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Maximizing Quality of Coverage under Connectivity Constraints
in Solar-Powered Active Wireless Sensor Networks

BENJAMIN GAUDETTE and VINAY HANUMAIAH, Arizona State University
MARWAN KRUNZ, University of Arizona
SARMA VRUDHULA, Arizona State University

Energy harvesting is a promising solution for reducing network maintenance and the overhead of replacing
chemical batteries in sensor networks. In this article, problems related to controlling an active wireless sensor
network comprised of nodes powered by both rechargeable batteries and solar energy are investigated. The
objective of this control is to maximize the network’s Quality of Coverage (QoC), defined as the minimum
number of targets that can be covered by the network over a 24-hour period. Assuming a time-varying solar
profile, the underlying problem is to optimally control the sensing range of each sensor so as to maximize
the QoC. The problem is further constrained by requiring all active sensors to report any sensed data to a
centralized base station, making connectivity a key factor in sensor management. Implicit in the solution is
the allocation of solar energy during the day to sensing tasks and recharging of the battery so that a minimum
coverage is guaranteed at all times. The problem turns out to be a nonlinear optimal control problem of high
complexity. By exploiting the particular structure of the problem, we present a novel method for determining
near-optimal sensing radii and routing paths as a series of quasiconvex (unimodal) optimization problems.
The runtime of the proposed solution is 60X less than the standard optimal control method based on dynamic
programming, while the worst-case error is less than 8%. The proposed method is scalable to large networks
consisting of hundreds of sensors and targets. Several insights in the design of energy-harvesting networks
are provided.
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1. INTRODUCTION

A wireless sensor network (WSN) consists of many sensor nodes that are spatially
distributed over some geographical area. The feasibility of such large networks is
attributed to advances in microelectronics, which allow for low-cost and low-power
circuitry to be implemented in sensor nodes. In the case of active sensor networks,
sensors must spend energy to monitor various targets. This makes the task of managing
the network’s energy supply and consumption a vital part of ensuring high network
performance.

Adding to the benefit of low cost is the versatility of sensor networks. Modern sensor
networks typically do not to require a preexisting infrastructure, such as power lines
or network cables, but instead use chemical batteries for sensing, and radio-frequency
integrated circuits (RF IC) for communications. This flexibility comes with a number of
challenges with regard to the management of such a network. As a result, a substantial
body of research has been conducted on power management for WSNs at the physical,
networking, and application layers [Akyildiz et al. 2002]. Regardless of their energy
efficiency, battery-powered WSNs will eventually cause the network to fail due to their
limited power supply, or their batteries will need to be replaced. This can be a costly
procedure if the network is deployed in a harsh environment or in an inaccessible loca-
tion. A promising solution to this problem is the use energy harvesting in conjunction
with batteries. In this article we consider solar-energy harvesting.

Photovoltaic panels (solar panels) are becoming relatively inexpensive to manufac-
ture and very efficient [Torcellini et al. 2006]. However, proper utilization of energy
harvesting can be burdensome and complex. The unpredictable nature of the solar pro-
file (cloud cover, shadows of buildings, etc.) introduces a high degree of uncertainty and
difficulty in the management of sensors (adjusting their radii, sampling intervals, etc.).
Consequently, the basic problem of guaranteeing a minimum coverage of targets be-
comes more acute with energy harvesting. The importance of this objective over other
similar objectives (e.g., maximizing average coverage) stems from a very important
application of active sensor networks, namely surveillance. In surveillance networks,
periods of low coverage represent times of vulnerability to outside influences. As such,
it is important to eliminate these periods by ensuring that the minimum coverage
experienced throughout the operational time is maximized.

This article offers a novel procedure to utilize the abundant source of energy from the
Sun in order to maximize the quality of coverage (QoC). More specifically, this article
addresses the target coverage problem in the context of solar-powered active sensor
networks in which each sensor’s range is controllable. In this context, QoC is defined
as the minimum number of monitored targets at any given time during the period of
network operation. Furthermore, the definition of a monitored (also called covered)
target is further constrained by the necessary condition that any sensed data must be
reported back to the base station (also referred to as the sink). In other words, at any
point in time, any active sensor must have a route to the sink. The problem formulation
turns out to be a nonlinear optimal control problem, which is, in practice, hard to solve.
Using several key observations, a near-optimal solution can be obtained by performing
a binary search over the QoC, where each iteration solves a series of quasiconvex
optimization problems for all time instants while ensuring that the assumed QoC is
met for that iteration. Additionally, the traffic routing constraint is formulated either as
a linear program or as an integer linear program, depending on the network and design
tolerances. This program is then solved at each iteration to determine the feasibility of
the assumed QoC.

Our simulation results indicate a 60X improvement in computation time for the
proposed solution over an optimal dynamic programming (DP) solution, with peak error
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of 8% in the QoC. The proposed solution is scalable to large networks with hundreds
of sensors and targets. The efficiency and the accuracy of the solution method permits
exploration of the network design space. In one experiment, the trade-off between the
cost of constructing a sensor node and the number of sensor nodes needed to ensure
full target coverage is examined. The results suggest that there is a unique optimal
number of nodes and corresponding average radii that minimize the network setup
cost while guaranteeing a specified QoC. In two other experiments, we find that for
certain deployment scenarios, increasing the sampling time of sensors can increase
the minimum cover, and increasing the sensor beamwidth has diminishing returns on
improving the QoC.

2. RELATED WORK

One of the fundamental problems in sensor networks is the target cover problem. An
informal yet intuitive description of this problem is given in the Art Gallery Prob-
lem [Chvatal 1975]: Given a floorplan of an art gallery, find the minimum number of
stationary guards who are needed to monitor every exhibit in the art gallery, assuming
that guards have a known field of vision. This problem has been optimally solved in 2D
space [O’Rourke 1998].

In sensor networks, sensor nodes (“guards”) and targets (“art exhibits”) are assumed
to have fixed locations at a given time; therefore, a subset of these sensor nodes that col-
lectively covers all targets needs to be determined. When sensors have the same fixed
sensing radius, the problem of maximizing the point-cover (where targets are a collec-
tion of points in space) can be solved efficiently using binary decision diagrams [Dasika
et al. 2006]. The problem of maximizing area coverage can be solved via perimeter
analysis using known geometric properties of the disk-based sensing region [Huang
and Tseng 2003]. Neither of these approaches considers variable-range sensors.

When considering the limited energy supply of sensor nodes, the cover problem can
be stated as a network lifetime maximization problem. The goal of this problem is
to prolong the period in which all targets are covered. Several heuristics attempt to
achieve this, either by minimizing the total energy consumption [Diamond et al. 2008;
Yick et al. 2008] or by prolonging the lifetime of the weakest node [Dasika et al. 2006].

