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Abstract—We address the problem of jamming-resistant broadcast communications under an internal threat model. We propose a time-
delayed broadcast scheme (TDBS), which implements the broadcast operation as a series of unicast transmissions distributed in frequency
and time. TDBS does not rely on commonly shared secrets, or the existence of jamming-immune control channels for coordinating broadcasts.
Instead, each node follows a unique pseudo-noise (PN) frequency hopping sequence. Contrary to conventional PN sequences designed for
multi-access systems, the PN sequences in TDBS exhibit correlation to enable broadcast. Moreover, they are designed to limit the information
leakage due to the exposure of a subset of sequences by compromised nodes. We map the problem of constructing such PN sequences to
the 1-factorization problem for complete graphs. We further accommodate dynamic broadcast groups by mapping the problem of updating
the assigned PN sequences to the problem of constructing rainbow paths in proper edge-colored graphs.
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1 INTRODUCTION

Wireless communications are vulnerable to intentional interfer-
ence attacks, typically referred to as jamming. Conventional anti-
jamming techniques rely on spread spectrum (SS) communi-
cations, such as direct sequence spread spectrum (DSSS) and
frequency hopping spread spectrum (FHSS) [30]. DSSS provides
bit-level protection by spreading bits according to a secret pseudo-
random noise (PN) code, known only to the communicating
parties. In FHSS, the sender and the receiver hop synchronously
using a secret random frequency hopping (FH) sequence. For
jamming-resistant broadcast communications, a common secret to
be shared between the sender and all (potentially non-trustworthy)
receivers. The disclosure of this common secret due to the
compromise of any receiver nullifies the SS gains [19], [26].

Several researchers have studied the broadcasting problem in
the presence of inside jammers [6], [10], [16], [17], [19], [26],
[27], [31], [32]. Methods in [6], [16], [17], [19], [27] eliminate
the dependency of SS on shared secrets. Baird et al. proposed the
encoding of “indelible marks” at specific locations within each
broadcasted message [6]. Assuming that the jammer cannot flip
a bit ‘1’ to a bit ‘0’, it was shown that a jammer cannot erase
packets from the wireless channel. Pöpper et al. [26] proposed a
method called Uncoordinated DSSS (UDSSS), in which broadcast
transmissions are spread according to a PN code, randomly
selected from a public codebook. Receivers decode transmitted
messages by exhaustively applying every PN code in the public
codebook. An advanced adversary with ample computation power
can jam a UDSSS system if it can recover the selected PN
code by exhausting the public codebook before the end of an
ongoing transmission. Liu et. al. proposed RD-DSSS, which is
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resilient to reactive jammers by delaying the disclosure of the
secret PN code. The computational efficiency of RD-DSSS was
further improved in [17] by encoding the seed of the PN code used
to spread a message, at the end of that message. This delayed seed
disclosure prevented a jammer from acquiring the PN code, before
the message was fully received. In this work, we develop anti-
jamming methods that adopt the FHSS design. FHSS is known to
exhibit a graceful degradation in performance with the increase
of interference [25], [30].

Our Contributions: We propose the Time-Delayed Broadcast
Scheme (TDBS).as an emergency mechanism for temporarily
restoring broadcast communications until inside jammers are
physically removed from the network. TDBS differs from clas-
sical FHSS designs in that two communicating nodes do not
follow the same FH sequence, but are assigned unique ones.
Unlike the typical broadcast in which all receivers tune to the
same channel, TDBS propagates broadcast messages as a series
of unicast transmissions, spread both in frequency and time. To
ensure resilience to inside jammers, the locations of these unicast
transmissions, defined by a frequency band/slot pair, are only
partially known to any subset of receivers. Assuming that the
jammer can only interfere with a limited number of frequency
bands, a subset of the unicast transmissions are interference-free,
thus propagating broadcast messages.

The problem of FH sequence design is mapped to a 1-
factorization problem in complete graphs. While a broad class
of scheduling algorithms are known to employ 1-factors (perfect
matchings) (e.g., [9], [14], [28], [29], [33], [38]), they are, in
general, concerned with unicast communications in a benign
setting and require the existence of a coordination channel [9],
[14]. TDBS is specifically designed to facilitate broadcasting in
the presence of jammers and in the absence of a coordination
channel. We further consider the problem of updating the FH
sequences of existing nodes when the broadcast groups are
dynamic. This problem is mapped to the construction of a rainbow
path of fixed size in proper edge-colored complete graphs. Note
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that TDBS is not meant as a permanent replacement of the
conventional broadcast mechanism. Broadcasting on a common
frequency band achieves the optimal communication efficiency in
the absence of any jammer. TDBS is designed as an emergency
mechanism for temporarily restoring communications until the
jammer is physically removed.

Paper Organization: The remainder of the paper is organized
as follows. In Section 2, we state the system and adversarial
model assumptions. In Section 3 we present an overview of
TDBS. Section 4 describes TDBS for single-hop networks. The
mechanisms for updating the FH sequences in dynamic broadcast
groups are presented in Section 5. In Section 6, we extend
the TDBS operation to multi-hop networks. The security and
performance of TDBS are evaluated in Section 7. In Section 8,
we present related work, and in Section 9, we conclude the paper.

