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Abstract| We analyze the autocorrelation structure

for a class of scene-based MPEG video models at the

GOP (course grain) and frame (�ne grain) levels as-

suming an arbitrary scene-length distribution. At the

GOP level, we establish the relationship between the

scene-length statistics and the short-range/long-range

dependence (SRD/LRD) of the underlying model. We

formally show that when the intra-scene dynamics ex-

hibit SRD, the overall model exhibits LRD if and only

if the second moment of the scene length is in�nite. Our

results provide the theoretical foundation for several

empirically derived scene-based models. We then study

the impact of tra�c correlations on the packet loss per-

formance at a video bu�er. Two popular families of

scene-length distributions are investigated: Pareto and

Weibull. In the case of Pareto distributed scene lengths,

it is observed that the performance is rather insensitive

to changes in the bu�er size even as the video model enters

the SRD regime. For Weibull distributed scene lengths,

we observe that for small bu�ers the loss performance

under a frame-level model can be larger than its GOP-

level counterpart by orders of magnitude. In this case,

the reliance on GOP-level models will result in very op-

timistic results.

Keywords| Video modeling, MPEG, tra�c correla-

tions, bu�er design.

I. Introduction

In this paper, we investigate the correlation struc-

ture for a class of scene-based models that characterize

variable bit rate (VBR) MPEG-coded video streams.

Scene-based models form an important family of video

models in which scene dynamics are explicitly incorpo-

rated. These models are particularly capable of captur-

ing the multiple-time-scale variations in a VBR video

source and, consequently, on providing accurate esti-

mates of the queueing performance at a bu�ering node

[13]. Several of these models have been proposed in the

literature. Examples are given in [5], [9], [10], [13], [3],

[19], [15], [16], [18] (also, see [11] for a survey of video

models). In principle, a scene-based model could incor-

porate both inter- and intra-scene variations. However,

intra-scene variations are often ignored to simplify the

construction of the model [10], [5]. Scene-based models

often di�er in the persistence of the autocorrelations
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that are manifested by the intra- and/or inter-scene

components. Such di�erences are by no means trivial,

as they have signi�cant implications on the design and

dimensioning of video bu�ers.

Most scene-based models have been developed for

compression schemes in which all the frames in the

video sequence are encoded in a uniform manner using

the same mode(s) of compression. This results in ho-

mogeneous VBR sequences in which the uctuations

are primarily attributed to scene dynamics. In con-

trast, the MPEG algorithm applies di�erent encod-

ing techniques to produce three types of compressed

frames (I, P, and B) that di�er signi�cantly in their

bit rate characteristics. The complete MPEG sequence

is obtained by interleaving frames of di�erent types ac-

cording to a Groups-of-Pictures (GOP) pattern, which

speci�es the sequence of P and B frames between two

successive I frames. The GOP pattern is applied re-

peatedly to a video sequence, resulting in heteroge-

neous frame sizes and signi�cant periodicity in the traf-

�c pattern.

An important aspect of a video model is the form

of its autocorrelation function (ACF). Tra�c correla-

tions, in general, are believed to have profound im-

pact on the queueing performance at a bu�ering node.

Supported by extensive statistical evidence, some re-

searchers have further argued that network tra�c, in-

cluding VBR video, exhibits persistent correlations

that can only be captured through LRD models [4],

[17], [1], [6]. Other researchers, while acknowledging

the presence of LRD in network tra�c, argue that for

�nite bu�ers, long-term correlations have minor im-

pact on the queueing performance [8], [7], [20]. Hence,

they argue, the tra�c can be su�ciently represented

by Markovian models, which are typically easier to an-

alyze than LRD models.

In this paper, we focus our attention on a general

class of scene-based video models, which includes SRD

and LRD models, and we try to answer some of the

important questions related to the impact of correla-

tions on the design of video bu�ers. The goal of this

paper is neither to provide a new video model nor to

advocate any of the existing ones. Instead, we aim at

studying some generic statistical aspects that pertain

to many of these models. As such, �tting of real data,

which is an essential aspect of model construction, is
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not discussed in this paper, as this has been exten-

sively addressed in the literature. To formally assess

the impact of tra�c correlations on the performance

at a video bu�er, we �rst analyze the ACF in a class of

scene-based video models. Our analysis is then used in

studying the impact of correlations on the dimension-

ing of video bu�ers. Figure 1 depicts one scenario for

which our analysis is directly applicable (other scenar-

ios exist as well). In here, variable-size video frames are

generated on the y and are fed into a �xed-bandwidth

channel. For constant-quality video, the variations in

the frame sizes can be quite signi�cant. They can be

reduced using rate-controlled encoding at the expense

of variable quality. To limit its impact on video quality,

rate control is applied in conjunction with sender-based

tra�c shaping (bu�ering). Therefore, the encoder still

generates variable-size frames (i.e., near-VBR stream)

that are fed into the bu�er. Depending on the network

bandwidth (C), the bu�er may occasionally overow,

causing further degradation in the video quality at the

receiver. One of our objectives here is to study the im-

pact of tra�c correlations on the performance at this

bu�er.

Frames
Camera

Network
C

B

VBR Encoder

Rate Control

Variable-size

Buffer

Fig. 1. Video bu�er for smoothing the tra�c at the sender.

