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Abstract

In this paper, we analyze the mean delay experienced by a Markovian source over a wireless

channel with time-varying error characteristics. The wireless link implements the selective-

repeat ARQ scheme for retransmission of erroneous packets. We obtain good approximations

of the total delay, which consists of transport and resequencing delays. The transport delay,

in turn, consists of queueing and transmission delays. In contrast to previous studies, our

analysis accommodates both the inherent correlations between packet interarrival times (i.e.,

tra�c burstiness) and the time-varying nature of channel conditions. The exact probability

generating function of the queue length under \ideal" SR ARQ is obtained and is combined

with the retransmission delay to obtain the mean transport delay. For the resequencing de-

lay, the analysis is performed under the assumptions of heavy tra�c and small window sizes

(relative to the channel sojourn times). The inaccuracy due to these assumptions is observed

to be negligible. We show that ignoring the autocorrelations in the arrival process or the

time-varying nature of the channel state can lead to signi�cant underestimation of the delay

performance, particularly at high channel error rates. Some interesting e�ects of key system

parameters on the delay performance are observed.
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1 Introduction

Automatic repeat request (ARQ) protocols are used to provide reliable data transfer in wireless

communications. In these protocols, the transmitter sends a packet that consists of payload bits

and error detection code. The receiver checks the integrity of the packet by decoding the error

detection code. Depending on the outcome of the decoder, a positive acknowledgment (ACK)

or a negative acknowledgment (NACK) is sent back to the sender. The sender retransmits the

packet upon the receipt of the NACK message, whereas it transmits a new packet if an ACK is

received.

In general, ARQ protocols are variants of three basic schemes: stop-and-wait (SW), go-back-

N (GBN), and selective-repeat (SR). In SW ARQ, the transmitter must receive the ACK of a

packet before transmitting the next packet. This scheme preserves the order of packets but it

results in low channel utilization if the feedback delay is large. In GBN ARQ, packets are trans-

mitted continuously without waiting for ACKs/NACKs. If a NACK is received, the transmitter

retransmits the negatively acknowledged packet and all subsequent packets regardless of their

acknowledgments. In SR ARQ, packets are transmitted continuously as in GBN ARQ, but only

negatively acknowledged packets are retransmitted. Of the three schemes, SR ARQ achieves the

highest throughput. Note that as the round-trip time (RTT) of a packet goes to zero, SR ARQ

and SW ARQ become identical; a situation that is referred to as ideal SR ARQ [5, 6].

In this study, we consider a wireless link protocol that provides sequential delivery of packets

and that uses SR ARQ for error control. An example of this protocol is used in wireless asyn-

chronous transfer mode (WATM) networks [4]. In such a protocol, the transmitter assigns each

packet a unique identi�er (see Fig. 1). Packets are transmitted according to their identi�ers. A

copy of each transmitted packet is temporarily kept in a \waiting bu�er" until the ACK message

of that packet is received. If a NACK is received, it triggers a retransmission of the erroneous

packet. Once an ACK is received, the packet is removed from the waiting bu�er and a new packet

is transmitted. Although the transmitter sends packets in order, packets at the receiver may

be out of sequence due to the random occurrence of packet transmission errors. Thus, correctly

received packets with higher identi�ers must wait in a bu�er (called resequencing bu�er) until

packets with lower identi�ers are correctly received.

Fig. 2 describes all the delay components that a packet undergoes when transported over

a wireless link. The total delay consists of transport and resequencing delays. The transport

delay is subdivided into queueing and transmission delays. The queueing delay is the duration

from the time a packet arrives at the transmitting node until its �rst transmission attempt. The

transmission delay is de�ned as the time from a packet's �rst transmission until its successful

arrival at the receiver (i.e., it includes all retransmission delays). The resequencing delay is

de�ned as the waiting time of the packet in the resequencing bu�er.
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Figure 1: Packet transmission over a wireless link with in-sequence delivery.

packet
arrival

packet scheduled
to transmit for the
first time

packet received
successfully

packet departed from 
the resequencing
buffer

Sender

Receiver

queuing
delay

retransmission
delay

resequencing delay

End−to−end delay

Time

Time

transport delay

Figure 2: Time diagram for packet transmission process.

Related Work

Several previous studies have been conducted on the delay performance of SR ARQ over a wireless

channel [1, 5, 7, 8, 9]. In [7] Konheim derived the probability generating functions for the trans-

port delay and the queue length in GBN and SR ARQ protocols assuming a renewal tra�c source

and a \static" radio channel (i.e., errors are independent with a constant error rate). However,

the complexity of his approach increases exponentially with the feedback delay. An alternative

exact analysis of the delay performance was provided by Anagnostou and Protonotarios [1] for

the special case of a Bernoulli renewal process. But similar to [7], the computational complexity

of this analysis grows rapidly with the RTT and becomes quite prohibitive for moderate RTTs.

In the same paper, the authors proposed another approach that is based on the ideal SR ARQ

approximation, i.e., the dependence between the queueing process and the history of the transmis-

sion process is ignored. The ideal SR ARQ approximation was also used by Fantacci to analyze

the delay performance under a Bernoulli arrival process and a time-varying radio channel [5].

Rosberg and Shacham analyzed the resequencing delay and bu�er occupancy at the resequenc-

ing bu�er assuming heavy-tra�c conditions and a static radio channel [2]. Rosberg and Sidi [9]

analyzed the joint distribution of bu�er occupancy at the transmitter and receiver, and derived

the mean transmission and resequencing delays assuming a renewal arrival process and a static

2



channel. Schachum and Towsley investigated the bu�er occupancy and resequencing delay in a

wireless environment in which a single transmitter and multiple receivers communicate, assuming

heavy-tra�c conditions and a static channel [3].

Contributions and Paper Organization

The previous works were conducted using overly simplifying assumptions on the incoming tra�c

(e.g., Bernoulli arrival process), the channel errors (e.g., static channel model), or both. As shown

in this paper, such simpli�cations can lead to signi�cantly underestimating the delay performance.

