as the number of successive
successful transmissions increases. When the transmitter hops,
it always uses a fixed rate. Further, this rate is the maximum
rate available (RM ) if ry(0, si) is increasing in the index i.

Note that since the transmitter hops once it reaches state
K∗, it never enters into a state larger than K∗. Thus, if K∗ <
K, the resulting Markov chain is reducible.

Corollary 1: The threshold K∗ is decreasing in L, and
increasing in both K and C.

Proof: The proof follows by noting that for any x′ > x,
Q(x′, si) − Q(x, si) is increasing in L and decreasing in
K, ∀i ∈ M. Moreover, Q(x, hi) is decreasing in C, ∀i ∈
M, x ∈ X . This verifies that K∗ is increasing in C.

Next, we return to the study of the Markov game.

B. Equilibrium of the Markov Game

In this section, we compute the constrained NE of the
zero-sum Markov game and study its properties. For a given
defense strategy y ∈ Js, the following linear program solves
the recursive equations in (20) [4][Sec 2.3]:

minimize
∑
x

V (x)

subject to: V (x) ≥ ry(x, a) + δ
∑
x′∈X

Py(x
′|x, a)V (x′),

∀x ∈ X, a ∈ A.
(21)

From Theorem 1, we know that the zero-sum Markov game
has a constrained NE. We use a non-linear version of the
above program to compute the equilibria. First, we will develop
the necessary notation. Let R(x) = [r(x, a, p)]a∈A,p∈PJ

and
T (x, V ) = [

∑
x′ P (x′|x, a, p)V (x′)]a∈A,p∈PJ

be the reward
and transition probability matrices, respectively. Consider the
following non-linear program:

minimize
∑
x

{
V1(x) + V2(x)

}
subject to: V1(x)1 ≥ R(x)y + δT (x, V1)y, ∀x ∈ X

V2(x)1 ≥ −f(x)R(x) + δf(x)T (x, V2), ∀x ∈ X

PJy
T ≤ Pavg,∀x ∈ X

(22)
where 1 denotes a vector of all ones of size M when the state
is J or K, and of size 2M for all other states.

Theorem 2: Let (V ∗
1 (x), V

∗
2 (x), f

∗(x),y∗) denote the
minimum of the non-linear program (22). Then, (f∗(x),y∗)
denotes the optimal constrained NE of the game.

Proof: The nonlinear program (22) is the same as the one
in [4][Sec. 3.7] with the additional average-power constraint on
the jammer’s strategy. The proof follows from [4][Th. 3.7.2].

Note that although the optimal strategy of the transmitter
for a given jammer’s strategy is deterministic, the equilibrium



strategy may not be deterministic [4][Ch. 2]. The strategy y∗

is the same for all x ∈ X as the jammer does not know the
state. We know from the previous subsection that the optimal
transmitter’s strategy against any given y is deterministic.
Therefore, at equilibrium the strategy of the transmitter is
deterministic.

Transmitter-Receiver Rendezvous–As mentioned earlier,
the transmitter and receiver share a common PN sequence.
The transmitter follows this PN sequence, however it optimizes
how many slots to stay in each channel before switching to the
next channel in the PN sequence. As stated in Proposition 1,
the optimal policy of the transmitter is to stay on each channel
K∗ slots as long as it is not jammed. Once it is jammed it
will switch to the next channel. The transmitter optimal policy
is also shared with the receiver. Therefore, the receiver will
follow the common PN sequence staying on each channel K∗

slots unless it is jammed, in this case it will switch to the next
channel. This way, the rendezvous is ensured.

V. PERFORMANCE EVALUATION

In this section, we study the performance of the joint
FH and RA scheme under different values of the system
parameters. Our performance metrics are the average goodput
(in Mbps) and the success rate (percentage of un-jammed
transmissions). The parameters of study are K, C, L, Pavg, and
m. We use the set of rates adopted by IEEE 802.11a [1], i.e., 6,
9, 12, 18, 24, 36, 48, and 54 Mbps. Unless stated otherwise, we
use the following parameters: K = 4, L = 25 Mbps, C = 50
Mbps, m = 1, and Pavg = 0.83Pmax. We implement our
game in MATLAB. The 95% confidence intervals are shown.
The optimal defense and attack strategies of the transmitter
and jammer, respectively, are obtained by solving (22). We
compare the joint FH and RA scheme with an FH only scheme,
in which the transmitter hops according to the optimal policy
without adapting its rate. We implement three variants of the
FH only scheme, each with a different fixed rate (6, 24, and
54 Mbps).