One can further bring the network lifetime problem closer to reality by considering
connectivity, thus ensuring all data is sufficiently routed to the sink. A substantial
amount of research has been conducted on problems related to the connectivity with
battery-powered sensor networks. Liu et al. [2006] consider both the coverage and con-
nectivity problems in WSNs. They provide a randomized scheduling algorithm that
assumes probabilistic levels of QoC. Connectivity is then ensured by turning on addi-
tional sensor nodes until all nodes are connected to the sink. Zhang and Hou [2004]
proposed an alternative solution to the connectivity and coverage problems called Op-
timal Geographical Density Control (OGDC). They proved that any WSN with full area
coverage would be connected if the radio range of the sensors is at least twice that of
the sensing range, assuming that all sensors use the same sensing range. Based on this
property, they constructed a distributed solution that determines the communication
radius for each sensor node. The limitation of this work is the assumption that sensors
cannot control their sensing radius. Our work considers control over both the sensing
radii and the communication paths between sensor nodes.

In Cardei et al. [2005], the lifetime problem was extended further by introducing
multiple discrete sensing ranges. Each sensor may select a different discrete range
at any given time. This problem is referred to as the operational range assignment
problem (ORAP). The authors of Cardei et al. [2005] have shown that the ORAP is
NP-complete, and have provided several heuristics and approximations. One approx-
imation is based on a centralized linear programming (LP) approach, which finds a
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series of valid covers that maximize the network lifetime. Another approximate solu-
tion uses a greedy heuristic, whereby covers are constructed by sequentially increasing
a node’s sensing radius until the maximum number of targets are covered. The time
complexities of these solutions quickly deteriorate as the number of discrete sensing
ranges increases. In the present work, continuous control of sensing range is assumed,
and the solution provided is shown to be both accurate and computationally efficient.

The solution from Cardei et al. [2005] was extended in Younis et al. [2007] by ac-
counting for uncertainty in the sensor locations. A distributed approach was used to
solve the ORAP in a manner similar to the greedy method used in Cardei et al. [2005].
The approach in Younis et al. [2007] consists of two phases. In the first phase, sensors
increase their radii in the order of their remaining battery lifetimes until all targets are
covered. In the second phase, the radii are decreased while ensuring that full coverage
is still met. Although this method increases the network lifetime substantially, it does
not incorporate energy harvesting.

In Gaudette et al. [2012], the maximum QoC problem was first formulated in the
context of solar-powered sensor networks. A near-optimal solution was presented based
on quasiconvex programming. While this solution provided a major first step in solving
the radii control problem of solar-powered sensor networks, it lacks a key component,
namely, adaptive traffic control. Previously, the network communication overhead was
assumed static, which in practice is not practical and is in fact directly dependent
on the sensing radii schedules (due to the shared and limited energy resources). In
this article we strengthen the previous solution of Gaudette et al. [2012] by modeling
message traffic and determining the optimal multihop routing matrix.

There has been some focus on increasing network lifetime through better message
routing protocols in solar-powered networks. Niyato et al. [2007] analyzed the unpre-
dictability of energy harvesting via solar radiation. With the use of Markovian models
and game theory, sensors establish a scheme for setting the radii, and in doing so,
attempt to achieve a balance between two objectives: maximizing battery lifetime and
increasing the overall energy efficiency of the network by minimizing the losses in
message passing due to poor synchronization between the sender and the receiver.

In Voigt et al. [2004], a set of routing protocols for battery-powered WSNs is intro-
duced, with the goal of avoiding message routing through areas of the network with
reduced solar energy. A gradient is formed at each sensor node, which determines the
subsequent path of a message leading to the destination. Results show that consid-
erable energy savings are possible by shifting the burden away from resource-limited
nodes. Both works only consider the connectivity of the network, and do not consider
the underlying task of the network, namely, maximizing the target-cover, as is done in
the present work.

3. SYSTEM MODELS

Figure 1 shows the setup of a typical energy-harvesting sensor node. The node consists
of: (a) an active sensor (radar, ultrasonic, etc.); (b) a microcontroller unit with memory;
(c) an RF communication unit; and (d) an energy-harvesting unit (a small solar panel)
with a rechargeable battery and a power management circuitry. The function of the
energy management circuitry is to control the charging and discharging of the battery.
It is assumed that the solar panel and the battery can simultaneously supply power
to the sensor node. Likewise, the solar panel may charge the battery and power the
sensor node at the same time.

3.1. Solar Profile

A solar profile is the temporal distribution of power provided by the solar panel. The
solar profile can be viewed as a random process. However, the theoretical maximum
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Fig. 1. Architecture of a typical energy-harvesting sensor node.

Fig. 2. Ideal and actual solar flux in Phoenix, Arizona on April 4, 2012 [NREL 2011].

solar power flux (also called the ideal solar flux) can be modeled from the physical
properties (speed, rotation, shape, and so on) of the Sun and the Earth. The solar profile
is then scaled by the panel size and the power conversion efficiency. We use the models
from Michalsky [1988] and NREL [2000] to characterize the ideal solar radiation with
the assumption that the solar panel converts the power with a 10% efficiency. The
ideal and the actual solar fluxes for April 4, 2012 in Phoenix, Arizona [NREL 2011]
are shown in Figure 2. We denote the power received from the solar panel at time
t as Psol(t) which has already factored the panel’s attributes (i.e., size, orientation,
efficiency, etc.). Note the accuracy of the solar profile directly impacts the performance
of the solution provided in this article. If the predicted solar profile was to dramatically
differ at some point during the operation period, the proposed solution would have to
be rerun with the updated input. Additionally, computational power and network size
limit the feasibility of rerunning the solution to meet real-time conditions. For the rest
of this work, it is assumed that the solar profile is ideal; however, the solution method
is applicable to any solar profile.

3.2. Sensor Characteristics

We consider a sensor system that consists of active sensors, such as ultrasonic sensors
and radars. Such sensors operate by transmitting signals in the form of waves to detect
the presence of a target. The sensor will receive either a response from the target
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Fig. 3. An active narrow-beam sensor.

(if present) or the remnants of the reflected/scattered data that the sensor originally
sent [Skolnik 1962]. The relationship between the sensor’s transmission power (pt) and
its received power (pr) can be expressed as [Friis 1946]

pr

pt
= GrGt

(
λ

4πrn

)α

, (1)

where Gt and Gr are the transmit and the receive antenna gains, λ is the signal
wavelength, α is a path-loss exponent (between 2 and 6), and rn is the distance between
the transmitter and the receiver. For simplicity, interference between simultaneously
active sensors is ignored. Such interference can be managed by the underlying MAC
layer (e.g., through an appropriate TDMA or FDMA mechanism).

For given antenna gains, receive-power threshold, and scattering conditions, the
power consumption of sensor n sensing distance rn can generally be expressed as

psen,n(rn) = βnrαn
n + μ, (2)

where the values of αn and βn reflect the properties of the sensor, and μ is the average
power requirement of all other system components. A vector form of this function
is represented by psen(r) for all sensor nodes in the network. Similarly, this style of
notation extends to other variables used in this work.