The contributions of this paper are as follows. First,

we derive the GOP-level ACF for a general class of

scene-based models with an arbitrary scene-length dis-

tribution and frame-size statistics. The only restric-

tions we impose on this class are that inter-scene and

intra-scene variations are mutually independent and

that scene lengths constitute an i.i.d. process. Such

assumptions are satis�ed by most existing scene-based

models (for which the ACF has not been previously

reported). From the derived ACF, we establish the re-

lationship between the scene-length distribution of a

model and its SRD/LRD structure. Our results indi-

cate that when the intra-scene dynamics exhibit SRD

(as often the case), the overall video model is LRD

only if the second moment of the scene length is in�-

nite. Using the explicit relation between the ACF and

the scene length distribution, one can determine an ap-

propriate �t for this distribution without the need to

directly measure scene lengths.

Based on our generic GOP-level MPEG model, we

introduce a frame-level counterpart that incorporates

the three types of MPEG frames. We derive the ACF

for this frame-level model. Our results indicate that

due to the repetitive application of the GOP pattern,

the pseudo-periodic frame-level ACF never drops o� to

zero. The non-zero-convergence result can be extended

to other types of media streams that are interleaved in

a deterministic manner (e.g., the interleaving of audio

and video packets in MPEG-2).

Lastly, we study the impact of correlations in a

scene-based model on the packet loss performance due

to bu�er overow at the encoder. Two popular fami-

lies of scene-length distributions are examined: Pareto

and Weibull. In each family, we vary the level of corre-

lations in the model and observe the resulting impact

on the packet loss rate. We make several important re-

marks on this impact as inferred from both GOP- and

frame-level models and with the assumption of �nite-

and in�nite-bu�er capacities.

II. GOP-Level Autocorrelations

In this section, we investigate the ACF for a scene-

based video model at the GOP level. While the GOP

notion is speci�c to MPEG video, our \GOP-level"

analysis applies, in general, to VBR sequences in which

frame sizes are homogeneous, i.e., produced by the

same compression approach. For example, it applies

to JPEG and H.261 video sequences, among others.

Without loss of generality, we present our ideas in the

context of MPEG video.

Consider an MPEG-coded video sequence. Let X

n

be a random variable (rv) that models the \size" of

the nth GOP in this sequence (i.e., the number of bits

in that GOP). Let S

i

be a discrete rv that models the

length of the ith scene (measured in the number of

GOPs). We assume that scene lengths are i.i.d. with

common probability mass function f

s

and cumulative

distribution function F

s

. Let S be a generic rv that

describes the length of an arbitrary scene. Intuitively,

GOPs that belong to the same scene are relatively

close in size, while GOPs belonging to di�erent scenes

may have signi�cantly di�erent sizes. Accordingly, we

model X

n

by the sum of two random components:

X

n

a:s:

= Y

n

+ Z

n

(1)

where \a.s." refers to equality in the almost surely

sense. The rv Y

n

accounts for the average impact of

scene dynamics on the bit rate. In essence, it repre-

sents the average GOP size within a given scene. If two

GOPs i and j belong to the same scene, then Y

i

a:s:

= Y

j

;

otherwise, Y

i

and Y

j

are i.i.d. The rv Z

n

represents

the di�erence between the size of the nth GOP and

the mean GOP size in the underlying scene. By con-

struction, E[Z

n

] = 0. We assume that Y

n

and Z

n

are

mutually independent.

The random processes fY

n

: n = 1; 2; : : :g and

fZ

n

: n = 1; 2; : : :g constitute two sequences of au-

tocorrelated and identically distributed rvs. We as-
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sume that both processes are second-order stationary,

and we denote their corresponding ACFs at lag k by

�

Y

(k) and �

Z

(k), respectively. Furthermore, we let

�

2

Y

and �

2

Z

be the variances of Y

1

and Z

1

, respec-

tively. The above formulation encompasses several

scene-based models, including the ones in [5], [9], [10],

[15], [16], [18].

Now consider the random process fX

n

: n =

1; 2; : : :g. Its ACF at lag k is given by

�

X

(k)

4

=

E [(X

n

�m)(X

n+k

�m)]

�

2

X

=

E [Y

n

Y

n+k

] + �

2

Z

�

Z

(k)�m

2

�

2

Y

+ �

2

Z

(2)

where m

4

= E[X

1

] = E[Y

1

]. Consider the term

E [Y

n

Y

n+k

] for k = 1; 2; : : :, and an arbitrary n. The

relationship between Y

n

and Y

n+k

depends on whether

GOPs n and n + k belong to the same scene. Let

^

S

be the forward recurrence time that is associated with

the scene length S. The pmf of

^

S is given by:

f

ŝ

(i)

4

= Pr[

^

S = i] =

Pr[S � i]

E[S]

; i = 1; 2; : : : (3)

Since n is chosen arbitrarily, the two GOPs belong to

the same scene if

^

S > k. Otherwise, they belong to

di�erent scenes (and are, thus, independent). Conse-

quently,

E [Y

n

Y

n+k

] =

1

X

j=1

E

h

Y

n

Y

n+k

j

^

S = j

i

� Pr

h

^

S = j

i

= m

2

k

X

j=1

f

ŝ

(j) +E

�

Y

2

1

�

1

X

j=k+1

f

ŝ

(j)

= m

2

F

ŝ

(k) +E

�

Y

2

1

�

(1� F

ŝ

(k)) (4)

where F

ŝ

is the CDF of

^

S. Accordingly, (2) can be

written as

�

X

(k) =

�

2

Y

[1� F

ŝ

(k)] + �

2

Z

�

Z

(k)

�

2

Y

+ �

2

Z

(5)

In the absence of the noise process fZ

n

: n = 1; 2; : : :g,

(5) reduces to �

X

(k) = Pr[

^

S > k], i.e., the ACF is

simply given by the complementary distribution of

^

S.