Accordingly, we provide re�ned analysis of the mean transport delay that accounts for tra�c

correlations (i.e., the correlations between packet interarrival times) and for the time-varying

channel behavior. Correlations are known to exist in all types of network tra�c, and their

profound impact on the queueing performance has been widely reported in the context of wireline

networks [10, 11, 12, 13, 14]. We show that such impact extends to the wireless environment, where

the mean transport delay is seen to rise rapidly with tra�c burstiness and with the channel error

rate. In the wireless case, the delay is also impacted by the error behavior of the channel. More

speci�cally, we show that the use of a time-varying error model can result in a notable increase

in the mean transport delay. Relaxing the traditional assumptions on the source and channel

models enables us to provide accurate predictions of the delay performance, which can be used in

e�cient resource allocation and admission control subject to guaranteed delay performance.

We capture the time-varying nature of the channel via a two-state Gilbert-Elliot (GE) model.

To account for tra�c correlations (or burstiness), we represent the arrival process by an N -state

Markov process, where N � 2. Of particular interest here is the case of N = 2 as it represents

the common on-o� behavior of network tra�c. Markovian processes have been extensively used

in wired networks to characterize various types of tra�c (see [15] for details). While other, non-

Markovian classes of models, including self-similar (e.g., [16, 12, 17]) and subexponential models

(e.g., [18]), have also been proposed as a means of capturing the persistent correlations in network

tra�c, the jury is still out on whether such models provide better tra�c characterization than

conventional Markovian models [20, 21, 22]. In fact, resource allocation in wired networks is still

being carried out under the assumption of Markovian models. Given the popularity, tractability,

and widespread use of Markov models in teletra�c studies, we made them the basis for our

analysis.

In order to obtain the mean queueing delay, we simplify the analysis by eliminating the de-

pendence between the queueing process and the history of the packet transmission process. This

so-called ideal SR ARQ approximation, which was also used in [5, 1] under a Bernoulli arrival

process, becomes exact as the feedback delay approaches zero. Under the assumption of ideal

SR ARQ, we derive the exact probability generating function (PGF) for the queue length at the

transmitter. We use this PGF to obtain the mean queueing delay. The mean transmission delay
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is easily obtained since it only depends on the channel parameters and the RTT. We also derive

an approximate expression for the mean resequencing delay. The goodness of our approximate

results is veri�ed by contrasting them against more realistic simulation results. Through numer-

ical examples, we study the e�ects of key system parameters on the various delay components,

providing insight on some of their interesting interactions. The paper is necessarily terse. A more

detailed version of it is available online [25].

The rest of the paper is organized as follows. In Section 2 we analyze the queueing and

transmission delays. The mean resequencing delay is studied in Section 3. Numerical results and

discussion are given in Section 4, followed by concluding remarks in Section 5.

2 Queueing and Transmission Delays

In this section, we analyze the queueing and transmission delays over a wireless link assuming

a Markovian source and a time-varying wireless channel. Consider the queueing system at the

transmitter side of the link. The arrival process is N -state Markovian that is governed by a

transition probability matrix P , where at each state i, i = 0; � � � ; N , i packets are generated in

one time slot. Our model is based on an embedded Markov chain in which the number of packets

in the queue is observed at the beginning of each time slot, just before the arrival of a new packet

or of an ACK/NACK message. We assume ACK/NACK messages are always error free. This

common assumption is justi�ed by the fact that these important messages are often protected by

FEC [5]. The wireless channel is characterized by the GE model, in which the channel alternates

between Good and Bad states with corresponding bit error probabilities P

eg

and P

eb

, respectively

(see Fig. 3). It is assumed that state transitions occur at the end of time slots, where a time slot

corresponds to a packet transmission time. Since this time is very small compared to the sojourn

time of a channel state, the inaccuracy due to our assumption is negligible. The packet error

probabilities during Good and Bad channel states are given by:

e

0

= 1� (1� P

eg

)

L

(1)

e

1

= 1� (1� P

eb

)

L

(2)

for a packet size of L bits.
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Good Bad Good Bad timeGood

r
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r
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r
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r
11
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Figure 3: Wireless channel model.
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At time t, the feedback message that arrives at the transmitter is for a packet that was

transmitted at time t� s, where s is the feedback delay. However, for simplicity we assume that

this feedback message has the same probabilistic nature as the feedback message associated with

the packet to be transmitted at time t, i.e., as if the feedback delay is zero. This so-called ideal

SR ARQ approximation was also used in [1, 5] to study the delay performance under a Bernoulli

arrival process. Note that this approximation does not mean the feedback delay is ignored, but

that its impact on the queueing process is not incorporated.

First, we derive the PGF for the queue length in the ideal SR ARQ case. We assume that

packets are served on a �rst-come-�rst-serve basis and that the bu�er capacity is in�nite. Key

notations are summarized as follows:

a(k) : Number of new arrivals during the kth slot.

r(k) : Channel state at the beginning of the kth slot.

q

i;j

(k) : Queue length at the beginning of the kth slot when the source is in state i

and the channel is in state j.

P : Transition probability matrix for the arrival process at the transmitter.

R : Transition probability matrix for the process that describes the state of

the radio channel:

The elements of P = [p

i;j

] and R = [r

i;j

] are de�ned as follows:

p

i;j

4

= Pr[a(k + 1) = j j a(k) = i]; 0 � i; j � N (3)

r

i;j

4

= Pr[r(k + 1) = j j r(k) = i]; i; j 2 f0; 1g (4)

where states 0 and 1 denote Good and Bad channel states, respectively.