In many active sensor networks, there is no constant act of sensing, but rather a
periodic process in which the sensor transmits to determine a target’s state and then
enters into a low-power state to conserve energy. As such, it is beneficial to model the
sensor’s energy consumption in the discrete domain. That is, if we assume that each
sensing period is of length τ , also called sampling interval, then the energy drawn by
sensor n during the kth interval [kτ, (k + 1)τ ] is given by

esen,n(rn(k)) = δτpsen,n(rn(k)) + (1 − δ)τpsen,n(0), (3)

where δ is the beacon interval, which represents the fraction of time spent actively
sensing in an interval k. The beacon interval is assumed constant for a given sensor and
a network setup. In (3), rn(k) is the value of rn during the sampling interval [kτ, (k+1)τ ].

Sensors can operate in an omnidirectional or a narrow-beam coverage mode as il-
lustrated in Figure 3. The area that a narrow-beam sensor n covers can be described
as a sector which is specified by θn, the angle to the line in the middle of the sector,
and a beamwidth φn. The directional heading of a target m with respect to sensor n is
denoted by ρn,m. Note that as φn approaches 2π , the narrow-beam sensor becomes an
omnidirectional sensor. In this work, φn and θn are assumed fixed and known for each
sensor n.
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3.3. Radio-Frequency Communication

In addition to sensing-related energy consumption, we also need to account for the
energy used to communicate sensed data to the sink, possibly over a multihop WSN.
In reality, such energy consumption depends on link budget, phase noise, startup time,
data rate, channel fading, channel interference, etc. [Wang et al. 2001]. To simplify
our model we assume that the energy consumption due to these effects is a constant
average, which is a function of the number of packets sent. With this simplification,
the routing path remains the only key factor in determining communication energy
requirements.

Given the model in (1) and the locations of all N sensor nodes, the minimum trans-
mission power required to send a message from one node to another can be calculated.
Given these transmission power requirements as well as the time required to transmit
one bit of data, it is straightforward to calculate etx,(i, j), the energy per message needed
to transmit data from sensor i to sensor j. The corresponding N × N matrix for all i
and j is denoted Etx where the values along the diagonal are zeros. Additionally, the
energy required to receive a message erx is assumed constant for all sensors.

The final component of the network communication cost is the actual amount of data
that is transmitted between two sensor nodes, which can be conveyed as an N × N
“traffic matrix” χ . Here, the element χi, j of χ represents the number of messages sent
from sensor i to sensor j. The total energy expended on RF communications by sensor
n in the kth time interval [kτ, (k + 1)τ ] is given by

ecom,n(k) =
N∑

i=1

etx,(n,i)χn,i(k) +
N∑

i=1

erxχi,n(k), (4)

where χn,n(k) def= 0. One should note that many sensor networks may also have timing
constraints on data delivery. In this work, such constraints are ignored to arrive at
a simpler solution methodology, but the proposed solution can accommodate such re-
quirements. Although our communication model does not explicitly capture the energy
expenditure due to packet losses and retransmissions, this can be easily be factored
into Etx and erx.

Other assumptions that we make related to RF communications made in this work
are as follows.

—Each sensor node uses a fixed transmission power to communicate its sensed data to
another sensor node, that is, dynamic power control is not implemented for sensor-
to-sensor communications.

—A fixed PHY-layer transmission rate R (in bits/second) is used for the communications
part.

—The network is not heavily loaded, so that a node i can complete its transmission to
another node j within the sampling interval τ (more formally, the transmission time
Lχi, j(k)/R is less than τ, ∀i, j, k, where L is the length of a message in bits). This
assumption is consistent with the low duty-cycle of typical WSNs.

—The message size is fixed.

3.4. Battery Model

For simplicity, we adopt a linear battery model (linear charging and discharging) with
no energy loss or leakage in this work. However, a more realistic model including one
that accounts for rate-dependent capacity and temperature dependence [Rakhmatov
et al. 2003; Rao et al. 2003; Rakhmatov and Vrudhula 2003] can be accommodated. For
short-term operations, such as the 24-hour target monitoring application addressed in

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 59, Publication date: April 2014.



59:8 B. Gaudette et al.

this article, the benefits of using a more complicated battery model may not warrant
the increased complexity associated with it.

For a given sensor n, the energy that can be provided by the battery at the beginning
of interval k is obtained by adding the current solar energy to the remaining battery
energy and subtracting the communication and the sensing energy as shown next.

ebat,n(k) = ebat,n(k − 1) +
∫ kτ

(k−1)τ
psol(t) dt − [esen,n(rn(k)) + ecom,n(k)], (5)

Note that the sampling time intervals for the radio communication and sensing phases
are the same. Additionally, the battery is constrained to [e−

bat, e+
bat], which denote the

minimum required battery energy and the maximum charging capacity of the battery,
respectively.

3.5. Cover Model

A cover model defines the total number of targets covered as a function of the sensing
radius. A sensor is said to cover a target if the target lies within the sensing region of
that sensor. We define the cover function of a target m and narrow-beam sensor n as

ζ (rn, n, m) =
{

0, if rn < 2dn,m or ρn,m /∈ [θn ± φn/2],

1, if rn ≥ 2dn,m and ρn,m ∈ [θn ± φn/2],
(6)

where dn,m is the distance between sensor n and target m. The expression rn ≥ 2dnm
and ρn,m ∈ [θn ± φn/2] signifies the wedge corresponding to the sensing region of sensor
n given its radius rn and whether this region encapsulates the location of target m. The
necessity of the constant factor 2 stems from the fact that the sensing signal from an
active sensor must travel to the target and be reflected back to the sensing unit. For
simplicity, we assume that the effects of scattering due to the reflection process can be
incorporated into αn and βn terms of the sensor power equation (2). An example of these
values is shown in Figure 3, where angles are measured with respect to the positive
x-axis.

The total number of targets that are covered by one or more sensors in S (set of all
sensor nodes) with radii r is given by

ζ (r) =
∑
m∈T

max
n∈S

(ζ (rn, n, m)), (7)

where T is the set of targets. For a given target m, maxn∈S(ζ (rn, n, m)) is either 0 if no
sensor covers m, or 1 if at least one sensor covers m. Hence, the sum over m is the total
number of covered targets for the given radius profile r.

Figure 4(a) shows an instance of a 1D sensor network (sensors and targets are
placed along a line), and Figure 4(b) shows the corresponding cover function ζ . Notice
the discrete nature of the cover function with respect to the sensing radius.

It should be noted that while this article assumes radial and wedge-shaped sensing
regions, our solution can accommodate other models of ζ , including the cases where
occlusions are present. The only requirement is that the effects of these occlusions are
known and the resulting ζ is nondecreasing with respect to the sensing radii.

Furthermore, the definition of ζ may be extended to accommodate mobile targets.
In this case, one may use, for example, the predicted target locations to derive the
solution. However, much like the case of uncertain solar profiles, if the target location
significantly varies over time, then the algorithm must be rerun to reflect this new
information. Thus, if the predicted target locations change too rapidly, our solution is
not computationally feasible. Another important version of coverage is known as area
coverage or field coverage. For this case, two approaches may be considered. First, the

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 59, Publication date: April 2014.