Equation (5) can be used to construct a simple test

for the LRD/SRD of a video model with a given scene-

length distribution. Recall that a process exhibits LRD

behavior if its ACF has an in�nite sum. Taking the

sum of �

X

(k) from k = 0 to 1, we have

1

X

k=0

�

X

(k) =

�

2

Y

E[

^

S] + �

2

Z

P

1

k=0

�

Z

(k)

(�

2

Y

+ �

2

Z

)

(6)

It is easy to show that

E[

^

S] =

1

2

+

E[S

2

]

2E[S]

(7)

From (6) and (7), we arrive at the following result:

Proposition 1: The video model fX

n

: n = 1; 2; : : :g

is long-range dependent if and only if at least one of

the following conditions is satis�ed:

1. The second moment of the scene length is in�nite.

2. The noise process fZ

n

: n = 1; 2; : : :g is LRD.

Examples

I. Pareto Distribution

Some studies have reported the appropriateness of

the Pareto distribution for modeling the scene duration

[9], [13]. The complementary form of this distribution

is given by Pr[S > k] =

�

w

k

�

�

for k � w where w

and � are two positive parameters. Assuming that

the noise process is SRD, then for 1 < � < 2, E[S

2

] is

in�nite and the model is LRD. A similar result has been

provided for the superposition of ON/OFF sources in

which the ON periods of one or more sources are Pareto

distributed with 1 < � < 2 [2].

II. Frater's Scene-Length Distribution

In [5], Frater et al. introduced a model for JPEG

video in which the scene duration has the following

distribution:

f

s

(k)

4

= Pr[S = k] =

a

k

n

+ b

2

; k = 1; 2; : : :

where a, b, and n are three positive constants. The

noise process was ignored. It is straightforward to show

that E[S

2

] is �nite for n > 3, and is in�nite otherwise.

In other words, Frater's video model is SRD if and

only if n > 3. Two video sequences were examined in

[5]: Star Wars and Film. Their corresponding n values

were determined to be 2 and 3.8, respectively, implying

that Frater'smodel for the �rst sequence exhibits LRD!

In typical scene-based modeling studies, the scene-

length distribution is obtained by directly �tting the

empirical scene lengths. The ACF in this case is ob-

tained empirically using synthetic sequences. Due to

the small number of long scenes (typically, in the order

of few tens), accurate �tting of the tail of the empiri-

cal scene-length distribution is not feasible, despite the

importance of this tail in determining the SRD/LRD

structure of the model. We remedy this issue by pro-

viding an alternative modeling approach for the scene-

length distribution. Ignoring the noise process, we have

�

X

(k) = Pr[

^

S > k]. Thus, for j = 1; 2; : : :, we have

Pr[

^

S = j] = �

X

(j � 1)� �

X

(j) =

Pr[S � j]

E[S]

; (8)
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from which we obtain the scene-length pmf in terms of

the ACF:

Pr[S = j] = Pr[S � j]� Pr[S � j + 1] =

E[S] [�

X

(j � 1)� 2�

X

(j) + �

X

(j + 1)] (9)

To obtain E[S] we set j = 1 in (8), which results in

E[S] =

Pr[S � 1]

�

X

(0)� �

X

(1)

=

1

1� �

X

(1)

(10)

Accurate modeling of the scene length can proceed by

�rst obtaining an adequate �t for the empirical ACF

(which can be done relatively with high accuracy), and

then using this �t to derive the corresponding scene-

length distribution based on (9).

III. Frame-Level Autocorrelations

GOP-level modeling is su�cient for evaluating the

queueing performance when the bu�er size is relatively

large. In this case, the drastic di�erences between

the three types of MPEG frames are absorbed by the

bu�er. However, when the bu�er is small (e.g., drains

in less than a GOP time), these di�erences will have

profound impact on the performance, and a frame-level

model is needed to study this impact. In this section,

we extend our generic GOP-level model to characterize

the frame-level variations, and we derive the resulting

ACF.

Consider the process fX

n

: n = 1; 2; : : :g that rep-

resents the GOP sequence. Let f

X

be its marginal

distribution. A GOP pattern is characterized by two

parameters: the I-to-I frame distance (N) and the I-

to-P frame distance (M). Not all MPEG sequences in-

volve a repetitive GOP pattern. In fact, some encoders

allow a new GOP to start before the completion of the

previous one, typically in response to a large frame

(i.e., the start of a high-action scene). However, for

tractability purposes, we restrict our work to MPEG

sequences that conform to repetitive GOPs, and many

sequences do so in practice.

Denote the size of the kth frame in the MPEG se-

quence by U

k

. Suppose that this frame belongs to the

rth GOP. If the MPEG sequence starts with a com-

plete GOP (i.e., the �rst frame is I ), then r = dk=Ne.

However, this makes the process fU

n

: n = 1; 2; : : :g

nonstationary, precluding any analysis of the correla-

tion structure. Instead, we will allow the �rst GOP to

be incomplete by randomly selecting the �rst frame in

the sequence from any location in the GOP pattern,

and continuing thereafter according to that pattern.