The size of the queue at the beginning of slot k is a function of its size at the previous slot,

the number of new arrivals, and the state of the feedback message. Thus, the queue size at the

beginning of the (k + 1)th slot is obtained as follows: If q

�;�

(k) + a(k) > 0, then

q

l;j

(k + 1) =

8

>

>

>

>

>

<

>

>

>

>

>

:

q

i;j

(k) + i� 1; with probability p

i;l

� (1� e

j

) � r

j;j

q

i;j

(k) + i; with probability p

i;l

� e

j

� r

j;j

q

i;1�j

(k) + i� 1; with probability p

i;l

� (1� e

1�j

) � r

1�j;j

q

i;1�j

(k) + i; with probability p

i;l

� e

1�j

� r

1�j;j

:

(5)

If q

�;�

(k) + a(k) = 0, then q

�;�

(k) = 0 and a(k) = 0, which occurs only if the source was in state 0
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at the beginning of the kth slot. In this case,

q

l;j

(k + 1) = 0; with probability p

0;l

� (r

j;j

+ r

1�j;j

) (6)

In (5) and (6), 0 � i; l � N and 0 � j � 1. The last two cases in (5) correspond to the state

of the radio channel going from 1 � j to j, whereas no transition occurs in the other two cases.

Furthermore, the �rst and third cases correspond to a successful packet transmission, whereas in

the other cases the transmitted packet is in error. The steady state probability q

i;j

[n] is de�ned

as:

q

i;j

[n]

4

= lim

k!1

Pr[q

i;j

(k) = n]: (7)

From (5) and (6), the state balance equation is obtained as follows:

If n > 0,

q

i;j

[n] =

min(N;n+1)

X

l=0

(r

j;j

�e

j

p

l;i

q

l;j

[n� l + 1] + r

�

j;j

�e

�

j

p

l;i

q

l;

�

j

[n� l + 1])

+

min(N;n)

X

l=0

(r

j;j

e

j

p

l;i

q

l;j

[n� l] + r

�

j;j

e

�

j

p

l;i

q

l;

�

j

[n� l]) (8)

where �x denotes 1� x.

And, if n = 0,

q

i;j

[n] =

min(N;n+1)

X

l=0

(r

j;j

�e

j

p

l;i

q

l;j

[n� l + 1] + r

�

j;j

�e

�

j

p

l;i

q

l;

�

j

[n� l + 1])

+p

0;i

(r

j;j

q

0;j

[0] + r

�

j;j

q

0;

�

j

[0]): (9)

The following proposition gives an expression for the PGF of the queue length.

Proposition 2.1 Let Q

i;j

(z) denote the PGF of the queue length when the source is in state i

and the channel is in state j. Then,

Q(z) = [I � P

T

diag[z

i

]
R

T

E(z)]

�1

[P

T

diag[z

i

]
R

T

[I �E(z)]]Q

0

=

1

X

l=0

[P

T

diag[z

i

]
R

T

E(z)]

l+1

[I 
 [E(z)

�1

� I ]]Q

0

: (10)

where

Q(z)

4

= [Q

0;0

(z); Q

0;1

(z); Q

1;0

(z); Q

1;1

(z); � � � ; Q

N;0

(z); Q

N;1

(z)]

T

Q

l

(z)

4

= [Q

l;0

(z) Q

l;1

(z)]

T

; l = 0; 1; : : : ; N
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E(z)

4

= diag[�

0

(z); �

1

(z)]

�

j

(z)

4

= e

j

+ �e

j

z

�1

; j = 0; 1

diag[z

i

]

4

= diag[1; z; z

2

; � � � ; z

N

]

Proof: See Appendix B.

Let Q(z)

4

=

P

i;j

Q

i;j

(z) be the PGF of the queue length. In (10), Q

0

contains the unknown

terms q

0;0

[0] and q

0;1

[0]. Since for a stable system Q(z) is analytic in a closed unit disk, these

unknown terms can be obtained by �nding all the poles of Q(z) in a closed unit disk [23]. The

following diagonalization of the matrix P

T

diag[z

i

]
R

T

E(z) may facilitate �nding these poles:

P

T

diag[z

i

]
R

T

E(z) = G(z)�(z)G

�1

(z) (11)

where �(z) = diag[�

0

(z); �

1

(z); � � � ; �

2N+1

(z)]. For each �

l

(z), l = 0; 1; � � � ; 2N + 1, let g

l

(z) and

h

l

(z) denote the respective left column and right row eigenvectors of (11). The matrices G(z)

and G

�1

(z) are given by:

G(z)

4

= [g

0

(z); g

1

(z); � � � ; g

2N+1

(z)] (12)

G

�1

(z)

4

= [h

0

(z); h

1

(z); � � � ; h

2N+1

(z)]

T

: (13)

By spectral decomposition, we obtain:

P

T

diag[z

i

]
R

T

E(z) =

2N+1

X

l=0

�

l

(z)g

l

(z)h

l

(z): (14)

Each eigenvalue and eigenvector in the right-hand side (RHS) of the previous equation can be

obtained by using properties of Kronecker products. An example for an on-o� source is shown in

Appendix A. Using the previous equation, we can simplify (10) into:

Q(z) =

1

X

l=0

[P

T

diag[z

i

]
R

T

E(z)]

l+1

[I 
E(z)

�1

� I]Q

0

=

1

X

l=0

2N+1

X

i=0

�

l+1

i

(z)g

i

(z)h

i

(z)[I 
E(z)

�1

� I]Q

0

=

2N+1

X

i=0

�

i

(z)

1� �

i

(z)

g

i

(z)h

i

(z)[I 
E(z)

�1

� I ]Q

0

: (15)
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Substituting Q

0

into the previous equation, we obtain:

Q(z) =

2N+1

X

i=0

�

i

(z)

1� �

i

(z)

2N+1

X

l=0

g

li

(z)

�

h

i0

(z)

1� �

0

(z)

�

0

(z)

q

0;0

[0] + h

i1

(z)

1� �

1

(z)

�

1

(z)

q

0;1

[0]

�

: (16)

Let �(z) denote the characteristic function of the system:

�(z)

4

=

2N+1

Y

i=0

(1� �

i

(z)): (17)

The poles of (16) are equal to the roots of this characteristic function. We need to determine the

unknown variables q

0;0

[0] and q

0;1

[0]. First, since Q(z) is analytic for each root z

i

, jz

i

j < 1, we

can set up the following boundary equation:

h

i0

(z

i

)

1� �

0

(z

i

)

�

0

(z

i

)

q

0;0

[0] + h

i1

(z

i

)

1� �

1

(z

i

)

�

1

(z

i

)

q

0;1

[0] = 0 (18)

Secondly, we use the relation:

lim

z!1

Q(z) = 1: (19)

By solving (18) and (19), one can determine the values of the unknown variables q

0;0

[0] and q

0;1

[0],

which completes the solution for Q(z). Thus, the mean queue length �q is given by

�q = Q

0

(1): (20)

Using Little's law, we obtain the mean queueing delay

�

d for the ideal SR ARQ scenario:

�

d =

�q

�

s

(21)

where �

s

is the mean arrival rate.