Maximizing QoC under Connectivity Constraints in Solar-Powered Active WSNs 59:9

Fig. 4. 1D sensor network and its cover function.

region to be covered can be approximated by a large number of target points. Second,
one may modify the definition of ζ to denote the percentage of covered area [Huang
and Tseng 2003].

4. THE MAXIMUM QUALITY OF COVER PROBLEM

In this section, we present the mathematical formulation for the maximum QoC prob-
lem. A summary of our notation is given in Table I. Vector quantities are shown in bold
font, while matrices and sets are shown in uppercase. Subscripts are used whenever
there is a need to index elements over a set.

4.1. Problem Description

The QoC of a network, denoted by ζmin, is defined as the minimum value of ζ (r(k)) over
a 24-hour duration, namely, ζmin = mink∈{0...K} ζ (r(k)). QoC is additionally constrained
by the condition that all sensors monitoring a target must have a route to the sink
in order to report their data. This means that there must be a path from a sensor
to the sink such that all sensors along this path have enough energy to sustain the
required transmissions. In the example in Figure 5, a cover is found with a radius
profile r1 = 2, r2 = 2, r3 = 0, and r4 = 1. If every point in the grid is a target, then
ζmin = 16. This would be a valid cover if S1, S2, S4 have a routing path to the sink.
The problem specification demands such covers be computed for the entire operational
time, while maximizing ζmin. The concept of maximizing ζmin is of vital importance in
many critical sensor network applications. Periods of low coverage represent periods
of vulnerability in the network. If the objective was to maximize the average ζ over an
operational period, there may be periods of low ζ and periods of high ζ . For example, in
the application of military battlefield surveillance the periods of low ζ would represent
a time when a large portion of the battlefield is unobservable and thus vulnerable to
attack.

The maximum QoC problem is defined as follows: Given a set of sensor nodes and a
set of targets, find a subset of sensor nodes, their corresponding sensing radii, and a
corresponding routing strategy that maximize the QoC for the entire operational time
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Table I. Notation

S Set of sensor nodes and their locations
N Number of sensor nodes
T Set of targets and their locations
M Number of targets.

rn(k) Radius used by sensor n during the time interval k
ebat,n(k) Battery charge of sensor n at the start of time interval k
psen,n(r) Power usage of sensor n at radius r
esen,n(r) Energy usage of sensor n at radius r for one time interval

δ Fraction of time spent sensing during a time interval
τ Length of a discrete time interval

psol(t) Power delivered by a solar panel at time t
etx,(i, j) Joules per message needed to transmit data from sensor i to sensor j

erx Joules per message needed for a sensor to receive data
ecom,n(k) Radio energy usage of sensor n during time interval k
χi, j (k) Number of messages sent from sensor i to Sensor j during time interval k
Dn(k) Total number of messages generated by sensor node n during time interval k
D(k) Total number of messages in the network during time interval k

Son(k) The set of sensors monitoring some target during time interval k
Sof f (k) The set of sensors not monitoring any target during time interval k

S0 The centralized base station (communication sink)
ζ (r) Number of targets covered with sensor radii r(t)
dn,m Distance between Sensor n and Target m
θn Beam angle (direction) of sensor n
φn Beamwidth of sensor n

ρn,m Angle between target m and Sensor n
K Total number of time intervals in 24 hour period

Fig. 5. Valid cover. Each grid point is a target.

of the network. Mathematically, the problem can be stated as follows.

maximize
{r(k),χ(k)}

ζmin = min
k∈{0...K}

ζ (r(k)) (8)

such that e−
bat(k) ≤ ebat(k) ≤ e+

bat(k), ∀k (9)

ebat,n(k) = ebat,n(k − 1) +
∫ kτ

(k−1)τ
psol(t) dt − [esen,n(rn(k)) + ecom,n(k)] (10)
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esen,n(rn(k)) = δτpsen,n(rn(k)) + (1 − δ)τpsen,n(0), ∀n ∈ S (11)
N∑

j=1

χ j,i(k) −
N∑

j=1

χi, j(k) = 0, ∀i ∈ Soff(k), ∀k (12)

N∑
j=1

χ j,i(k) −
N∑

j=1

χi, j(k) = −Di(k), ∀i ∈ Son(k), ∀k (13)

N∑
j=1

χ j,i(k) −
N∑

j=1

χi, j(k) =
∑

j∈Son(k)

Dj(k), ∀i = S0, ∀k (14)

ecom,n(k) =
N∑

i=1

etx,(n,i)χn,i(k) +
N∑

i=1

erxχi,n(k), ∀k (15)

In the preceding formulation, the constraint equation (9) prevents the battery en-
ergy of any sensor from falling below a specific threshold, while (10) describes the
charge/discharge behavior of the battery. Constraints (12)–(14) are standard flow con-
servation constraints that ensure that all messages D(k) created by active sensors
Son(k) during time interval k are delivered to the sink S0. Each active sensor in the set
Son(k) is assumed to be periodically sensing and transmitting data; as such, the value
of Di(k) is directly related to the frequency of this transmission. These constraints are
well established and represent any network flow [Papadimitriou and Steiglitz 1982].
Sensors that are not actively sensing during the interval k are part of Soff(k), and may
be used as relay nodes between the nodes of Son(k) and S0. The optimization parameter
is the vector of time-varying sensor radii r(k) and the traffic matrix χ (k). The previous
formulation falls under the realm of nonlinear optimal control problems [Kirk 1970].

Nonlinear optimal control problems of the aforesaid type are computationally hard
to solve, and the runtimes do not scale well with the size of the network. Conventional
solution techniques are based on dynamic programming (DP) and the Hamilton-Jacobi-
Bellman method [Kirk 1970]. To solve this problem using DP, the entire duration of
execution (the 24-hour period) must be partitioned into K time intervals. Furthermore,
discretization of the states and the controls is also needed. Let Qb denote the number
of discrete states for the battery level and let Qr be the number of discrete sensor radii.
Furthermore, there are at most N2 possible communication links between sensors (in
a fully connected topology). With the preceding, the runtime complexity of the DP
solution would be O(K(Qb)N(Qr + N2)N) for an N-sensor network, since the solution
requires examining all possible controls at every possible state.

The problem at hand has some special characteristics that enable us to solve it near
optimally and in a less intensive computational way compared with the DP solution.

4.2. Solution Outline

The problem formulation described in Eqs. (8)–(15) have several important character-
istics that will be utilized to derive the solution method.

(1) For a given interval k, the objective function (8) is a discrete monotonic function in
r, as observed in Figure 4(b). Any monotonic function is also a quasilinear function,
that is, it is both quasiconvex and quasiconcave.

(2) For any given r(k), there are potentially many possible χ (k) that may satisfy con-
straints (12)–(15); however, each χ (k) will directly impact the residual battery lev-
els at the start of the time interval k + 1 and thus impact the QoC of the network.
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Therefore, it is reasonable to assume that the best value of χ (k) is one that satis-
fies (12)–(15) while maintaining the highest residual energy in the sensor batteries.