This will have no e�ect on the long-term behavior of

the model, but will ensure its stationarity. Accord-

ingly, dk=Ne � r � dk=Ne+ 1.

We use the following model for U

k

:

U

k

4

=

8

<

:

c

I

X

r

; if the kth frame is an I frame

c

P

X

r

; if the kth frame is a P frame

c

B

X

r

; if the kth frame is a B frame

(11)

The constants c

I

, c

P

, and c

B

are obtained empirically

as follows: c

I

=

I

avg

X

avg

, c

P

=

P

avg

X

avg

, and c

B

=

B

avg

X

avg

,

where I

avg

; P

avg

; and B

avg

are the average (empiri-

cal) frame sizes for I, P, and B frames, respectively;

and X

avg

is the average size of a GOP. Note that

c

I

+ (N=M � 1)c

P

+ (N �N=M)c

B

= 1, ensuring that

the sum of frame sizes in the rth GOP is equal to X

r

.

According to this model, B frames (also, P frames)

that belong to the same GOP have the same size. So if

the kth frame is of type B, then U

k

represents the av-

erage size of B frames within the corresponding GOP.

An example of the resulting sample path based on this

model is shown in Figure 2.

GOP GOP GOP

BB

I

P

BB BB

I

P

BB

Time

B
it

 R
a
te

GOP GOP

scene scene

Fig. 2. Bit-rate variations in frame-level model (N = 6; M = 3).

It should be emphasized that the above frame-level

model is indeed an approximation. In real video se-

quences, the ratio of the average size of, say, P frames

in a GOP and the size of that GOP varies from one

GOP to another. However, this variation is observed

to be relatively small as illustrated in Figure 3, which

depicts the time-varying coe�cients c

I

(r), c

P

(r), and

c

B

(r) as a function of r for the MPEG coded sequence

Lecture [14]. Here, c

T

(r), T 2 fI; P ;Bg, is the ratio

of the average size of type-T frames in the rth GOP

and the size of that GOP. The sample mean and stan-

dard deviation for each of these coe�cients are shown

in Table I. While a more elaborate frame-level charac-

terization is possible, the attractiveness of (11) is that

the coe�cients c

I

, c

P

, and c

B

can, in principle, be es-

timated a priori. Furthermore, a detailed frame-level

characterization would not lend itself to the type of

analysis presented in this paper.

According to the model in (11), the marginal dis-

tributions for the sizes of the three frame types are

given in terms of f

X

as follows: f

I

(x) = f

X

(x=c

I

),

f

P

(x) = f

X

(x=c

P

), and f

B

(x) = f

X

(x=c

B

). Let U

I

,

U

P

, and U

B

be three generic rvs that indicate the

sizes of arbitrary I, P, and B frames, respectively.
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Fig. 3. Time-varying coe�cients c

I

(j), c

P

(j), and c

B

(j).

Frame Type (T ) Average c

T

(r) Std. of c

T

(r)

I 0.5348 0.0412

P 0.2378 0.0215

B 0.0568 0.0067

TABLE I

Sample mean and standard deviation of the time-varying

coefficients (Lecture trace).

It readily follows that E[U

I

] = c

I

m, E[U

P

] = c

P

m,

and E[U

B

] = c

B

m. Also, var(U

I

)

4

= �

2

I

= c

2

I

�

2

X

,

var(U

P

)

4

= �

2

P

= c

2

P

�

2

X

, and var(U

B

)

4

= �

2

B

= c

2

B

�

2

X

.

Let �

U

(k) be the ACF of fU

n

: n = 1; 2; : : :g at lag k

�

U

(k) =

E [U

1

U

1+k

]� em

2

�

2

U

where em

4

= E[U

1

] =

m

N

and �

2

U

4

= var(U

1

) is given by

(�

2

X

+m

2

)

N

�

c

2

I

+ (

N

M

� 1)c

2

P

+ (N �

N

M

)c

2

B

�

�

m

2

N

2

Recall that according to our model, the �rst frame of

an MPEG stream is selected randomly from the N

frames of a GOP. Thereafter, the MPEG sequence pro-

ceeds according to the repetitive GOP pattern. Con-

sider E[U

1

U

1+k

] for k > 1:

E[U

1

U

1+k

] =

N

X

i=1

E[U

1

U

1+k

=T

1

= i] Pr[T

1

= i]

where T

i

is a discrete rv that reects the location (and

consequently, the type) of the ith frame in the GOP

pattern. The sample space of T

i

is 


T

= f1; 2; : : : ; Ng.

Thus, T

j

a:s:

= i means that the type of the jth frame is

the same as the type of the frame in the ith location of

the GOP pattern. Because of the repetitive application

of the GOP pattern, the process fT

n

: n = 1; 2; : : :g

constitutes a deterministic Markov chain with transi-

tion probabilities p

ij

= Pr [T

n

= j=T

n�1

= i] = 1 if

j = i+1 and i = 1; : : : ; N�1 or if i = N and j = 1, and

zero otherwise. Our previous assumption related to the

type of the �rst frame can now be stated formally by

taking the initial distribution of the Markov chain to be

its stationary distribution, i.e., �

i

4

= Pr[T

1

= i] = 1=N

for all i 2 


T

. Hence,

E[U

1

U

1+k

] =

1

N

N

X

i=1

E[U

1

U

1+k

=T

1

= i] (12)

Before proceeding with the compu-

tation of E[U

1

U

1+k

=T

1

= i], we need to de�ne some

related quantities. Let

g

N

(i; k)

4

= (i+ k � 1) mod N

g

M

(i; k)

4

= (i+ k � 1) mod M

where i 2 


T

and k is a positive integer. Note that

because N is a multiple of M , if g

N

(i; k) = 0 then

g

M

(i; k) = 0 as well. De�ne the following two sets:




P

4

= f1 +M; 1 + 2M; 1 + 3M; : : : ; 1 + (N=M � 1)Mg




B

4

= 


T

� f1g �


P

Next, we de�ne the following function �(i; k):

� Case 1: i = 1

� If g

N

(1; k) = 0, then �(1; k)

4

= c

2

I

.