2 SYSTEM AND ADVERSARIAL MODELS

Network Model: We consider two network topology models.
In the topology of Fig. 1(a), nodes form a single-hop broadcast
group. This topology is typical in wireless LANs, personal area
networks, and in military scenarios, in which mobile coalitions
move in a team-coordinated fashion. In Fig. 1(b), we consider
a static multi-hop network connected in ad hoc mode. To make
TDBS scalable with the network size, we assume that the network
is partitioned to clusters, which form cliques [34]. Broadcast
transmissions in a multi-hop scenario may be limited to one
cluster, or propagate to other clusters.

System Model: Nodes communicate over a set C = {f1, . . . , fK}
of K non-overlapping frequency bands. Each node is equipped
with a single half-duplex transceiver. All nodes are synchronized
to a time-slotted system. Nodes equipped with a GPS radio
independently synchronize with the clock of GPS satellites. If the
adversary jams GPS signals, nodes can maintain synchronization
using the jamming-resistant synchronization protocols developed
in [12]. These protocols fit well with the TDBS network model
because they provide secure synchronization for pairwise, group
and multi-hop communications in the presence of inside jammers.

Besides clock synchronization, nodes achieve frame synchro-
nization using standard PHY-layer frame detection methods for
FHSS systems [23]. Specifically, a receiver uses preamble corre-
lation techniques to detect the start of a frame. To facilitate the
frame synchronization process, long messages are fragmented to
smaller frames that fit within a single slot. The frame length is a
function of PHY-layer parameters such as the slot duration, the
bandwidth allocated to each frequency band, and the modulation
order.

Nodes are initialized by a trusted central authority (CA) before
deployment. For every node vi, the CA generates a public/private
key pair < pki, ski >. Node vi is preloaded with the CA’s
public key pkCA and its own secret key ski. To communicate
message m to vi, the CA encrypts m||sni with pki and signs
(idi||m||sni) with its private key skCA. Here, idi is vi’s unique,
sni is a random sequence number that is incremented by one with
every message sent to vi, and || denotes message concatenation.
Upon reception of an encrypted message from the CA, node vi
decrypts it using ski and verifies the CA’s signature using pkCA.

Jammer Jammer

(a) (b)
Fig. 1: (a) A single-hop broadcast group, (b) a clustered multi-hop
broadcast group.

It then verifies the freshness of m by checking that sni is larger
than the previously stored value. Node vi updates sni to the new
value. Without access to the preloaded cryptographic keys, the
adversary cannot impersonate the CA. Similar security properties
could be achieved by adopting a symmetric key cryptosystem. We
emphasize that the cryptographic keys are solely used to update
the FH sequences following the deployment of new nodes. These
keys are not used for any other communications. Hence, it is not
necessary to refresh them frequently.

Adversary Model: The goal of the adversary is to prevent the
sender(s) from communicating with all, or a subset of the intended
receivers. For this purpose, the adversary deploys a set of jamming
devices capable of collectively jamming any J frequency bands.
The jamming devices can switch between frequency bands on a
per-slot basis. Note that with dedicated hardware, the jammer may
be able to hop at a much higher rate than that of regular nodes.
However, the jammer’s hopping rate is limited by the time that
he has to remain on a particular band (dwell time) to corrupt a
sufficient number of bits from the targeted packet(s). Taking into
account the interleaving and error correction functions, this time
can represent a significant portion of the slot duration [22].

The jammer could target the frame synchronization process by
jamming the preamble of a transmitted frame. In most PHY-layer
standards, frame detection is based on the signal cross-correlation
between the received signal and the known preamble and does
not require preamble decoding. The signal cross-correlation has
been shown to have high immunity to interference [13]. For all
practical purposes, frame transmissions over any of the jammed
frequency bands are assumed to be irrecoverably corrupted.

The adversary is capable of physically compromising net-
work devices and recovering stored information including crypto-
graphic keys, PN codes, certificates, etc. Moreover, the adversary
is aware of the methods used to protect broadcast transmissions
(in our case the specifics of the TDBS).

3 OVERVIEW OF TDBS
To achieve jamming-resistant communications in the presence
of insiders, TDBS implements broadcast as a series of unicasts
distributed in frequency and time. The locations of these unicasts,
defined by a frequency band/slot pair (f, s), are only partially
known to each node. Therefore, a compromised node reveals only
the set of locations assigned to it, while the locations of other
communications are kept secret.

For this purpose, nodes are divided into pairs scheduled to
communicate over randomly selected frequency bands. The pairs



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, 3

jammer

(f2, 1)

v1

v2

v4

v3
v5

v6

(f3, 2)
(f4, 4)

(f3, 5)

( f1, 3)

f
1

1 2 3 slot

f
2

f
3

f
4

v
1      
v

2

v
1      
v

3

v
1
     v

6

4 5

v
1      
v

5

v
1      
v

4

jammer

(f2, 1)

v1

v2

v4

v3
v5

v6

(f3, 2)

(f4, 3)

(f1, 3)

( f1, 2)

( f3, 3)
v

6      
v

2

f
1

1 2 3 slot

f
2

f
3

f
4

v
1      
v

2

v
2      
v

3

v
3
     v

4
v

1      
v

6

v
1      
v

5

(a) (b) (c) (d)
Fig. 2: (a) Operation in SU mode, (b) the timeline of the unicast transmissions of v1 in SU mode, (c) operation in AB mode, (d)
the timeline of the unicast transmissions in AB mode.

and assigned frequency bands change on a per-slot basis, thus
realizing a FH system. TDBS differs from traditional FH designs
in that: (a) nodes do not follow a common FH sequence, but
hop according to unique hopping patterns and, (b) these patterns
are coordinated to reduce the broadcast delay. Moreover, TDBS
differs from rendezvous systems for coordinating multi-channel
access (e.g., [5], [7], [38]), in that it focuses on the broadcast
operation as opposed to rendezvous for unicast transmissions.