To obtain the transmission delay, we use the results in [24], where the mean number of trans-

mission attempts per correctly received packet �n was given by

�n = 1 +U

r

(I � S)

�1

V (22)

where U

r

= [1 1]. The vector S and V are given by:

S =

2

4

r

(s)

0;0

e

0

r

(s)

1;0

e

0

r

(s)

0;1

e

1

r

(s)

1;1

e

1

3

5

(23)
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V =

2

4

�

r;0

e

0

�

r;1

e

1

3

5

(24)

where r

(s)

i;j

corresponds to the (i; j)th element of the s-step transition matrix R, and �

r;0

and

�

r;1

are the steady-state probabilities that the channel is in Good and Bad states, respectively.

Accordingly, the mean transmission delay is given by s�n �

s

2

(

s

2

is subtracted because the time

to deliver an ACK to the transmitter does not contribute to the transmission delay). Combining

the queueing delay in (21) and the transmission delay, we obtain the normalized mean transport

delay T :

T =

�

d+ s�n�

s

2

: (25)

Using Little's law, we obtain the total mean number of packets at the transmitter for the SR

ARQ with non-zero feedback delay (which includes packets in the source and waiting bu�ers):

E[q] = �q + s�n�

s

: (26)

3 Resequencing Delay

In this section, we give an approximate analysis of the mean resequencing delay under heavy tra�c,

i.e., packets are always supplied. This assumption has also been used in previous studies [2, 3], but

for a static channel. We adapt the analytical approach in [2], which assumes i.i.d. packet error

probabilities, to the underlying case where packet errors are correlated in a Markovian manner.

Let X(t)

4

= (X

1

(t);X

2

(t); � � � ; X

s

(t)) denote the set of identi�ers for packets transmitted during

window t. We assume that packet identi�ers are numbered in an increasing order. This assumption

slightly a�ects the accuracy of our analytical results since the packet error probability is dependent

on the location of a slot. However, the inaccuracy caused by this assumption is negligible in most

practical situations except when the sojourn time of a channel state is very small relative to the

window size (or the feedback delay).

The process fX(t); t = 1; 2; � � �g governs the evolution of the occupancy of the resequencing

bu�er. Let D

i

(t) and W

j

(t) be de�ned as follows:

D

i

(t)

4

= X

i+1

(t)�X

i

(t); i = 1; 2; � � � ; s (27)

W

j

(t)

4

=

s

X

i=j

D

i

(t); j = 1; 2; � � � ; s (28)

with D

s

(t)

4

= 1. As an example, let X(1) = (1; 2; 3; 4; 5; 6; 7; 8) and s = 8. If transmissions of

packets 2; 4; 5, and 6 fail, thenX(2) = (2; 4; 5; 6; 9; 10; 11; 12). Again, if transmission of the packet

9



Slots

X(1) 1 2 3 4 5 6 7 8

D(1) 1 1 1 1 1 1 1 1

W (1) 8 7 6 5 4 3 2 1

X(2) 2 4 5 6 9 10 11 12

D(2) 2 1 1 3 1 1 1 1

W (2) 11 9 8 7 4 3 2 1

X(3) 4 5 9 10 12 13 14 15

D(3) 1 4 1 2 1 1 1 1

W (3) 12 11 7 6 4 3 2 1

Table 1: Example showing the evolution of the occupancy of the resequencing bu�er.

4; 5; 9; 10, and 12 fail, then X(3) = (4; 5; 9; 10; 12; 13; 14; 15). The corresponding D

i

(t) and W

i

(t)

in this example are given in Table 1. The size of the resequencing bu�er at windows 1; 2, and 3 is

0, 3, and 4, respectively. Rosberg and Shacham [2] observed that the bu�er occupancy at window

t, B(t), is given by:

B(t) =W

1

(t)� s: (29)

Furthermore, they observed that the system state W

s�i

(t), t � 1, 1 � i < s � 1 is governed by

the following:

� If there are fewer than s� i NACKs during window t, then W

s�i

(t+ 1) = i+ 1.

� If there are s� i+ l NACKs, 0 � l � i, and if the (s� i)th NACK is for the packet X

k

(t),

s� i � k � s� l, then W

s�i

(t+ 1) =W

k

(t) + (i� l).

In the following, we extend the previous analysis to the case of GE channel model. First, let

W

g

i

(t) and W

b

i

(t) denote the value de�ned in (28) given that the state of the radio channel just

before the beginning of window t � 1 is Good (g) and Bad (b), respectively. The distribution of

W

g

s�i

(t+ 1) is given by:

W

g

s�i

(t+ 1) =

8

<

:

i+ 1; with probability

P

s�i�1

m=0

p(s;mjg)

W

k

(t) + (i� l); with probabilityP

t;g

(i; k; l)

(30)

where

P

t;g

=

s�l

X

k=s�i

(p(k � 1; s� i� 1; gjg)(r

0;0

e

0

p(s� k; ljg) + r

0;1

e

1

p(s� k; ljb))

+p(k � 1; s� i� 1; bjg)(r

1;0

e

0

p(s� k; ljg) + r

1;1

e

1

p(s� k; ljb)):

In the previous equation, p(n; kjr

1

) denotes the probability of k unsuccessful transmissions in

10



n consecutive slots given that the channel state at the beginning of a window is r