(3) The solution space R consists of a set of vectors r(k). Let R∗ ⊆ R denote the
set of optimal solutions. R∗ consists of feasible (satisfy the constraints) functions
r∗(k) whose corresponding minimum coverage ζ (r∗(k)) is larger than the minimum
coverage of any other feasible function r(k). Therefore, among the solutions in R∗,
we prefer the one that deviates the least from ζmin at every time interval k, as there
is no added benefit of having a larger cover than ζmin (since this does not improve
the value of the objective function).

It is the last observation that is key to the transformation of the formulation. Since
every r∗(k) ∈ R∗ is such that ζ (r∗(k)) ≥ ζmin (an unknown constant within a known
range) and there is no benefit in exceeding this value at any point in time, the opti-
mization problem (8)–(15) can then be solved using a binary search over the values of
ζmin, and for each such choice of ζmin, a quasiconvex optimization problem to determine
r(k) and χ (k) to achieve the specified ζmin coverage is solved. If no feasible solution is
found, ζmin is lowered; otherwise, it is increased to determine the next maximum ζmin.
Since the objective is now transformed into a constraint, a new objective function needs
to be defined, for example, maximizing the total residual battery energy in the network
or maximizing the minimum sensor node battery energy.

Figure 6 outlines of the proposed optimization algorithm. The steps of the algorithm
are explained next.

Step 1: A binary search over all possible ζmin is performed. ζmin is initialized to half
the total number of targets (||T ||).

Steps 2–3: The interval of operation (e.g., 24 hours) is discretized into time intervals
1, 2, . . . , K. For each time interval k, within each iteration of the binary
search, the tentative optimal value of r(k) is computed via a gradient search
of the objective, while satisfying the constraints. An initial value of r is
assumed to begin the search of r(0).

Step 4: Given r(k) (which may not be optimal), a feasible χ (k) is determined for (27)–
(34). With the assumed r(k) and the corresponding χ (k), an associated ob-
jective cost (19) is calculated along with its feasibility constraints through
Eqs. (20)–(26). Finally, the corresponding gradients for Eqs. (19)–(26) are
calculated.

Step 5: r(k) is updated based on the gradients computed in the previous step
[Nocedal and Wright 2000].

Step 6: Due to the numerical nature of the gradient search, the stopping crite-
rion for finding the minimum objective in (19) is based on user-provided
tolerances. Steps 4 and 5 are executed until a solution within the given
tolerances is found or until it is determined that no feasible solution exists.

Steps 7–8: If no feasible solution is found during the gradient search procedure in steps
4–6, then it is not possible to achieve a QoC greater than ζmin. Consequently,
ζmin is reduced through a binary search.

Step 7–11: If a feasible solution is found during the gradient optimization procedure
in steps 4–6, then a ζmin coverage is achievable up to time period k. Steps
4–10 are repeated until ζmin is determined to be valid for all time instants
up to K. An affirmative result means that a solution with a minimum cover
ζmin is possible, and ζmin can be increased according to the binary search
algorithm.

Note if the constraints (9)–(15) are infeasible, then no solution exists. In this event,
we set all sensors into a sleep mode, where the sensors’ sensing ranges are set to 0 and
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Fig. 6. Outline of the proposed solution to maximize QoC.

have no communication. This is to allow the batteries to recharge via the solar panel
and possible achieve some level of QoC at a future point outside of the operating range
k ∈ [0 . . . K].

5. IMPLEMENTATION DETAILS

In this section, the details of the quasiconvex optimization formulation for the kth

interval, 1 ≤ k ≤ K (steps 3–6 of Figure 6) are presented.

5.1. Quasiconvex Optimization Solution for Determining r
The discrete function ζ (r(k)) in (7) is first replaced by a continuous approximation.
This is necessary for gradient-based solution techniques to work, as they expect the
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Fig. 7. The Heaviside Step function and the Logistics function.

objective and all constraints to be smooth and differentiable. Towards this, the discrete
jumps (which are defined by the Heaviside Step function) in the cover function (see
Figure 4(b)) are approximated by the Logistics function, as shown in Figure 7. The
resulting cover function is

ζ (r(k)) =
∑
m∈T

max
n∈N

(
L(rn/2dn,m)

)
, (16)

L(x) = 1
1 + e−c·x+δ

, ∀x ∈ (0, 1), (17)

δ = ln(1/ε − 1) + c. (18)

L(x) is the Logistics function. Since x in (17) is bounded, rn in (16) gets normalized
by dn,m. The constants c and ε are quality factors, used to control how closely the
Logistics function resembles a step function. Increasing these values provides a better
approximation, but at the cost of increased solution time for the optimizer. Now the
function ζ (r(k)) is continuous both in its domain and in its range, thus allowing a
gradient search method to compute the necessary derivatives and traverse over the
feasible search space of the problem.

Since the optimal objective function in (8) is now treated as a constraint, the original
objective needs to be substituted with an objective that also improves the QoC. Of the
several possibilities, minimizing the total sensing energy is a good candidate. With
this, the quasiconvex formulation for determining r for a kth interval is given by

minimize
r(k)

N∑
n=1

Psen,n(rn(k)) (19)

such that ebat,n(k) = ebat,n(k − 1) +
∫ kτ

(k−1)τ
psol(t) dt − esen,n(rn(k)) − ecom,n(k) (20)

e−
bat(k) ≤ ebat(k) ≤ e+

bat(k) (21)

ζ (r(k)) =
M∑
1

max
n∈N

(
L(rn/2dn,m)

)
(22)

ζ (r(k)) ≥ ζmin (23)
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L(x) = 1
1 + e−c·x+δ

, δ = ln(1/ε − 1) + c (24)

esen,n(rn(k)) = δτpsen,n(rn(k)) + (1 − δ)τpsen,n(0), ∀n ∈ S (25)

ecom,n(k) =
N∑

i=1

etx,(n,i)χ
∗
n,i(k) +

N∑
i=1

erxχ
∗
i,n(k), ∀n ∈ S. (26)

The objective function (19) is to minimize the total power spent by the network
during each interval k of length τ . Constraint (23) requires that the minimum cover be
above a specific level. The other constraints are the same as in Eqs. (9)–(11). It is easy
to show that the preceding equations are convex, except for Eqs. (22) and (24). Logistic
functions are monotonic functions. Hence, they are also quasiconvex functions [Boyd
and Vandenberghe 2004]. Since sum and max are convex functions when their inputs
are monotonic, Eq. (22) is a quasiconvex function. This makes the previous formulation
a quasiconvex optimization problem.

In the aforesaid formulation, it is assumed that the optimal routing table χ∗(k) is
computable for a given r(k). χ (k) needs to be solved for each assumed r(k) during
the gradient search process. Alternatively, one may directly include χ (k) along with
constraints (12)–(14) in the convex optimization process. However, convex optimizers
tend to be inefficient as the number of control variables increases. In this case, the
number of elements of χ (k) is upper-bounded by N2. To reduce the computation time,
χ (k) is determined independently from r(k) by solving a linear programming problem.

5.2. Linear Programming Solution to Determine χ

This section describes a method to determine the feasibility of connectivity for a given
r(k) and to determine the optimal traffic matrix (with respect to objective (19)), if one
exists.