TDBS can operate in two modes: the Sequential Unicast mode
(SU) and the Assisted Broadcast mode (AB). In the SU mode,
the sender sequentially relays information to intended receivers.
This more inefficient mode is appropriate when receivers do not
have relaying capabilities, or are not trusted to relay broadcast
messages. In the AB mode, any node that receives a broadcast
message can act as a relay for that message.

Fig. 2 shows an example of the two modes. In Fig. 2(a), node
v1 operates in the SU mode. It sequentially unicasts a broadcast
message to nodes v2 − v6. Fig. 2(b), depicts the timeline of
transmissions for Fig. 2(a). The broadcast is completed after five
slots. The “x” marks denote the frequency band jammed by the
adversary at each time slot. Fig. 2(c), shows the operation in the
AB mode. Node v1 initiates a broadcast in slot 1 by transmitting
a message m to v2. In slot 2, v1 and v2 relay m to v6 and v3,
respectively, using frequency bands f1 and f3 in parallel. In slot 3,
the broadcast is completed with the relay of m from v1, v3, and v6
to v5, v4, and v2, respectively. The timeline of the transmissions
taking place in the AB mode is shown in Fig. 2(d). Observe that
in this scenario, the broadcast is completed despite the jamming
of the transmission between v6 and v2 in slot 3.

The main challenge in TDBS is to design the FH sequences
of individual nodes such that the following requirements are met:
(a) hopping sequences are pseudo-random, (b) compromise of a
subset of nodes (insiders) limits the information leakage relevant
to the FH sequences of uncompromised nodes, and (c) every node
has the same opportunity to perform a broadcast (fairness). We
develop algorithms that satisfy the above requirements. We first
illustrate our algorithms for single-hop topologies and then extend
our results to multi-hop topologies.

4 TDBS FOR SINGLE-HOP TOPOLOGIES
The problem of distributing unicast transmissions in frequency
and time can be viewed as a link scheduling problem under
the node-exclusive interference model. A large body of literature
models this type of scheduling after various instances of the
matching problem in general graphs [9], [14], [28], [29], [33].
However, prior methods are not immediately applicable to our

setup. In link scheduling problems, the goal is to maximize the
aggregate network throughput, realized as the sum of individual
traffic flows. We are concerned with the dissemination of one
message to all members of the broadcast group over unpredictable
frequency band/slot locations. This property is not necessarily
satisfied by maximum throughput centralized designs [33]. More-
over, decentralized solutions require the exchange of coordination
messages over a commonly-agreed channel [9], [14]. Clearly, such
a channel can be targeted by an inside jammer.

To ensure the broadcast property, we map the problem of
constructing FH sequences to the problem of constructing 1-
factorizations in complete graphs. 1-factorizations realize a series
of perfect matchings (1-factors), which span the edges of a
complete graph [36]. We first present relevant preliminaries from
graph theory. Interested readers are referred to [36] for an in-depth
treatise of the 1-factorization problem.

4.1 Definitions and Useful Theorems

Definition 1: Complete graph: A graph G(V, E), with vertex
set V and edge set E is complete if each vertex pair is connected
by an edge. We denote such a graph by K2n, where |V| = 2n.

Definition 2: 1-factor: A 1-factor or a perfect matching F of
a graph G is a subset of E that partitions V , i.e., F is a set of
pairwise disjoint edges of G that spans V.

Definition 3: 1-factorization: A 1-factorization F2n =
{F0, F1, . . . , F2n−2} of a graph G is a partition of its edge set E
to (2n− 1) 1-factors.

Theorem 1: 1-factorization of K2n: A complete graph K2n

is 1-factorable [36].

Construction of F2n: 1-factorizations of K2n can be system-
atically constructed using well-known algorithms (e.g., [11], [21],
[35], [36]). A simple method for constructing F2n is to select a
“starter” 1-factor and apply a shift-and-rotate operation [36]. This
method is illustrated in Fig. 3(a). F2n is initialized by 1-factor
F0. Node 1 remains fixed. To obtain Fi, nodes in the perimeter
are rotated clockwise by i steps.

4.2 Mapping to the 1-factorization Problem
We map the problem of constructing FH sequences for TDBS to
the problem of generating 1-factorizations in complete graphs. In
our mapping, the vertex set V of K2n represents the broadcast
group of size 2n and an edge (u, v) ∈ E represents a unicast
between u and v. A 1-factor corresponds to partitioning the broad-
cast group to n communicating pairs. These pairs are scheduled
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Fig. 3: (a) Algorithm for constructing a 1-factorization F = {F0, . . . , F2n−2}. To obtain a 1-factor Fi, every node is rotated by i
positions clockwise. Node 1 remains fixed, (b) mapping of a 1-factor to parallel unicast transmissions. Paired nodes communicate
concurrently on separate frequency bands, (c) construction of FH sequences for the SU mode for a group of four nodes.