1

. Similarly,

p(n; k; r

2

jr

1

) denotes the probability of k unsuccessful transmissions in n consecutive slots and the

channel state in the last slot is r

2

given that the channel state just before the start of a window

is r

1

. In a similar way to the case of W

g

s�i

(t+ 1), the distribution of W

b

s�i

(t+ 1) is given by:

W

b

s�i

(t+ 1) =

8

<

:

i+ 1; with probability

P

s�i�1

m=0

p(s;mjb)

W

k

(t) + (i� l); with probabilityP

t;b

(i; k; l)

(31)

where

P

t;b

(i; k; l) =

s�l

X

k=s�i

(p(k � 1; s� i� 1; gjb)(r

0;0

e

0

p(s� k; ljg) + r

0;1

e

1

p(s� k; ljb))

+p(k � 1; s� i� 1; bjb)(r

1;0

e

0

p(s� k; ljg) + r

1;1

e

1

p(s� k; ljb)):

Letting t ! 1, we obtain the steady-state probabilities for W

s�i

(t) and W

j

s�i

(t), where

j = g; b:

Pr[W

s�i

= k]

4

= lim

t!1

Pr[W

s�i

(t) = k] (32)

Pr[W

j

s�i

= k]

4

= lim

t!1

Pr[W

j

s�i

(t) = k]: (33)

Let W

s�i

(z) be the PGF of W

s�i

. An expression for this PGF is given below.

Proposition 3.1

W

s�i

(z) =

s�i�1

X

m=0

�P[s;m]Uz

i+1

+

i

X

l=0

s�l

X

k=s�i

�P[k � 1; s� i� 1]REP[s� k; l]UW

k

(z)z

i�l

: (34)

where � is the steady-state probability vector of the radio state, i.e., � = [�

r;0

; �

r;1

], U = [1 1]

T

,

E = diag[e

0

; e

1

], and

P[n; k]

4

=

2

4

p(n; k; gjg) p(n; k; bjg)

p(n; k; gjb) p(n; k; bjb)

3

5

:

Proof: See Appendix C.

Exploiting the recursive structure of P[n; k], we arrive at the following di�erence equation:

P[n; k] = R

�

EP[n� 1; k] +REP[n� 1; k � 1] (35)

11



with the boundary conditions

P[0; 0] = I

P[n; k] = O; if n < k or n; k < 0:

where

�

E = diag[�e

0

; �e

1

]. The solution to (35) is obtained recursively for various values of n and k.

To obtain the mean bu�er size, we di�erentiate (34) with respect to z and evaluate at z = 1. Let

�

s�i

be de�ned as:

�

s�i

4

=

dW

s�i

(z)

dz

j

z=1

: (36)

Thus, we have

�

s�i

= (i+ 1)f

1

(i) +

i

X

l=0

s�l

X

k=s�i

((i� l)f

2

(i; k; l) + f

2

(i; k; l)�

k

) (37)

where

f

1

(i) =

s�i�1

X

m=0

�P[s;m]U

f

2

(i; k; l) = �P[k � 1; s� i� 1]REP[s� k; l]U :

Arranging the previous equation, we obtain for 1 � i � s� 1:

�

s�i

=

(i+ 1)f

1

(i) +

P

i

l=0

P

s�l

k=s�i+1

f

2

(i; k; l)(i � l + �

k

) +

P

i

l=0

f

2

(i; s� i; l)(i� l)

1�

P

i

l=0

f

2

(i; s� i; l)

(38)

and �

s

= 1. Accordingly, �

1

is obtained recursively from (38) with the initial condition �

s

= 1.

The mean bu�er occupancy is �

1

� s. Using Little's law, we obtain the mean resequencing delay

T

r

:

T

r

=

�

1

� s

�

r;0

�e

0

+ �

r;1

�e

1

: (39)

4 Numerical Results and Discussion

In this section, we present numerical examples for the mean delay performance. The objectives

of these examples are to: (1) test the accuracy of our approximate analysis, and (2) investigate

the impacts of tra�c burstiness and the time-varying error behavior on the delay performance.

The second objective will enable us to gauge the importance of employing a Markovian source

model (as opposed to a renewal Bernoulli process) and a two-state time-varying channel model

12



(as opposed to a one-state \static" model). This, in e�ect, establishes the true contribution of the

paper. For the model validation part, our analytical results are contrasted against more realistic

simulations that are obtained under no approximations. Due to space limitations, we report on a

subset of our experiments. Additional examples are given in [25]. In the following, we present the

results for the special yet commonly encountered case of a two-state on-o� source. Note, however,

that our analysis applies, in general, to an N -state source, where N � 2.

For an on-o� Markov source, one packet is generated per time slot during on periods and no

packets are generated during o� periods. Transitions between on and o� states are governed by

the transition probability matrix P = [p

i;j

]; 0 � i; j � 1. The characteristics of the on-o� source

are represented by the mean arrival rate (�

s

), which is also the tra�c load, and the mean length

of the on periods (T

on

). Note that for a �xed �

s

, T

on

measures the burstiness of the tra�c. In

practice, the value of T

on

depends on the application and the underlying packetization mechanism.

For example, for 53-byte ATM cells T

on

ranges from few tens for voice with silence detection to

few hundreds for compressed video.

Two parameters are de�ned for the GE channel model: the mean packet error rate (�) and

the duty cycle of the Bad period (�

r

):

�

4

=

r

0;1

e

1

+ r

1;0

e

0

r

0;1

+ r

1;0

(40)

�

r

4

=

r

0;1

r

0;1

+ r

1;0

(41)

Table 2 gives the parameter values used in our experiments. When varying the value of one

parameter, the other parameters are set to their default values, unless indicated otherwise.

Parameter Symbol Value (default)

Mean arrival rate �

s

0:3� 0:7(0:5)

Mean on period T

on

10� 300(100)

Mean packet error rate � 0:01 � 0:3(e

1

= 0:9; e

0

= 0:001)

Duty cycle of Bad period �

r

0:05 � 0:4(0:1)

Transition probability from

Good to Bad r

0;1

0:005 � 0:1(0:03)

Table 2: Parameters used to obtain the numerical results.