In order to successfully route sensed data through the network to the sink, one must
first define which sensor nodes are sources. A sensor node is defined to be a source
of data for the kth interval if it is uses a sensing radius greater than 0. Such a node
belongs to the set Son(k). For this reason, the radius profile must be known before a
valid routing scheme can be found. Thus, connectivity may be viewed as a subproblem
of the target cover problem.

A valid connectivity is found as the solution to the following Linear Program (LP)

minimize
χ(k)

N∑
n=1

ecom,n(k) (27)

such that χi, j(k) ≥ 0, ∀i, j ∈ S, (28)
N∑

j=1

χ j,i(k) −
N∑

j=1

χi, j(k) = 0, ∀i ∈ Sof f (k), (29)

N∑
j=1

χ j,i(k) −
N∑

j=1

χi, j(k) = −Di(k), ∀i ∈ Son(k), (30)

N∑
j=1

χ j,i(k) −
N∑

j=1

χi, j(k) =
∑

j∈Son(k)

Dj(k), ∀i = S0, ∀k, (31)
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Table II. Default Parameter Values

Param Value Param Value Param Value Param Value
rmax 10 m radio: α 3.14 sensor: α 4.00 Panel Size 5 cm2

B(0) 0.72 kJ radio: β 0.0002 sensor: β 0.0000138 Area 15 m2

e+
bat 4.32 kJ radio: μ 0.003 sensor: μ 0.007 e−

bat 0 kJ
K 48 radio freq. 2.4 GHz message size 64 bits τ 30 min.
δ 1 φ 2π

ecom,n(k) =
N∑

i=1

etx,(n,i)χn,i(k) +
N∑

i=1

erxχi,n(k), (32)

ebat,n(k) = ebat,n(k − 1) +
∫ kτ

(k−1)τ
psol(t) dt − esen,n(rn(k)) − ecom,n(k), (33)

e−
bat(k) ≤ ebat(k) ≤ e+

bat(k), (34)

where Di(k) is the amount of data (messages) generated by a source node i which must
be sent to the sink; χ (k) is an N × N matrix corresponding to the desired routing path
(note that χi, j(k) is the amount of data sent from node i to node j). Constraints (29)–(31)
simply ensure that all the transmitted data is delivered to the sink.

When solving for the traffic matrix as an LP, error is introduced due to the discrete
nature of the composition of packets. Furthermore, as discussed in Section 3.3, χ (k)
may have to be integer valued if the overhead of message splitting/merging is not
negligible. Should these factors play a significant role in the energy consumption of the
sensor node, integer programing (IP) methods such as cutting-plane and sequential
fixing [Papadimitriou and Steiglitz 1982] will be required. These lack the computational
efficiency of LP solvers, but will provide much more accurate solutions.

6. SIMULATION RESULTS

6.1. Simulation Setup

The proposed solution for the maximum QoC problem was verified by simulating a sta-
tionary network of sensor nodes and targets in various configurations. A flat, square
sensing field is assumed. The default parameter values are given in Table II. Ra-
dio parameter values are based on the data provided in the datasheet of TI’s ez430-
RF2500 wireless sensor node [eZ4 2009] and all sensor parameter values are based on
Cassegrain Antenna series [ELVA-1 2012] datasheet.

The parameter Di(k) denotes how much traffic an active sensor i generates; however,
for our simulations we assume that an active sensor generates one message per mon-
itored target, which needs to be delivered to the sink. As such, there can be duplicate
messages when a target is sensed by more than one sensor.

For all experiments, the sink location is assumed at coordinate (0, 0), namely, the
bottom-left corner of the square area. Since the locations of the sensors and the tar-
gets are known in advance, the values of etx,(i, j) can be determined a priori using the
methodology in Section 3.3 along with the data provided in Table II. Additionally, it is
assumed that once the sink makes a scheduling decision (by solving the optimization
problem), it notifies each sensor using direct communication (i.e., no routing). This
assumption is valid as the sink is not power constrained and as such the overhead for
each sensor node is one message, which is very low. Unless mentioned otherwise, this
configuration is used in all subsequent experiments.

For simplicity, our experiments assume a homogeneous sensor network. However,
this is not a limitation of the proposed method. The solar profile used in the experiments
is shown in Figure 2. For each interval k, active sensors generate one 64-bit packet per
monitored target. To highlight the benefits of the proposed solution, network topologies
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were configured in such a manner that a 100% coverage is not achievable in trivially
small networks (N < 100).

6.2. Sample Scheduling of the Proposed Algorithm

Figure 8 shows the plots of sensor radii over time as determined by the proposed
algorithm, the resulting battery charge, and the QoC over a course of 24 hours. The
network is configured with 3 sensors and 25 targets, arranged in a random pattern, as
shown in Figure 8(a). The initial battery level for each sensor is 11J. In the interest of
clarity, only 3 hours of the radii schedule are shown. Note that the algorithm switches
between various covers with different radii to ensure that no battery runs out of energy
while attaining the maximum possible QoC. This can be observed at time 2:30 am when
the battery energy of Node 2 depletes completely and Node 3 increases its sensing
radius to satisfy the QoC (see Figure 8(b)). Figure 8(e) shows that the battery primarily
charges during hours of sunlight and rapidly discharges at night, as expected. The QoC
of this schedule is kept constant at 3 targets.

6.3. Analysis of Traffic Routing Matrix χ

To complement the results in Section 6.2, this section presents the results for another
small and simple network with a focus on the analysis of the traffic routing matrix χ
and how this matrix is impacted by the sensing radii. For this simulation, we choose
a network consisting of 36 targets spread out uniformly over a 15 m × 15 m area.
Targets are monitored by 4 sensor nodes with locations as shown in Figure 9(a). Each
sensor reports one message per interval for each monitored target. Sensing ranges are
limited to 7.5 m. Due to the small network size (in terms of number of sensors, traffic
volume, and physical area), network overhead is minimal (∼1 μJ/message in the worst
case). As such, we modified the radio parameter values to α = 6 and β = 0.5 to create
a scenario where sensing and RF energy costs are comparable. Additionally, e+

bat was
scaled to 75J for the same reasons.

Figures 9(b), 9(c), and 9(d) depict the battery-charge level, per-link communication
traffic, and sensing radii, respectively, as a function of time. For this network, the
algorithm determined a maximum QoC of 6 targets out of 36 using three different
values of r and two different values of χ . From the operational start time until time
12:30 am, the algorithm determined that using sensor Node 1 to both sense targets
and to route all other node’s data was optimal with respect to the objectives (19) and
(27). This cover remains valid until Node 1’s battery energy is no longer sufficient to
sustain both the sensing and routing duties. It is important to note that, even though
Node 2 is not actively monitoring any target during this time, it is serving as a relay
node to reduce the communication overhead for Nodes 3 and 4. Because the battery of
Node 1 is exhausted to the point where no messages can be routed through it at time
12:30 am, Node 2 becomes active and starts monitoring four targets to maintain the
QoC of 6, at the same time maintaining its traffic routing responsibilities for Nodes 3
and 4 (see Figure 9(e)). Finally, at time 2:30 am, Node 2 exhausts its battery charge
necessary to monitor the four targets; however, it still has enough charge left to act
as a relay node for Nodes 3 and 4 (both of which now require a larger sensing radii to
maintain the QoC of 6). This is shown in Figure 9(f).