� If g

N

(1; k) 6= 0 but g

M

(1; k) = 0, then �(1; k)

4

=

c

I

c

P

.

� If g

M

(1; k) 6= 0, then �(1; k)

4

= c

I

c

B

.

� Case 2: i 2 


P

� If g

N

(i; k) = 0, then �(i; k)

4

= c

I

c

P

.

� If g

N

(i; k) 6= 0 but g

M

(i; k) = 0, then �(i; k)

4

=

c

2

P

.

� If g

M

(i; k) 6= 0, then �(i; k)

4

= c

P

c

B

.

� Case 3: i 2 


B

� If g

N

(i; k) = 0, then �(i; k)

4

= c

I

c

B

.

� If g

N

(i; k) 6= 0 but g

M

(i; k) = 0, then �(i; k)

4

=

c

P

c

B

.

� If g

M

(i; k) 6= 0, then �(i; k)

4

= c

2

B

.

It can be shown that

P

N

i=1

�(i; k) =

c

2

I

+ c

2

P

(N=M � 1) + c

2

B

(N �N=M); if k mod N = 0

2c

I

c

P

+ (N �N=M)c

2

B

+ (N=M � 2)c

2

P

; if k mod N 6= 0

but k modM = 0 (13)

2c

I

c

B

+ 2(N=M � 1)c

P

c

B

+ (N � 2N=M)c

2

B

; if k modM 6= 0
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Furthermore, it is easy to verify that

P

N

k=1

P

N

i=1

�(i; k) = 1.

We now return to the problem of determining

E[U

1

U

1+k

=T

1

= i]. There are two cases to consider.

First, when i+k � N , Frames 1 and 1+k must belong

to the same (�rst) GOP, hence

E[U

1

U

1+k

=T

1

= i] = �(i; k)E[X

2

1

] = �(i; k)

�

�

2

X

+m

2

�

(14)

When i+k > N , Frames 1 and 1+k belong to di�erent

GOPs and possibly to di�erent scenes. More speci�-

cally, the (1 + k)th frame belongs to the rth GOP,

where r

4

= d(i+ k)=Ne > 1. Thus,

E[U

1

U

1+k

=T

1

= i] = �(i; k)E[X

1

X

r�1

] =

�(i; k)

�

�

2

X

�

X

(r � 1) +m

2

�

(15)

A. Computation of E[U

1

U

1+k

]

Case I: k = 1; 2; : : : ; N � 1

From (12) and (13), and based on the previous dis-

cussion, we have

E[U

1

U

1+k

] =

1

N

N�k

X

i=1

�(i; k)(�

2

X

+m

2

)

+

1

N

N

X

i=N�k+1

(�

2

X

�

X

(r � 1) +m

2

)

where, as before, r

4

= d(i + k)=ne. For k = 1; : : : ; N

and i = N � k + 1; : : : ; N , r = 2. Thus,

E[U

1

U

1+k

] =

m

2

N

N

X

i=1

�(i; k)+

�

2

X

N

 

N�k

X

i=1

�(i; k) + �

X

(1)

N

X

i=N�k+1

�(i; k)

!

Case II: k � N

Starting with (15), this case is further divided into

two subcases.

Case II-A: k = pN for p = 1; 2; : : :.

In this case, Frames 1 and 1 + k di�er exactly by p

GOPs, irrespective of the value of i. Thus, r = di=Ne+

p = 1 + p. Accordingly,

E[U

1

U

1+k

] =

1

N

N

X

i=1

�(i; k)

�

�

2

X

�

X

(p) +m

2

�

=

�

2

X

�

X

(p) +m

2

N

N

X

i=1

�(i; k)

Finally,

�

U

(k) =

h

�

�

2

X

�

X

(p) +m

2

�

�

P

N

i=1

�(i; k)

�

=N

i

� em

2

�

2

U

(16)

Case II-B: k 6= pN and k > N

In this case, Frames 1 and 1+ k may di�er by either

p GOPs or by p + 1 GOPs, where p

4

= dk=Ne � 1 =

bk=Nc. More speci�cally, for T

1

= 1; 2; : : : ; i

�

, where

i

�

= Ndk=Ne � k, the 1st and (1 + k)th frames di�er

by p GOPs. For T

1

= i

�

+ 1; : : : ; N , the two frames

di�er by p+ 1 GOPs. Thus,

E[U

1

U

1+k

] =

1

N

i

�

X

i=1

�(i; k)

�

�

2

X

�

X

(p) +m

2

�

+

1

N

N

X

i=i

�

+1

�(i; k)

�

�

2

X

�

X

(1 + p) +m

2

�

(17)

which concludes the derivation of the ACF for the pro-

cess fU

n

: n = 1; 2; : : :g.