Fig. 4 shows the mean queue length E[q], obtained using (26), as a function of �

s

for three

values of feedback delay: s = 10; 50; 100. Here, the mean queue length includes packets in the

source bu�er as well as those in the waiting bu�er. A good agreement is observed between

simulation and analysis, with the analytical results being slightly conservative when s is large.

For �

s

< 0:8, E[q] increases almost linearly with the load indicating almost no change in the

mean transport delay. This can be justi�ed as follows. Since at most one packet is generated per

time slot, queueing delay occurs only when a packet is retransmitted from the waiting bu�er and

13



the source bu�er is not empty. The former condition is the result of a returned NACK, which

occurs mostly during Bad channel periods. Given that the channel is Bad roughly 10% of the

time (by default, �

r

= 0:1), the likelihood that the channel is in a Bad state and, simultaneously,

the source is on is small, resulting in infrequent queueing delays. In this case, the transport delay

is dominated by the retransmission part, which is independent of the input load. As �

s

increases

beyond 0.8, queueing delay in the source bu�er becomes more probable, causing a nonlinear

increase in the total mean queue length (note that to maintain a stable queue, �

s

must not exceed

0.9 since the channel is \clear" about 90% of the time).
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Figure 4: Mean queue length versus input load.

The impact of the mean packet error rate (�) on the transport delay is illustrated in Fig. 5.

Here, we take �

s

= 0:8 and set the other parameters to their default values. We vary � by

varying the error rate during Bad periods (e

1

) with e

0

set to 0.001. The �gure indicates a good

agreement between the approximate analysis and the simulations. The gap, however, tends to

slightly increase with �. A similar trend was also observed when varying the duty cycle of the

Bad period [25]. It is interesting to note that as � increases, the corresponding rate of increase in

the mean transport delay is almost the same for di�erent values of s (i.e., the gap between, say,

the plots for s = 1 and s = 10 does not change with �). At �rst, we expected this gap to increase

with �, since we speculated that increasing � should result in an increase in both the queueing

and retransmission delays. While the queueing delay does not depend on s (since it is obtained

under the ideal SR ARQ assumption), the retransmission delay equals to s(�n � 1=2), and hence

depends on s. If the retransmission delay were to increase with �, through an increase in the mean

number of transmission attempts �n, then the gap between, say, s = 1 and s = 10 in Fig. 5 should
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Figure 5: Mean transport delay versus mean packet error rate (�

s

= 0:8).

also increase. Surprisingly, it turns out that the increase in the transport delay shown in Fig. 5 is

mainly caused by the queueing delay. We found that as s increases at a �xed �, �n decreases causing

the product s�n to be almost constant. This unexpected interaction can be justi�ed as follows.

Retransmissions are mainly caused by errors occurring during the Bad periods. When s is small

compared to the mean length of a Bad period, it is likely that a retransmission of an erroneous

packet will take place during the same Bad period in which the packet was last (re)transmitted,

and hence will probably encounter channel errors. This, in e�ect, increases the value of �n. As s

increases, the impact of error correlations fades away, resulting in a decrease in �n.

Fig. 6 demonstrates the signi�cance of tra�c correlations by contrasting the mean transport

delay under a Markovian model (T

on

= 16 and 32) with that of a renewal Bernoulli model. All

results are based on analysis. The mean error rate is varied through e

1

with �

s

= 0:8. Note

that in this case the value of T

on

reects the burstiness of the Markovian source. For a �xed

�, the Markovian model always gives a higher mean transport delay than the Bernoulli model.

In fact, even when T

on

is set to its smallest possible value (i.e., T

on

= 2), we observed that the

Markovian model still results in higher mean delay values [25]. For a �xed T

on

, as � increases the

gap between the Bernoulli and Markovian results also increases, indicating more profound impact

for correlations in this regime. This trend is justi�ed as follows. When � is small, the queue is

empty most of the time. In this case, the tra�c characteristics have little impact on the queueing

delay (i.e., tra�c burstiness is absorbed by the clear channel). As the noise level increases, so does

the mean queue length at the source bu�er. But with more frequent bu�er buildup, burstiness

starts to have a more profound impact on the mean queueing delay by increasing the likelihood
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that an arriving packet will see a nonempty queue. As a matter of fact, if we only consider the

mean queueing delay (i.e., s = 0), the gap between the Markovian and Bernoulli results is even

more acute than what is depicted in Fig. 6 [25]. The �gure also shows a �xed gap between the

curves for s = 1 and those for s = 10 in each source model, which we previously commented on.
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Figure 6: Mean transport delay versus � under Markovian and Bernoulli sources (�

s

= 0:8).

The signi�cance of employing a time-varying channel-error model as opposed to a static one

is illustrated in Fig. 7. In this �gure, we depict the mean transport delay versus � under Markov

and Bernoulli sources assuming static (one state) and time-varying (two states) channel models.

As before, � for the 2-state channel model is varied through e

1

with �

r

= 0:4. We set �

s

= 0:4,

s = 10, and use the default values for the other �xed parameters. From this �gure, one can

make the following remarks. First, for a �xed mean error rate and a given source model, a time-

varying error model almost always results in a larger mean transport delay compared to a static

model. This trend can be attributed to the fact that a time-varying channel acts as a \bursty"

server whose alternating Good-Bad pattern adversely impacts the e�ective service rate. So during

Good periods, if no tra�c is being generated and the queue is empty, the capacity is wasted for

an extended amount of time. By evenly distributing the e�ective service rate over time, the

static model underestimates the amount of wasted capacity, hence providing overly optimistic

predictions of the mean delay. Secondly, the gap between the time-varying and static channel

models increases with �. This is attributed to a corresponding increase in the variance of the

mean error rate in the former model (this variance is zero in the static model). Finally, it is

observed that in the case of the Markovian source model, the e�ect of the time-varying channel

starts to show at smaller values of � compared to the Bernoulli model. So by employing a Bernoulli
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model, one may mistakenly underestimate the impact of the time-varying error behavior. For large

�, the considerable gap between the uppermost and lowermost curves in Fig. 7 demonstrates the

amount of inaccuracy caused by employing simpli�ed source and channel models.
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Figure 7: Mean transport delay versus � under Markovian and Bernoulli sources for static and

time-varying channels (�

s

= 0:4, �

r

= 0:4, s = 10).