Algorithm 1 TDBS-SU: Sequential Unicast Mode
1: Generate F2n of K2n

2: repeat
3: for i = 0 to (2n− 2) do
4: for j = 1 to d nK e do
5: π = rand(perm(C))
6: for w = 1 to min{n,K} do
7: hF ((j−1)K+w,1) = hF ((j−1)K+w,2) = π(w)
8: end for
9: end for

10: end for
11: end repeat

to rendezvous in parallel over non-overlapping frequency bands.
A 1-factorization F2n partitions E to (2n−1) disjoint 1-factors, in
which each edge appears exactly once. In a schedule constructed
according to F2n, every node rendezvous with all remaining
(2n−1) nodes. An example of this mapping is shown in Fig. 3(b).
A group of eight nodes is partitioned into four pairs, which are
scheduled to communicate over four frequency bands. Fig. 3(c)
shows a feasible set of FH sequences hj for nodes, j = 1, . . . , 4,
based on the 1-factorization of K4. We now present algorithms
for constructing FH sequences.

4.3 TDBS-SU: Sequential Unicast Mode
In the SU mode, a sender sequentially unicasts the broadcast
message to (2n−1) receivers. Let PK be the possible permutation
set of C. The FH sequences are constructed as follows:

Step 1: Construct a 1-factorization F2n of K2n, where F2n =
{F0, F1, . . . , F2n−2}.
Step 2: For all Fi ∈ F2n, repeat Steps 3–5.
Step 3: Randomly select permutation π ∈ PK with replacement.
Step 4: Assign frequency bands in π to the first min{n,K}
unassigned pairs in Fi.
Step 5: Repeat Steps 3 and 4 until all pairs in Fi are assigned a
frequency band.
Step 6: Repeat Steps 1-5.

The pseudocode for TDBS-SU is shown in Algorithm 1. We
emphasize that although the rendezvous schedule repeats every
(2n − 2) slots, the FH sequences assigned to each node have
a much longer period. This is because the permutation π that
indicates the channel assignment per slot, is randomly selected
with every iteration. As a result, pairs rendezvous every (2n− 2)
slots on random permutations of C.

In Fig. 3(c), we apply Algorithm 1 to a four-node group,
when C = {f1, . . . , f5}, (K = 5). Because K ≥ n, the n
pairs corresponding to a 1-factor communicate in parallel in one
slot. In slot 0, pairs communicate according to F0. The random
permutation for F0 is π = {f2, f3, f5, f1, f4}. Pair (1, 2) is
assigned π(1) = f2 and pair (3, 4) is assigned π(2) = f3. The
process is repeated for 1-factors F1 and F2. When node pairs
(1, 2) and (3, 4) rendezvous again in slot 3, a new permutation
π = {f4, f2, f1, f3, f5} is randomly selected from P5 to perform
the channel assignment. Note that it is not necessary for K ≥ n.
When K < n, parallel transmissions corresponding to one 1-
factor are distributed over multiple slots. We now show that
Algorithm 1 constructs uniformly distributed FH sequences.

Proposition 1: The FH sequences constructed by Algorithm 1
are uniformly distributed.

Proof: The proof is provided in Appendix 1.

4.4 TDBS-AB: Assisted Broadcast Mode
In the AB mode, any node that has already received a broadcast
message operates as a broadcast relay. To construct FH hopping
sequences for the AB mode, the 1-factors Fi are selected and
arranged such that the number of nodes that can relay a broadcast
transmission at each 1-factor is maximized. This property reduces
the broadcast delay, while increasing the resilience to jamming.
We first define the relay set.

Definition 4: Relay set Ri
j : The relay set Ri

j of a node vj
that originated a message m is defined as the set of nodes that
can relay m in 1-factor Fi.

The goal of our FH sequence construction algorithm is to
maximize the size of the relay set Ri

j , for every node vj and in
every 1-factor Fi. Note that in the AB mode, it is not necessary
that the series of 1-factors form a 1-factorization, because nodes
can receive a broadcast transmission indirectly via relay nodes.
The FH hopping sequences are constructed as follows.

Step 1: Obtain an arbitrary 1-factor F0 of K2n. Set i = 0.
Step 2: Randomly select a permutation π ∈ PK .
Step 3: Assign frequency bands in π to the first min{n,K}
unassigned pairs in Fi.
Step 4: Repeat Steps 2 and 3 until all pairs in Fi are assigned a
frequency band.
Step 5: Construct 1-factor Fi+1 according to the splitting algo-
rithm. Set i = i+ 1.
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Step 6: Repeat Steps 2 – 5.

Algorithm 2 TDBS-AB: Assisted Broadcast Mode
1: Generate random F0 of K2n

2: initialize i = 0
3: repeat
4: for j = 1 to d nK e do
5: π = rand(perm(C))
6: for w = 1 to min{n,K} do
7: hFi((j−1)K+w,1) = hFi((j−1)K+w,2) = π(w)
8: end for
9: end for

10: Fi+1 = split(Fi)
11: i++
12: end repeat

The pseudocode for the TDBS-AB is shown in Algorithm 2.
The pseudocode for the splitting algorithm is shown in Algorithm
3 and is illustrated in Fig. 4(a). Nodes that rendezvous according
to 1-factor Fi, are split (placed in adjacent rows) in Fi+1. The
propagation of this property in subsequent 1-factors minimizes
the broadcast delay by maximizing the size of the relay set Ri

j

for any vj and for every i (see Section 7 for a formal proof).
Fig. 4(a) shows a conceptual diagram of the splitting algorithm.