B. Asymptotic Behavior of Frame-Level ACF

From the analytical form of �

U

, one can examine its

asymptotic behavior, shedding light on the LRD/SRD

structure. As k !1, p!1 and �

X

(p)! 0, so that

lim

k!1

�

U

(k) =

m

2

N

lim

k!1

P

N

i=1

�(i; k)� em

2

�

2

U

(18)

The limit of

P

N

i=1

�(i; k) as k !1 alternates between

the three values given in (13). Substituting the values

of em and �

2

U

in (18), it is easy to see that lim

k!1

�

U

(k)

alternates between the following three values, depend-

ing on how k approaches in�nity:

�

�

j

=

N�

�

j

� 1

N�

�

1

(�

2

X

=m

2

+ 1)� 1

; j = 1; 2; 3 (19)

where �

�

1

, �

�

2

, and �

�

3

are the three values in (13),

respectively. In general, �

�

1

, �

�

2

, and �

�

3

are non-

zero, which justi�es the persistent, periodic autocor-

relations that are observed in empirical MPEG se-

quences. However, using (13) it can be shown that

�

�

1

+(N=M �1)�

�

2

+(N �N=M)�

�

3

= 0, i.e., the sum of

the autocorrelations over a GOP period converges to

zero, as expected.

IV. Validation of Analytical Results

In this section, we demonstrate the validity of our

analytical expressions using three numerical examples.

For simplicity, we ignore the noise process (the inter-

scene variations). Our validation approach is based on
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comparing the analytical ACF against the sample ACF

of synthetically generated VBR sequences. In the �rst

two examples, we investigate the ACF at the GOP level

assuming gamma distributed GOP sizes with mean of

500 and standard deviation of 100.

In the �rst example, we use a shifted exponential

scene-length distribution:

Pr[S > k] = Pr[

^

S > k] = e

��(k�1)

; k = 1; 2; : : : (20)

Note that in this case S and

^

S have the same distri-

bution. We set � = 1=49, so that E[S] = 50. Ten syn-

thetic traces were generated, and their sample ACFs

were computed and averaged. The average ACF for

the synthetic traces is plotted in Figure 4 along with

its theoretical counterpart. There is a clear match be-

tween the two plots.

Next, we consider a subgeometric scene-length dis-

tribution of the form:

Pr[S > k] = �

p

k

; k = 1; 2; : : :

for some 0 < � < 1. In this case, the ACF can be

written recursively as follows:

�

X

(k + 1) = �

X

(k)�

�

p

k

E[S]

(21)

While a closed-form expression for E[S] =

P

1

k=0

�

p

k

is not available, it is easy to show that

2

(ln�)

2

� E[S] �

2

(ln�)

2

+ 1 (22)

Setting � = 0:8, we have 40:17 � E[S] � 41:17. Thus,

E[S] �

2

(ln�)

2

+ 0:5 = 40:67. Figure 5 depicts the

theoretical and empirical ACFs under a subgeometric

scene-length distribution. At small and large lags, the

plots match very well. At intermediate lags, there is

a slight di�erence that is attributed to the large vari-

ance of the empirical autocorrelations and to other ap-

proximations in the generation of subgeometrically dis-

tributed random numbers.

Our last example is related to the frame-level ACF.

Here, we use the same shifted exponential scene-length

distribution as in the �rst example. We set N = 12,

M = 3, c

I

= 5=22, c

P

= 3=22, and c

B

= 1=22.

The analytical and empirical ACFs are shown in Fig-

ure 6 for lags in the range 450 to 500. This range

is chosen arbitrarily, and is representative of the be-

havior at large lags. The two ACFs almost match

at all examined lags (similar trend is also observed at

small lags). Note that although the scene-length dis-

tribution is exponential, the deterministic interleaving

of three, drastically di�erent processes (one for each

frame type) induces strong correlations that determine

the asymptotic shape of the ACF. These correlations

do not die out to zero as the lag goes to in�nity, but

instead they converge to �

�

1

= 0:8912, �

�

2

= 0:710, and

�

�

3

= �0:3776.
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Fig. 4. ACF for GOP-level model with shifted exponential scene

distribution (� = 1=49).
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Fig. 5. ACF for the GOP sequence with a subgeometric scene-

length distribution (� = 0:8).

V. Impact of Correlations on Buffer

Performance

In this section, we investigate the impact of tra�c

correlations on the queueing performance at a video

bu�er. The scenario we consider was depicted in Fig-

ure 1, where a VBR stream is fed into a bu�er with

a drain rate C. We study two families of scene-length

distributions: Pareto and Weibull. While other dis-

tributions may also be used, lately these two distri-

butions have been receiving much attention (see [9]).
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Fig. 6. ACF at the frame level based on a shifted exponential

scene-length distribution (� = 1=49, N = 12, M = 3).

For each family of distributions, we examine the e�ect

of varying the correlations persistence on the queueing

performance. In line of the �ndings in [6], [10], we take

the GOP size to be gamma distributed with scale and

shape parameters � and w. For simplicity, we take w

to be integer valued.