From the preceding simulation, we can see how the traffic routing matrix must
dynamically adapt to changing values of r and the residual battery energy.

6.4. Runtime Analysis

To verify the practicality of the proposed solution, its runtime is compared with the DP
solution. DP is one of the few known methods to solve optimal control problems; how-
ever, it requires all its continuous variables (controls, states, time, etc.) to be discretized
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Fig. 8. Time plots of scheduling as determined by the proposed algorithm.

[Kirk 1970]. Increasing the number of quantized values for each of these variables will
increase the accuracy of the result, but will require a longer execution time, as ex-
plained in Section 4.1. In contrast, the proposed solution assumes continuous control
over sensing ranges. To ensure a fair comparison, the algorithm is modified to choose
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Fig. 9. Analysis of traffic routing for the proposed algorithm.

the nearest discrete range from a set of radii used in the DP solution. This is also
required for a practical implementation of the proposed algorithm. All simulations are
run on a single-core Dell workstation with 2.93 GHz Intel core i7 and a 8GB RAM.

In this experiment, sensors and targets are evenly distributed over an area of oper-
ation (see Figure 11(a)). The maximum number of sensor nodes is limited to five, due
to the enormous computation time required by the DP solution. The battery charge is
quantized with 7 states and the number of sensing ranges is kept constant at 6 for the
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Fig. 10. Execution time vs. number of sensors.

Table III. Runtimes for Experiments Described in Section 6.4

N 1 10 20 40 50 100
Runtime 3.87 sec 100 sec 309 sec 21.2 min 33.2 min 2.12 hours

DP solution. Connectivity is not included in this experiment due to the exponentially
increasing effect it has on the DP solution’s state space.

The results of this experiment are shown in Figure 10. Notice that the y-axis has
a logarithmic scale. We observe that as the number of senor nodes increases, the pro-
posed solution achieves a significant speedup compared with the DP solution. Even for
four sensor nodes, the quasiconvex optimizer finds a solution 60 times faster than the
DP procedure. With such a speedup, one can use the proposed algorithm to explore the
design space of the network in a reasonable time, as can be seen in the subsequent
experiments. Table III demonstrates that the proposed solution can handle large net-
works and produce solutions in a reasonable time. Note that these runtimes are for a
single-core processor. With the help of parallelization, it is possible to greatly reduce
the runtimes.

The current proposed solution for maximizing the minimum coverage of a network
requires an offline solution, and as such, is not adaptive to changing conditions. One
suggestion on adopting the current solution to changing solar conditions is to rerun the
algorithm with the updated solar input, with lower accuracy, thereby greatly decreasing
computation time. The previous results suggest such a methodology is practical. If
the predicted solar profile significantly changes at a rapid rate, one would have to
explore alternative methods to solving this problem such as integrating Markovian
chain predictors, which produces a result with a corresponding level of confidence.

6.5. Accuracy of the Proposed Solution vs. DP

The overall accuracy of the proposed solution against the naive DP solution outlined
in Section 6.4 is examined here. Figure 11 shows three different sensor target location
configurations. These configurations represent the diverse scenarios for a sensor net-
work tasked with surveillance duty. Figure 11(a) illustrates the case where all targets
and sensors are evenly distributed across the operational area for optimal area cover-
age. Figure 11(b) shows the case where all targets and sensors are evenly distributed
across the area, but the sensors and the targets are separated from one another. This
represents the scenario of an enemy territory surveillance. From an energy standpoint,
this is one of the worst possible scenarios, as it requires larger sensing radii. Finally,
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Fig. 11. Various layout scenarios and the resulting QoC.

Figure 11(c) shows the case where sensors are randomly distributed. This is the most
common scenario in sensor networks tasked with monitoring inaccessible areas. For
these experiments, the number of battery states is increased for the DP procedure to
increase its accuracy. All other parameters remain the same as in Section 6.4.

The results in Figures 11(d), 11(e), and 11(f) show that the proposed algorithm can
cope with several possible network scenarios and provide near-optimal results. For
the symmetric configuration, as N increases, the proposed solution tends to provide
almost identical results to the DP solution. This is due to the fact that as N increases,
the mean distance from any sensor to any target decreases, thus allowing for smaller
radii to be used. The results from both approaches converge due to reduction in the
discretization errors for smaller radii. For the configuration in Figure 11(b), the two
approaches give identical results. This may be attributed to the fact that there are far
fewer valid covers for any given ζmin in this configuration as opposed to the symmetric
configuration. Finally, the random configuration tends to display varying levels of
error at each value of N. This is to be expected, as sensor nodes randomly positioned
create vastly different network topologies. Over the results of all experiments, a peak
of 8% QoC loss is observed.

6.6. Impact of Connectivity on QoC and Execution Time

The goal of this experiment is to highlight the importance of considering connectivity
and data routing alongside QoC. For this experiment a 21 × 21 grid of targets is placed
over a 200 m × 200 m area. The number of sensors is varied and their locations are
randomly chosen. To ensure equal contributions to the total cost, the values α and β
for data transmission are altered such that the energy needed to sense a distance r for
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Fig. 12. Effect of connectivity on QoC.

one time interval is equivalent to the energy needed to transmit a message through a
distance r.

Two routing schemes are considered. The first is a simple one hop routing scheme
in which all active sensors simply transmit the data directly to the sink. Although
naive, this method exhibits constant runtime. The second is the proposed algorithm
presented in Section 5.2 which uses linear programming integrated into the quasicon-
vex optimization technique. This method is referred to as multihop routing. The results
are shown in Figures 12 and 13.

As one would expect from an exponential power model, a one-hop routing scheme is
inferior to multihop routing in terms of QoC. This is shown in Figure 12. Essentially,
the communication energy is proportional to the distance traveled to the power of α,
thus any additional overhead (due to additional sensors processing the message and
to any additional distance the message must travel) is negligible. Thus the energy
savings from the communication is able to be spent on covering additional targets
which is ultimately the objective of the network. One should note, however, that as the
sensor density increases, the degradation in QoC associated with the single-hop routing
scheme diminishes. This is due to the fact that as the number of nodes increases, the
total network energy also increases, therefore allowing more energy to be budgeted to
communication. Furthermore, the impact on QoC is reduced when energy transmission
costs become less significant in comparison to the sensor covering costs.

The time analysis is shown in Figure 13. Since the LP for connectivity must be solved
for every guess of r, the execution time increases substantially.

It can be concluded that introducing the connectivity constraints to the problem
can improve QoC; however, it comes at the cost of increased execution time. As such,
designers need to take careful note of the network size, power costs, and node density.