The first n nodes encountered using a “zigzag” operation on Fi,
are placed on the left column of Fi+1 in a sequential order.
The remaining n nodes are placed on the right column of Fi+1

following a similar “zigzag” operation, but starting from n + 2.
Fig. 4(b) shows the application of the splitting algorithm on the
first four 1-factors of a broadcast group of size 8. It also shows
the resulting FH sequences. Node 1 transmits a message m at F0.
The circles mark the nodes that have received m at the end of
each 1-factor. At the end of F0, m is received by 1 and 2, at the
end of F1, m is received by 1, 2, 3, and 4, etc. In fact, one can
verify that a broadcast initiated by any node in F0 is completed
by Flog2(8)−1 = F2. In Section 7, we prove that this property
holds for any broadcast initiated at any time slot.

5 ACCOMMODATING DYNAMIC GROUPS

In this section, we develop methods for updating the FH schedule
when the broadcast group is dynamic. Specifically, we design

Algorithm 3 Splitting Algorithm split

1: Fi+1(1, 1) = Fi(1, 1)
2: if n even then
3: Fi+1(1, 2) = Fi(

n
2 + 1, 2)

4: else
5: Fi+1(1, 2) = Fi(dn2 e, 2)
6: end if
7: for j = 2 to n do
8: Fi+1(j, 1) = Fi(d j2e, 2), if j even
9: Fi+1(j, 1) = Fi(d j2e, 1), if j odd

10: if n even then
11: Fi+1(j, 2) = Fi(dn+j

2 e, 1), if j even
12: Fi+1(j, 2) = Fi(d(n+j

2 e, 2), if j odd
13: else
14: Fi+1(j, 2) = Fi(dn+j

2 e, 2), if j even
15: Fi+1(j, 2) = Fi(d(n+j

2 e, 1), if j odd
16: end if
17: end for

a node addition mechanism that minimizes the changes in the
FH schedule of existing nodes. Our mechanism extends the FH
schedule based on F2n to a FH schedule based on F2n+2 by
constructing rainbow paths in complete graphs. We present a
protocol for communicating the modified FH schedule to existing
nodes using the newly deployed node, without direct connection
to the CA. For node deletion, we show how the remaining nodes
can modify their original FH schedule to an optimal schedule for
2n−2 nodes. This modification is performed individually, without
any information exchange. Finally, we show that the addition and
deletion mechanisms preserve the TDBS security properties.

5.1 Node Addition
The simplest method for accommodating dynamic broadcast
groups is to re-compute all FH sequences at the CA and directly
assign them to existing nodes. However, in several deployment
scenarios, on “always online” CA may not be available. To
address these scenarios, we design a node addition mechanism
that satisfies the following goals: (a) existing nodes are updated
without a direct connection to the CA, (b) the number of FH
schedule changes is minimized, and after the FH schedule update
the performance and security properties of TDBS are preserved.
Node addition is divided to the extension of F2n to F2n+2 and
the channel assignment for the new node pairs in F2n+2.
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Fig. 5: (a) The five 1-factors of F6. Shaded pairs are split pairs, (b) extension of F6 to F8. Shaded pairs are split pairs. Non-shaded
pairs of the last two factors are deferred pairs, (c) an R-path of length four in K6, (d) the augmented R-path.

5.1.1 Construction of F2n+2

Consider a broadcast group of 2n nodes (extending an odd size
group is trivially treated by adding the new node in the position
of the dummy one). Addition of one node requires the migration
from a rendezvous schedule constructed under F2n to a schedule
constructed under F2n+2. Before we describe our node addition
mechanism, we state the following useful definitions.

Definition 5: Split pair: A node pair scheduled to rendezvous
at Fi ∈ F2n is said to be a split pair if it does not rendezvous at
the same 1-factor Fi ∈ F2n+2.

Definition 6: Deferred pair: A node pair consisting of one
existing and one newly added node is said to be a deferred pair
if it is not scheduled during the first (2n−1) 1-factors of F2n+2.

As an example, consider the extension of the F4 shown in Fig.
5(a) to the F6 shown in Fig. 5(b). Pairs (1, 2), (1, 3), (4, 2), and
(4, 5) of F6 are split pairs because they do not rendezvous on
1-factors F0, F1, F2, and F3 of F8, respectively. Pairs (6, 7),
(5, 7), (3, 8), and (6, 8) of F8 are deferred pairs because they
consist of one existing node and one newly added node and do
not rendezvous during the first five 1-factors of F8. The number of
split and deferred pairs are related to the number of FH schedule
changes that must occur for the existing nodes as follows.

Proposition 2: The minimum number of FH schedule changes
for existing broadcast group members when migrating from F2n

to F2n+2 due to member addition is (8n− 4). This minimum is
achieved when (2n−2) pairs are split and four pairs are deferred.

Proof: The proof is provided in Appendix 2.