For Pareto distributed scene lengths, our analysis is

based on the work of Jelenkovic and Lazar [12] on the

subexponential asymptotics of Markov-modulated ran-

dom walks (see also [13]). As discussed in [13], Pareto

distributions belong to the class of regularly varying

distributions R

�

, which have recently been the focus

of several investigations. Consider a model with Pareto

distributed scene lengths:

F

S

(x)

4

= Pr[S � x] = 1�

1

x

�

; x � 1 and � > 1

Since we assume that scene changes constitute a re-

newal process, our model is similar to the Markov re-

newal process that was studied in [13], with the excep-

tion that in [13] a 4-state discrete Markov chain governs

the transitions between \regimes" (i.e., video scenes).

In contrast, we consider a continuous and unbounded

state space with transitions that are independent of the

current state. In the discrete case, if the scene-length

distribution is regularly varying, the asymptotic be-

havior of the queue length is given by [13]:

Pr[Q > x] �

P

d

i

>0

�

i

d

�

i

E[S](C �E[A])

�

X

(x) as x!1 (23)

where Q is the steady-state queue length at renewal in-

stants, �

i

is the stationary probability of being in state

i, A is the steady-state arrival rate at renewal times,

and d

i

is the mean drift rate while in state i (arrival

rate minus service rate). As before, �

X

(x) is the GOP-

level ACF at lag x. It is assumed that the bu�er capac-

ity is in�nite and that the system is \weakly stable",

i.e., d

i

> 0 for at least one state i. In our case, because

of the in�nite sample space of the gamma distribution,

the system is indeed weakly stable. Furthermore, be-

cause in our model transitions at scene boundaries are

independent of the scene levels, �

i

in (23) is just the

pdf of the GOP size. Hence (23) becomes:

Pr[Q > x] �

R

1

C

(u� C)

�

f

�

(u)du

E[S](C �E[A])

�

X

(x); as x!1

(24)

where f

�

is the gamma pdf of the GOP size. For

simplicity, we take � to be integer valued, � � 2.

Substituting the expressions for E[S] = �=(� � 1),

E[A] = w=�, and f

�

(u) in (24), as x!1 we have

Pr[Q > x] �

R

1

C

(u� C)

�

e

��u

(�u)

w�1

�du

�

��1

(C � w=�)(w � 1)!

�

X

(x)

With some manipulations, it can be shown that the

above equation reduces to

0

@

(�� 1)e

��C

��

�

(C � w=�)

w�1

X

j=0

(w + �� j � 1)! (C�)

j

(w � j � 1)! j!

1

A

�

X

(x)

= 	(�;w;C; �) � �

X

(k)

where

	(�;w;C; �)

4

=

(�� 1)e

��C

��

�

(C � w=�)

w�1

X

j=0

(w + �� j � 1)! (C�)

j

(w � j � 1)! j!

The above expression directly relates the ACF of the

GOP-level model to the queueing performance. For

Pareto distributed scene lengths, the ACF �

X

(x) can

be easily computed as follows:

�

X

(x) = Pr[

^

S > x] =

Z

1

x

Pr[S � u]

E[S]

du =

x

1��

�

for � > 1 and x > 0. Figure 7 depicts the bu�er over-

ow rate versus the bu�er size. As expected, for a given

bu�er size the bu�er overow probability decreases as

� increases. Interestingly, for � = 2; 3; 4, the bu�er

overow curve attens fairly quickly despite the fact

that the underlying model is SRD. While such behav-

ior is already known for LRD models (1 < � < 2), its

presence under SRD models is surprising. Nonethe-

less, for large � (e.g., � = 6), the bu�er overow

curve starts to get steeper and the performance be-

comes more sensitive to changes in the video bu�er

size. It is worth mentioning that in the case of expo-

nentially distributed scene lengths (i.e., a Markovian

model), the bu�er overow probability plotted on a
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Fig. 7. Probability of bu�er overow when scene lengths are

Pareto distributed (� = 0:05, w = 25, load = 83%).

logarithmic scale drops o� linearly with the bu�er size,

i.e., the curves in Figure 7 would have constant slopes.

Next, we consider the following class of discrete dis-

tributions:

Pr[S > k] = �

n

p

k

; for k = 1; 2; : : : ; and n = 1; 2; : : :

(25)

where 0 < � < 1. This is a special case of the general

Weibull distribution F (x) = 1 � e

��x

r

, where � > 0

and 0 < r < 1 (in (25) we set � = � ln� and r = 1=n).

When n = 1, the scene length distribution is geomet-

ric, whereas n � 2 gives rise to a subgeometric model.

For a �nite n, E[S

2

] <1 and the corresponding video

model is SRD (Proposition 1). As n increases the cor-

relations become more persistent, and as n ! 1, the

model approaches the LRD regime. Figure 8 depicts

the GOP-level ACF for n = 1; 2; 3 and � = 0:8. In-

creasing � slows down the speed of convergence of the

ACF. Note that for the underlying family of scene dis-

tributions, the ACF is obtained recursively using:

�

X

(k + 1) = �

X

(k)�

�

n

p

k

E[S]

; k = 1; 2; : : :

where E[S] � n!=(� ln�)

n

. We use simulations to

evaluate the impact of correlations on the queueing

performance. A disadvantage of simulations in this

case is that they require extremely long traces to ob-

tain any meaningful results (the more persistent the

correlations, the longer the traces). This means that

credible results can only be obtained for relatively large

and moderate loss rates (above 10

�4

). In our simula-

tions, we assume that video frames are packetized into

�xed-size packets (e.g., ATM cells). We investigate the

packet loss rate (PLR) under GOP- and frame-level

models assuming both �nite and in�nite bu�er capac-

ities. In the latter case, the PLR is estimated by the

percentage of packets that arrive at the bu�er and �nd

B or more packets in the queue, where B is the bu�er

size in the �nite-bu�er case.
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Fig. 8. ACF for subgeometrically distributed scene lengths.