6.7. Effect of Sampling Interval τ and Beacon Interval δ on QoC

The sampling interval is the time between two consecutive sensing instants of an object
and denoted as τ in Eq. (3). In many noncritical applications, targets do not require
continuous monitoring, and for many sensor nodes continuous monitoring is impossible.
For this reason, the sampling interval offers network designers a useful control variable
to extend the lifetime of their networks at the expense of having periods of no coverage.
In the context of solar-powered networks, the benefit is an increase in the QoC. In
this experiment, the effect of increasing the sampling interval is investigated. Sensors
and targets are arranged in a square grid-like pattern with equal spacing as shown
in Figure 11(a). The number of sensors is kept constant at 100 and the number of
targets is kept constant at 900, deployed over a 200 m × 200 m area. The sampling
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Fig. 13. Effect of connectivity on runtime.

Fig. 14. Sampling interval vs. QoC.

interval is varied between 30 minutes and 24 hours. δ was varied to ensure that the
energy used to sense per interval was the same for various sampling intervals.

Figure 14 shows the result. As expected, the QoC increases with the sampling in-
terval. This is because increasing the sampling interval reduces the energy demand
for the act of sensing and, as a result, allocates more harvested solar energy to bat-
tery charging. Ultimately this provides sensors with the ability to use larger radii to
enhance the QoC.

The experiment was then repeated with δ as the parameter of interest. δ was varied
between 1% and 100% of the 30-minute sampling interval. Figure 15 shows the result. It
is evident that as δ increases, the QoC decreases due to the increased amount of energy
required to sense a distance r. This decrease is more linear, unlike in the case of τ .

However, it is also important to note that by increasing τ and decreasing δ (i.e.,
increasing time between samples) we introduce periods in which the network is not
being monitored at all. These periods mark points of vulnerability in many networks
such as surveillance networks. To visualize this we slightly modify to the definition of
cover to be the number of targets covered averaged over the operation time. This means
that the points of zero cover due to the low value of δ (or high value of τ ) impact the
overall QoC. This new metric is shown in Figures 15 by the blue diamond-marked line.
It is interesting to note that there exists a unique sampling interval that maximizes
this new metric.
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Fig. 15. δ vs. QoC.

Fig. 16. Effect of number of sensor nodes on the network setup cost.

6.8. Effect of Number of Sensors on Network Setup Cost

In this experiment, we study the effect of the number of sensors on the total cost
of setting up a sensor network to maintain a specified QoC. The results from this
experiment offer network designers the information to trade off the number of sensors
to minimize the initial setup cost of a sensor network. This is also useful to maintain
an energy-neutral operation [Kansal et al. 2007], which implies minimum sizing of the
battery and the solar panel to reduce the operation cost while guaranteeing a QoC for
a given network.

For this experiment, a large number of targets (1024) are distributed over a
200 m × 200 m area in the same fashion as in Section 6.7. The requirement is that
100% of the targets must be covered. To calculate the network setup cost, we assume
that each sensor node costs $20 [Node Cost 2011], solar panel costs $2/Watt [Sun Elec-
tronics 2011], and the batteries cost $0.47/Watt-hour [Bat 2011]. With the assumption
of 10 hours of sunlight per day, the results shown in Figure 16 are obtained.

Contradicting intuition, increasing the number of sensor nodes does not increase the
total network energy. This is because, with more sensors, smaller radii can be used to
achieve the same coverage, and the energy cost decreases at least quadratically with
the radius. Because of the lower total network energy requirement, smaller batteries
and solar panels are sufficient to maintain the original specified cover, thus decreasing
the total network setup cost. However, an increase in the number of sensor nodes adds
to the total setup cost. Thus, there exists a unique configuration of the number of
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Fig. 17. Effect of various objective functions on QoC.

sensor nodes that minimizes the overall setup cost. This is shown in Figure 16. The
plot shows a sharp initial reduction in the network energy as N increases, due to the
nonlinear relation between the network energy and the sensor radii, and the fact that
the effective sensor radii decrease quadratically with the increase in the number of
nodes.

6.9. Investigation of Objective Functions

This experiment briefly examines the different possible objective functions that can be
chosen for the quasiconvex problem in Eq. (19). As mentioned earlier in Section 5.1, the
objective function in the reformulation of the problem can be considered as a dummy
function. As such, we may consider other possible objectives. The first objective (35)
is simply to minimize the overall energy consumed by the network, or equivalently,
maximizing the total residual battery life of the network. The second objective (36)
is to maximize the minimum residual battery among all nodes in the network. The
third objective (37) offers a balance between the preceding two objectives. The same
parameters from Section 6.6 are used. Results are shown in Figure 17.

max
r(k),χ(k)

∑
n∈S

ebat,n(k). (Sum) (35)

max
r(k),χ(k)

min
n∈S

ebat,n(k). (Min) (36)

max
r(k),χ(k)

1
N

∑
n∈S

ebat,n(k) + min
n∈S

ebat,n(k). (Balanced) (37)

From the figure, it can be observed that no one objective function is consistently
better than the other, over all values of N. However, the efficiency of solution method
presented in this article makes it possible to explore the design space, as shown in
Section 6.8, and determine which objective is best for a given network.

6.10. Effect of Beamwidth on QoC

The final design exploration experiment investigates the effect of varying beamwidths
φ on QoC. In this experiment, the beamwidth is varied between 0◦ and 360◦. The
power density is kept constant and the maximum power output is capped at 100 W.
Targets are dispersed in a 21 × 21 grid across a 40000 m2 area. Likewise, 25 sensors
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Fig. 18. Beamwidth vs. QoC.

are equally spaced in this region. All sensor beams face the same direction. The results
are illustrated in Figure 18.

Despite the increase in power costs, increasing beamwidth almost always tends to
increase the QoC (with few exceptions that may be attributed to the discrete nature of
the cover model). That said, the rate at which QoC increases diminishes nonlinearly
with beamwidth. In the aforesaid case, the maximum QOC of 67% is reached at a
beamwidth of 180◦. It should be noted that, oftentimes, omnidirectional sensors are
constructed from a ring of narrow-beam sensors. For this reason, design costs could be
decreased by creating only semi-directional sensors with no loss to QoC.

7. CONCLUSIONS

There has been a proliferation of energy-harvesting sensors in WSNs. The surge of
“green” technology brings with it many additional challenges on optimal scheduling
of sensor nodes to maximize the QoC. In this work, a novel, near-optimal solution
is presented to the scheduling problem of active sensor nodes in the context of the
target cover problem, which maximizes the minimum attainable QoC. The proposed
quasiconvex solution not only considers the cover requirement, but also determines an
efficient routing scheme to deliver all sensed data to the sink, which is often overlooked.
The quasiconvex solution demonstrates a large speedup compared with the naive DP
solution with a minimal error in accuracy.

The usefulness of the quasiconvex solution was extended by applying it to various
design-space explorations of energy-harvesting sensor networks. The insights provided
by these experiments lead to optimal sizing of sensor networks for minimum network
startup cost. Furthermore, increasing beamwidth provides decreasing returns on QoC
improvement. The experiments on varying sampling rates revealed that there is a
unique sampling interval which maximizes the normalized QoC.
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