Based on Proposition 2, minimizing the FH sequence schedule
changes for the existing nodes reduces to the problem of con-
structing F2n+2 from F2n, such that (2n− 2) pairs are split. We
map the latter problem to the problem of constructing rainbow
paths in complete graphs. First, we introduce relevant definitions.

Definition 7: Proper edge coloring: A proper edge coloring
of G(V, E) is an assignment of colors to the edges in E , such that
all edges of the same color form a matching [24].

Definition 8: Rainbow path (or R-path): For a proper edge-
colored graph G(V, E), a path PR is called a rainbow path if all
edges in PR have distinct colors.

In our mapping, the nodes incident to an edge in PR represent
split pairs. According to Proposition 2, the minimum number of
such pairs is (2n− 2). Therefore, by finding an R-path of length

(2n−2) on K2n, we identify the pairs of F2n that must be split.
As an example, Fig. 5(c) shows an R-path of length (2n−2) = 4
on K6. The corresponding split pairs for extending F6 to F8 are
shown in Fig. 5(a) (shaded boxes).

An R-path of length (2n − 2) is not guaranteed to exist for
arbitrary proper edge-colored complete graphs [15]. Andersen has
conjectured that such R-paths do exist, but a formal proof remains
elusive [3]. To construct R-paths of length (2n− 2), we employ
the heuristic algorithm proposed in [15]. While this heuristic is
not guaranteed to always find an appropriate R-path for all graph
sizes, our simulations show that a solution is always found for
complete graphs of up to 80 vertices, which is sufficient for most
target applications. After PR is found, it is extended by adding the
edges formed by deferred pairs. These edges are added according
to the following proposition.

Proposition 3: Let PR = {v1, . . . , v2n−1} denote an R-path of
length (2n−2) on K2n. Let also vn ∈ K2n denote the only node
that is not part of PR, and v2n+1, v2n+2 denote the newly added
nodes when extending the schedule from F2n to F2n+2. The de-
ferred pairs are formed by (vn, v2n+1), (vn, v2n+2), (v1, v2n+1),
and (v2n−1, v2n+2).

Proof: The proof is provided in Appendix 3.

The cycle formed by the augmented path consists of split and
deferred pairs that must be scheduled during 1-factors F2n−1 and
F2n of F2n+2. To construct a conflict-free schedule for F2n−1 and
F2n, we traverse the cycle starting from any vertex. Each pair of
nodes corresponding to the vertices incident to a traversed edge
is assigned to either F2n−1 or F2n in an alternating fashion. As
an example, Fig. 5(d) shows one cycle for extending F6 to F8.
We traverse the cycle starting from node 1. Pairs (1, 2), (4, 5),
(7, 6), and (3, 8) are assigned to F5 (solid lines), while pairs
(2, 4), (5, 7), (6, 8), and (3, 1) are assigned to F6 (dotted lines).
The resulting rendezvous schedule shown in Fig. 5(b) is conflict-
free. Note that knowledge of the rendezvous schedule by all
broadcast group members does not compromise the secrecy of the
FH sequences, since the channel assignment for the rendezvous
pairs remains secret.

5.1.2 Channel Assignment in F2n+2

For the channel assignment, the CA computes the updated FH
sequences of existing and new broadcast group members. To
accommodate schedule changes while preserving the FH sequence
secrecy, we introduce a training phase in which a newly added
node communicates FH sequence updates to the existing nodes.
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FH sequence update phase: In this phase, the CA updates
the FH sequences of existing nodes to accommodate a conflict-
free rendezvous schedule according to F2n+2. This update is
performed as follows:

Step 1: The CA computes F2n+2 as described in Section 5.1.1.
Step 2: For Fi ∈ F2n+2, i ≤ 2n − 2, a node pair that consists
of existing nodes maintains the channel assignment of Fi ∈ F2n.
A node pair that consists of one new and one existing node is
randomly assigned a channel from C that does not conflict with
the existing assignments for Fi.
Step 3: For each of last two 1-factors of F2n+2, the CA randomly
selects a permutation π ∈ PK . Rendezvous pairs corresponding to
1-factors F2n−1 and F2n, are assigned frequency bands according
to the two random permutation selections for each 1-factor. Steps
2 and 3 are repeated a number of times equal to the length (in
1-factorizations) of the FH sequences.
Step 4: Let h′j denote the FH sequence changes for node vj .
The CA encrypts < h′j ||snj > with pkj and signs it with skCA

(snj denotes a sequence number). The encrypted updates of all
existing nodes are preloaded to the newly added node.
Step 5: The CA preloads the new node with a training FH
sequence th. The training sequence indicates the rendezvous
channels of split and deferred pairs according to F2n.

For example, consider the extension of the broadcast group
from six nodes to eight nodes due to the deployment of node 7.
The CA is aware of the FH sequences of nodes 1-6 based on F6,
which is shown in Fig. 5(a). In Step 1, the CA computes the F8

shown in Fig. 5(b). In Step 2, the channel assignments for pairs
that are not split in the first (2n−1) 1-factors remain intact (non-
shaded pairs in Fig. 5(a)). Pairs that consist of one new node (7
or 8) and one existing node are randomly assigned a channel such
that the schedule for F0 to F4 remains conflict-free. For instance,
let the channel assignment for pairs (3,4) and (5,6) for slot 0 be f1
and f2, respectively. In F8 and for the same slot, pairs (3,4) and
(5,6) still rendezvous on f1 and f2, respectively. New rendezvous
pairs (1,7) and (2,8) are randomly assigned channels f5 and f3,
such that the schedule for F0 ∈ F8 remains conflict-free.