In our experiments, we �x the mean scene length at

E[S] = 50 GOPs. Since E[S] depends on � and n, � is

adjusted whenever n is varied. For GOP-level results,

we ran the simulations using synthetic traces of length

1,000,000 GOPs per trace. As before, GOP sizes are

gamma distributed with shape parameter w = 25 and

scale parameter � = 0:05. For frame-level results, we

set N = 12 and M = 3 with each trace consisting of

12,000,000 frames. A su�cient number of independent

runs was used to ensure tight con�dence intervals. To

avoid cluttering the �gures, we only show the average

values of these runs.

Figure 9 depicts the PLR under two tra�c loads

(U = 60% and 80%) for GOP- and frame-level models

and with �nite- and in�nite-capacity bu�ers. Based

on these �gures, several important observations can

be made. First, the degree of correlations persistence,

which is reected in the value of n, has clear impact on

the sensitivity of the PLR to changes in the bu�er size;

the larger the value of n the less sensitive is the perfor-

mance. This means that for very large bu�ers, the de-

gree of correlations persistence does matter. Interest-

ingly, this trend is observed for both �nite- and in�nite-

capacity bu�ers. Second, for small bu�er sizes (less

than 100 packets), the frame-level PLR is always larger

than its GOP-level counterpart. The discrepancy be-

tween the two is more obvious when the bu�er capacity

is �nite. Furthermore, this discrepancy is more pro-

nounced at lower tra�c loads (U = 60%), where the

di�erence can reach several orders of magnitude. As

the bu�er size increases, the discrepancy between the

GOP- and frame-level results fades away. Based on our
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numbers, a bu�er size of 100 packets amounts to a max-

imum queueing delay of B=C = 100=C, where C is the

link bandwidth in packets/second. For U = 80% and

average input rate of 500 packets/GOP (1000 pack-

ets/second), C = 1000=U = 1250 packets/second.

Thus, the maximum delay is 80 msec, which is slightly

less than the time to generate three frames. Hence,

if the delay requirements of the video application are

such that a delay of three frames at the encoder is toler-

able, a GOP-level model is su�ciently accurate for use

in performance evaluation and capacity planning stud-

ies. Otherwise, frame-level modeling is needed. Our

last remark is related to the in�nite-bu�er results in

Part (a) of Figure 9. As n goes from 2 to 3, the PLR

increases suddenly by more than an order of magni-

tude. This trend was not observed at the higher load

(Part (c)). Our justi�cation of this phenomenon is that

at high loads, bu�er overow is more frequent and is

not only caused by the very rare events. In contrast,

as we decrease the load, rare events (e.g., a high-action

scene that lasts for a long period of time) become the

primary cause of packet loss. Such events are directly

related to the persistence of the autocorrelations, hence

the observed trend. The greater impact of n at lower

loads is analogous to its increased signi�cance as the

bu�er size increases.

VI. Conclusions

In this paper, we analyzed the ACF for a class of

scene-based video models. Our analysis was performed

at both GOP and frame levels, and was used to es-

tablish the relationship between the SRD/LRD struc-

ture of a model and its scene-length distribution. As

a byproduct of this relationship, an e�cient procedure

for �tting the scene-length distribution was provided,

which only requires �tting of the ACF. At the frame

level, our results indicate that the repetitive applica-

tion of the GOP pattern induces strong periodic com-

ponents in the ACF. In fact, we showed that the frame-

level ACF does not converge to zero as the frame lag

goes to in�nity. This, somehow surprising, result can

be extended to composite processes in which two dras-

tically di�erent submodels are interleaved in a deter-

ministic manner (e.g., composition of audio and video

streams). The impact of correlations on the perfor-

mance at a video bu�er was studied via analysis and

simulations for video models with Pareto and Weibull

scene-length distributions. In the case of Pareto scene

lengths, we observed that the insensitivity of the packet

loss rate to changes in the bu�er size extends beyond

the LRD regime of the Pareto distribution (1 < � < 2)

to the SRD regime (� � 2). Such insensitivity starts

to change as � becomes large. For Weibull distributed

scene lengths, several important observations can be

made based on the simulation results. First, the more
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Fig. 9. PLR versus bu�er size under Weibull distributed scene

lengths.
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persistent the correlations, the less sensitive the perfor-

mance to changes in the bu�er size. This trend was ob-

served under both �nite- and in�nite-capacity bu�ers.

Thus, for large, �nite bu�ers, the degree of correla-

tions persistence does matter. Second, for small bu�er

sizes (less than 100 packets), the frame-level perfor-

mance is always worse than its GOP-level counterpart,

with the discrepancy being more pronounced when the

bu�er capacity is �nite and the tra�c load is low. As

the bu�er size increases, this discrepancy fades away,

and a GOP-level model becomes su�cient for analyz-

ing the performance. Third, the impact of correla-

tions persistence becomes more profound as the tra�c

load is decreased. Our work provides important guide-

lines that can be used in the design and dimensioning

of video bu�ers and for e�cient allocation of network

bandwidth.
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