Fig. 8 and 9 are related to the mean resequencing delay. The objective of both �gures is to

examine the accuracy of our approximate analysis in Section 3. Recall that the analysis was carried

out under two assumptions: heavy-tra�c load (i.e., packets are always supplied) and a small

window size relative to the channel sojourn times. Fig. 8 shows the mean resequencing delay versus

� for s = 50; 100. With such large values of s, we can examine the worst-case inaccuracy of the

analysis with respect to the second assumption. The analysis is contrasted with exact simulation

results obtained under heavy load and under 70% load. If the resequencing analysis were to be

conducted without the second assumption, then we would expect a match between the analytical

results and the heavy-tra�c simulations. But Fig. 8 shows that the heavy-tra�c simulations

upper bound the analytical results, indicating opposite e�ects for the above two assumptions.

For s = 50, the analytical results are su�ciently close to both types of simulations. In general,

we observed that at small values of s the mean resequencing delay is somehow insensitive to the

input load (see [25] for supporting examples). For s = 100, the analytical results lie between

the two types of simulations, being closer to the heavy-tra�c simulations when � is small and

to the 70%-load simulations when � is large. In Fig. 9 we compare the analytical results with

simulations obtained at 80% load using two values for e

1

(the error rate during Bad periods). A

good agreement is observed over the range of s. As s increases, e

1

starts to have a more signi�cant
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impact on the mean resequencing delay.
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Figure 8: Mean resequencing delay versus mean packet error rate.

In contrast to the convex plots in Fig. 5 and 6, Fig. 8 indicates that the mean resequencing

delay increases sublinearly with �. This says that as � increases, the mean transport delay becomes

more sensitive to incremental changes in �, while the opposite e�ect is observed for the mean

resequencing delay. Fig. 10 further illustrates this point by depicting both types of delay as a

function of � when s = 50; 100 (�

s

= 0:8, �

r

= 0:2). Because of the contrasting sensitivities to

changes in �, two crossover points in the delay curves are observed when s = 100.

5 Conclusions

In this study, we analyzed the total mean delay (queueing, transmission, and resequencing) ex-

perienced by a packet over a time-varying wireless channel with SR ARQ error control. The goal

of such analysis is to enable online assessment of the delay performance to be used in resource

allocation and admission control subject to guaranteed quality of service. In contrast to previous

studies, ours was conducted under more realistic source and channel models. By employing a

Markovian source model, our analysis accommodates the inherent correlations between packet in-

terarrival times. We showed that ignoring such correlations through the use of a Bernoulli renewal

model can lead to signi�cantly underestimating the true mean transport delay, particularly when

the channel error rate is high. As for the channel model, we conducted our analysis assuming a

two-state Gilbert-Elliot model, which captures the time-varying and correlated nature of channel

errors. We found that at high channel error rates the mean transport delay obtained under the
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Figure 9: Mean resequencing delay versus feedback delay.
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Gilbert-Elliot model is much larger than the one obtained under a one-state \static" model. This,

again, points to the overly optimistic predictions that one can get when ignoring the time-varying

error behavior of the channel. Overall, the implications of ignoring tra�c and channel correlations

are most apparent at high channel error rates.

Interestingly, we found that the feedback delay (s) has two opposite e�ects on the transmission

part of the mean transport delay. While a larger s expectedly increases the RTT per transmission,

it also reduces the mean number of retransmissions per packet by increasing the separation be-

tween two successive retransmissions. Since retransmissions are mainly caused by errors occurring

during Bad states, a large s allows a retransmission of an erroneous packet to \escape" the same

Bad state of the previous retransmission, hence improving its chance of error-free delivery. In

other words, the negative impact of channel correlations tends to fade away as s increases.

We observed that the mean resequencing delay is somehow insensitive to the input load for

small to moderate values of s and moderate to high input loads. This delay increases sublinearly

with � (the mean error rate), displaying concave functionality over the range of �. In contrast,

the mean transport delay increases with � as a convex function. As a result, the transport delay

tends to dominate the overall delay for small and large �. For medium values of �, the dominant

delay component depends on the value of s.

Our analysis of the both transport (speci�cally, queueing) and resequencing delays was con-

ducted under certain simplifying assumptions. By contrasting the analytical results against more

realistic simulations, we veri�ed that the inaccuracy of such assumptions is negligible for most

practical cases. This inaccuracy tends to slightly increase with both s and �.

APPENDIX

A Single On-O� Source

In Section 2, we outlined a spectral decomposition approach for obtaining the PGF of the queue

length under a general Markovian arrival process. We now apply this approach to the case of a

single on-o� source. The eigenvalues and eigenvectors of P

T

diag[z

i

]
R

T

E(z) can be obtained by

employing some properties of Kronecker products [26]; namely, the eigenvalues of A
B, where

A and B are two matrices, are obtained by element-wise multiplication of the eigenvalues of A

and B. Also, the eigenvectors of A 
B are given by the Kronecker products of the individual

eigenvectors of A and B.

Let �

1;2

(z) and �(z) denote the eigenvalues and eigenvectors of P

T

diag[z

i

], respectively, which

are given by:

�

1;2

(z) =

1

2

(p

0;0

+ p

1;1

z � �(z)) (42)
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�(z) =

2

4

1 1

�

1

(z)�p

0;0

(1�p

1;1

)z

�

2

(z)�p

0;0

(1�p

1;1

)z

3

5

(43)

where �(z) =

q

(p

0;0

+ p

1;1

z)

2

+ 4(1� p

0;0

� p

1;1

)z.