In Step 3, the CA generates two random permutations for
defining the channel assignment for 1-factors F5 and F6. Note that
although these 1-factors contain the (2n−2) split pairs of F6, the
channel assignment of those pairs is not retained in the transition
from F6 to F8. This is because split pairs were scheduled to
rendezvous in different 1-factors of F6. Therefore, it cannot be
guaranteed that merging them to the same 1-factor will yield a
conflict-free schedule. Steps 2 and 3 are repeated a number of
times equal to the length of the FH sequences in 1-factorizations.
With every iteration, the permutations selections in Step 3 are
randomized.

In Step 4, the CA loads all the FH sequence changes to the new
node, which acts as a proxy for transferring channel assignments
to existing nodes. FH sequence changes are encrypted using the
public key of the destination node and are signed by the CA.
This is necessary for preventing the new node from knowing the
FH sequence changes for existing nodes and, therefore, protecting
against node compromise. Moreover, the attached CA signature
prevents the new node (or any other entity) from fabricated

fake FH sequence changes. Finally, the sequence number snj
prevents the replay of old FH sequence changes. In Step 5,
the CA preloads the new node with th. For instance, in the
extension from F6 to F8 depicted in Fig. 5, node 7 is preloaded
with {f (1,2)0 , f

(1,3)
1 , f

(4,2)
2 , f

(4,5)
3 , f

(2,6)
4 , f

(1,2)
5 , . . .}, where f (u,v)i

denotes the rendezvous channel of pair (u, v) on slot i.

Training phase: During the training phase, the newly added
node communicates the FH sequence changes to the existing
nodes. The training phase is as follows:

Step 1: The new node hops according to th. At every slot i,
the new node communicates with one existing node on channel
th(i). The updated node acknowledges the receipt of the schedule
change.

Step 2: Updated nodes hop according to the new FH sequences
and remain in receiving mode.

Step 3: The new node continues to hop according to th until
all existing nodes are updated.

Step 4: Upon the completion of all updates, the new node
switches to its own FH sequence, which conforms to the new
schedule (according to F2n+2).

Step 5: The new node notifies all existing nodes (who remain
in receiving mode) of the training phase termination.

Following with the example of Fig. 5, node 7 hops ac-
cording to the training sequence {f (1,2)0 , f

(1,3)
1 , f

(4,2)
2 , f

(4,5)
3 ,

f
(2,6)
4 , f

(1,2)
5 , . . .}. Node 7 sequentially conveys FH sequence

changes to nodes 1, 3, 4, 5, 6, and 2. Once all FH sequence
updates are completed, node 7 switches to its own FH schedule
and notifies all existing nodes of the training phase termination.

5.2 Node Deletion
When nodes leave the broadcast group, a process reverse to node
addition is followed. Consider the reduction of the broadcast
group from (2n + 2) to 2n members (deletion of a single node
from an even size broadcast group does not cause any schedule
change. A dummy node replaces the departing node in the
rendezvous schedule). The FH schedule constructed under F2n+2

has to be migrated to a schedule constructed under F2n. We first
provide relevant definitions.

Definition 9: Peerless node: A node is said to be peerless, if
it rendezvous with a departing node at a given 1-factor.

Definition 10: Merged pair: A pair is said to be merged, if it
consists of two peerless nodes of the same 1-factor.

The steps for constructing F2n, based on F2n+2 are as follows:

Step 1: For every 1-factor of F2n+2, peerless nodes are merged
to form merged pairs.
Step 2: The two 1-factors of F2n+2 that consist solely of merged
pairs are deleted from F2n+2 to form F2n.
Step 3: A merged pair (u, v), consisting of two peerless nodes
of Fi ∈ F2n+2, selects the channel assigned to either u or v in
Fi ∈ F2n+2, to rendezvous at the corresponding 1-factor of F2n.

For example, consider the rendezvous schedule for a broadcast
group of size eight shown in Fig. 6(a). Assume that nodes 3
and 4 leave the broadcast group. In Step 1, peerless nodes form
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Fig. 6: (a) 1-factorization F8, (b) peerless nodes are joined to form merged pairs. 1-factors F2 and F5 which consist only of merged
pairs are deleted to generate F6, (c) highlighted pairs indicate the channel assignment changes that must occur due to member
deletion. Merged pairs select one of the channel assigned to them during the respective 1-factors of F8 before the member deletion.

the merged pairs indicated in Fig. 6(b). In Step 2, 1-factors
F2 ∈ F8 and F5 ∈ F8, which consist solely of merged pairs that
already rendezvous in other 1-factors, are deleted. The resulting
1-factorization F6 is shown in Fig. 6(c). Since, every node is
aware of the same 1-factorization F2n+2, it is straightforward to
show that each node can independently compute F6 via Steps
1 and 2. In Step 3, merged pairs use their rendezvous channels
according to F8 to agree on the rendezvous channels in the new
1-factorization. For example, consider the merged pair (7, 6) that
is created at 1-factor F1 ∈ F8. After migrating from F8 to
F6, nodes 6 and 7 select one channel from {f (7,3)1 , f

(6,4)
1 } as

their rendezvous channel for F1 ∈ F6. The channel selection
can be automated by a deterministic rule (e.g., select the channel
assigned to the peerless node with the lowest id). This process is
repeated for all slots that correspond to F1.