A. Effect of K

We plot in Figures 2 and 3 the average goodput and success
rate, respectively, vs. K for various schemes. When K is small
(K < 5 in Figure 2), the joint FH and RA scheme achieves
higher goodput than all other FH only schemes. However, the
FH only scheme with rate fixed at 54 Mbps achieves a slightly
higher goodput than the joint scheme when K is sufficiently
large (K > 5 in Figure 2). The reason is that the success rate
of the FH only scheme improves when K increases, as shown
in Figure 3. Although the FH only scheme with highest rate
achieves a slightly higher goodput than the joint scheme when
K is sufficiently large, it has a much lower success rate, as
shown in Figure 3. Even though the FH only scheme with rate
fixed at 6 Mbps achieves a 100 % success rate, its average
goodput is zero. This is because C is greater than 6 Mbps.
The FH only scheme with rate 24 Mbps provides a balance
between the average goodput and success rate, as shown in
Figures 2 and 3.

B. Effect of C

The effect of C on the average goodput and success rate is
shown in Figures 4 and 5, respectively. As shown in Figure 4,
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Fig. 2: Average goodput vs. K.
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Fig. 3: Success rate vs. K.

when C is sufficiently large the joint FH and RA scheme
achieves higher goodput than the FH only schemes. This is
because the FH only scheme with rate 54 Mbps hops more
frequently than the joint scheme. In the joint scheme, the
transmitter can avoid the hopping cost evading the jammer by
adapting its rate (use a sufficiently small rate). Moreover, when
C is sufficiently large, the success rate of the joint scheme is
significantly higher than that of the FH only scheme with rate
54 Mbps. The reason is that when C > L, the transmitter will
be more tempted to stay on the channel than hopping, thus
it will be more susceptible to jamming. Again, the FH only
scheme with rate 24 Mbps provides a balance between the
average goodput and success rate.
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Fig. 4: Average goodput vs. C.
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Fig. 5: Success rate vs. C.

C. Effect of L

The effect of L is studied in Figures 6 and 7. The average
goodput decreases with L. It reaches zero when L exceeds
a certain value. The average goodput of the FH only scheme
with rate fixed at 54 Mbps is smaller than that of the joint
scheme, and it reaches zero before the joint scheme.
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Fig. 6: Average goodput vs. L.
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Fig. 7: Success rate vs. L.



D. Effect of Pavg

The impact of Pavg on the average goodput and success
rate is depicted in Figures 8 and 9, respectively. As expected,
when Pavg increases the jammer uses high power levels more
frequently, which decreases the success rate and the average
goodput, especially for the FH only scheme with rate fixed at
54 Mbps.
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Fig. 8: Average goodput vs. Pavg.

5 10 15 20 25 3030
0.5

0.6

0.7

0.8

0.9

1

P
avg

Su
cc

es
s 

R
at

e

 

 

Joint FH and RA
FH only, Rate = 54 Mbps
FH only, Rate = 24 Mbps
FH only, Rate = 6 Mbps

Fig. 9: Success rate vs. Pavg.

E. Effect of m

The effect of m on the average goodput and success rate is
shown in Figures 10 and 11, respectively, when K = 16. For
a given K, increasing m decreases the length of the sweep
cycle, which is

⌈
K
m

⌉
. Increasing m a times is equivalent to

decreasing K a times and keeping m = 1, e.g., the case when
K = 16 and m = 4 is equivalent to the case when K = 4
and m = 1 (see Figures 2 and 10). Therefore, as can be seen
from Figures 10 and 11, increasing m has the same impact as
decreasing K for the case when m = 1.
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Fig. 10: Average goodput vs. m.
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Fig. 11: Success rate vs. m.

VI. CONCLUSIONS

In this paper, we analyzed a joint FH and RA defense
scheme against a reactive-sweep jammer. We modeled the
interaction between the transmitter and jammer as a zero-sum
Markov game, and derived the optimal equilibrium defense
strategy against the worst attack strategy. Our numerical results
showed that joint FH and RA achieves better performance than
FH only, especially when (i) the number of channels is small,
(ii) the hopping cost is high, or (iii) the average jamming power
is high. We studied our joint FH and RA scheme numerically
and compared its performance with various FH only schemes.
The improvement achieved by the joint FH and RA scheme
(in terms of the average goodput and success rate) compared
to the FH only schemes depends on the system parameters,
and can be very significant.
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