Let �

1;2

(z) and (z) denote the eigenvalues and eigenvectors of R

T

E(z), respectively, which

are given by:

�

1;2

(z) =

1

2

(r

0;0

�

0

(z) + r

1;1

�

1

(z)� �(z)) (44)

(z) =

2

4

1 1

�

1

(z)�r

0;0

�

0

(z)

(1�r

1;1

)�

1

(z)

�

2

(z)�r

0;0

�

0

(z)

(1�r

1;1

)�

1

(z)

3

5

(45)

where �(z) =

q

(r

0;0

�

0

(z) + r

1;1

�

1

(z))

2

+ 4(1 � r

0;0

� r

1;1

)�

0

(z)�

1

(z). In addition, the inverse of

each eigenvector is given by:

�

�1

(z) =

2

4

�

2

(z)�p

0;0

�

2

(z)��

1

(z)

�(1�p

1;1

)z

�

2

(z)��

1

(z)

�(�

1

(z)�p

0;0

)

�

2

(z)��

1

(z)

(1�p

1;1

)z

�

2

(z)��

1

(z)

3

5

(46)



�1

(z) =

2

4

�

2

(z)�r

0;0

�

0

(z)

�

2

(z)��

1

(z)

�(1�r

1;1

)�

1

(z)

�

2

(z)��

1

(z)

�(�

1

(z)�r

0;0

�

0

(z))

�

2

(z)��

1

(z)

(1�r

1;1

)�

1

(z)

�

2

(z)��

1

(z)

3

5

: (47)

Thus, the right-hand side of (11) for a single on-o� source is given by:

�(z) = diag[�

1

(z)�

1

(z); �

1

(z)�

2

(z); �

2

(z)�

1

(z); �

2

(z)�

2

(z)]

G(z) = � 
 (z)

= [�

1


 

1

(z); �

1


 

2

(z); �

2


 

1

(z); �

2


 

2

(z)]

G

�1

(z) = (� 
 (z))

�1

= [�

�1

1


 

�1

1

(z); �

�1

1


 

�1

2

(z); �

�1

2


 

�1

1

(z); �

�1

2


 

�1

2

(z)]:

B Proof of Proposition 2.1

From (8) and (9), we can obtain Q

i;j

(z):

Q

i;j

(z) =

1

X

n=1

min(N;n+1)

X

l=0

(r

j;j

�e

j

p

l;i

q

l;j

[n� l + 1] + r

�

j;j

�e

�

j

p

l;i

q

l;

�

j

[n� l + 1])z

n

+

1

X

n=1

min(N;n)

X

l=0

(r

j;j

e

j

p

l;i

q

l;j

[n� l] + r

�

j;j

e

�

j

p

l;i

q
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�

j

[n� l])z

n

+

1

X
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j;j

�e

j

p

l;i

q
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[1� l] + r

�

j;j

�e

�

j

p

l;i

q
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�

j

[1� l])
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+p

0;i

(r

j;j

q

0;j

[0] + r

�

j;j

q

0;

�

j

[0]): (48)

In order to simplify the previous equation, we use the following relations:

1

X
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min(N;n)

X

l=0

p

l;i

q

l;j

[n� l]z

n

=

N

X
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1

X
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p
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n

� p

0;i

q
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and

1

X
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min(N;n+1)

X
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p
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q

l;j

[n� l + 1]z
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N
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1

X
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1

X

l=0

1

X
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p
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q
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n

: (50)

Using (49) and (50), we obtain:
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�
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p
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z

l
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�
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e

�

j

N

X
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p
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z

l

Q
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�

j

(z) (51)

Arranging the previous equation, we obtain:
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(z)� r
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�

j

(z)

N
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p
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z

l
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�

j;j

�

�

j

(z)

N

X
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l
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�
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�
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where �

j

(z) = e

j

+ �e

j

z

�1

and �

�

j

(z) = e

�

j

+ �e

�

j

z

�1

. In the previous equation,

N
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j

(z)Q

l;

�

j

(z)) =

N

X

l=0

p
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z

l

[R

T
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(j)

Q

l

(z)

= [P

T

diag[z

i

]
R

T

E(z)]

(2i+j)

Q(z) (53)

where [A]

(i)

denotes the (i)th row of A and

Q

l

(z)

4

= [Q

l;0

(z) Q

l;1

(z)]

T

E(z)

4

= diag[�

0

(z); �

1

(z)]

22



diag[z

i

]

4

= diag[1; z; z

2

; � � � ; z

N

]

Q(z)

4

= [Q

0;0

(z); Q

0;1

(z); Q

1;0

(z); Q

1;1

(z); � � � ; Q

N;0

(z); Q

N;1

(z)]

T

:

Using (53), we can arrange (52) in the following matrix form:

[I � P

T

diag[z

i

]
R

T

E(z)]Q(z) = [P

T

diag[z

i

]
R

T

[I �E(z)]]Q

0

(54)

where Q

0

= [q

0;0

[0]; q

0;1

[0]; 0; � � � ; 0]

T

.

With some algebraic manipulation of (54), we obtain:

Q(z) = [I � P

T

diag[z
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T
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�1
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T

diag[z

i

]
R

T

[I �E(z)]]Q

0

=

1

X

l=0

[P

T

diag[z
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T
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�1

� I ]]Q
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: (55)

This completes the proof of Proposition 2.1.

C Proof of Proposition 3.1

For j = g; b, let W

j

s�i

(z) be the PGF of W

j

s�i

. Taking the z-transform for (30), we have

W

g
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i

X
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X
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e

0
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e

1
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e

0
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e

1
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k
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+
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X

m=0
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: (56)

Similarly, for (31) we have

W

b

s�i

(z) =

i

X

l=0

s�l

X

k=s�i

(p(k � 1; s� i� 1; gjb)(r
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0;1

e

1
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0
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: (57)

Multiplying (56) and (57) by �

r;0

and �

r;1

, respectively, and summing each, we obtain the

following equation:

W

s�i

(z) =

s�i�1

X

m=0

�P[s;m]Uz

i+1
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+

i

X

l=0

s�l

X

k=s�i

�P[k � 1; s� i� 1]REP[s� k; l]UW

k

(z)z

i�l

: (58)

This completes the proof of Proposition 3.1.
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