Note that this assignment always leads to a conflict-free sched-
ule for F2n because the schedule based on F2n+2 is conflict-free.
Hence, the channels assigned to peerless nodes within the same
1-factor are not assigned to any other node pair. The channel
assignment for merged peerless nodes is only known to the those
nodes. Hence, the secrecy of the assignment is preserved (we
assume that the departing nodes are no longer part of the system
and therefore, cannot be compromised).

6 TDBS IN MULTI-HOP NETWORKS

In this section, we extend the operation of TDBS to multi-hop
networks. In this scenario, the FH sequence design can be viewed
as a global scheduling problem. While several distributed methods
have been proposed for distributed scheduling (e.g., [9], [14]),
we note that these methods require coordination via a common
channel. However, such a channel can be blocked by an inside
jammer. We, therefore, develop a scalable solution that does not
rely on the existence of a common channel. We partition the
network into clusters where each cluster forms a clique [34]. We
then divide the broadcast operation into two phases; an intra-
cluster phase and an inter-cluster phase. During the intra-cluster
phase, communication is limited within each cluster. In the inter-
cluster phase, messages are exchanged between border nodes of
adjacent clusters. The two phases are interleaved in time.

6.1 Intra-cluster Phase

In the intra-cluster phase, a broadcast message propagates to all
cluster nodes. Because the nodes of a cluster form a clique, the
SU or the AB mode of TDBS can be employed for broadcast. To

avoid interference between adjacent clusters, the set of available
frequency bands C is partitioned to four subsets, which are
assigned to clusters according to the four-color theorem [4].
One such assignment is shown in Fig. 7(a). The shading pattern
denotes a separate set of frequency bands assigned to each cluster.
In this example, ten channels are assigned per cluster. The steps
for deriving FH sequences for this phase are as follows.

Step 1: Color each cluster using the four-color theorem.
Step 2: Assign a subset of channels to each cluster according to
its color.
Step 3: For each cluster, construct FH sequences using either the
SU mode or the AB mode.

6.2 Inter-cluster Phase
In the inter-cluster phase, border nodes relay broadcast messages
beyond the origin cluster. To do so while avoiding schedule
conflicts, we exploit the cluster coloring produced by the four-
color theorem. During this phase, every time slot is marked with
one of the four colors, indicating the clusters that are allowed
to transmit on that slot. As an example, in Fig. 7(b), clusters A
and D are scheduled to transmit during slots i : i mod 4 = 0,
clusters C and F are scheduled to transmit on slots i : i
mod 4 = 1, clusters B and E are scheduled to transmit on
slots i : i mod 4 = 2, and cluster G is scheduled to transmit
on slots i : i mod 4 = 3, (slot numbers indicate the assignment
before the interleaving with the intra-cluster phase). After the slot
coloring, the FH sequences are generated as follows.

Step 1: For each cluster x, find the nodes in x bordering adjacent
clusters. Place these nodes to a set A.
Step 2: For each vi ∈ A, find the neighbors of vi in adjacent
clusters and assign them to vi. If a neighbor is common to
more than one nodes in x, assign it to the node with the fewer
neighbors. Break ties arbitrarily. Merge nodes assigned to the
same vi to a single vertex and place vertices to set B. Create a
bipartite graph G(A∪B, E), where an edge (vi, vj) exists if nodes
corresponding to vj ∈ B are assigned to vi ∈ A. By construction,
graph G forms a 1-factor Fx.
Step 3: For each slot colored with x’s color, obtain a random
permutation π ∈ PK .
Step 4: Assign frequency bands in π to the first min{n,K}
unassigned pairs of Fx.
Step 5: Repeat Steps 3 and 4 until all pairs in Fx are assigned a
frequency band.
Step 6: Repeat Steps 1-5, until all clusters are processed.
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Fig. 7: (a) The intra-cluster phase, (b) the inter-cluster phase.

The inter-cluster phase is illustrated in Fig. 7(b). Clusters A
and D are scheduled to broadcast during slots 0, 4, 8, . . . of the
inter-cluster phase. Nodes 2, 3, and 4 belong to set A of cluster
A, as they are border nodes. Nodes 9 and 10 of cluster G are
assigned to node 2 and are merged to a vertex in B, nodes 11
and 12 of cluster F are assigned to node 3 and are merged to a
second vertex in B, and nodes 7 and 8 of cluster B are assigned
to node 4 and are merged to a third vertex in B. In slot 0, the
communicating pairs are (2− 9, 10) (3− 11, 12) and (4− 7, 8),
and are assigned frequency bands f11, f22, and f2, respectively.
Similarly, for cluster D and slot 0, the communicating pairs are
(5 − 6, 13) (14, 15) and (16, 17), and are assigned frequency
bands f8, f33, and f25, respectively. Note that during the inter-
cluster phase, all channels in C are available for assignment to
the communications of adjacent pairs of nodes. The intra-cluster
and inter-cluster slots are interleaved in the FH design, to allow
for both single hop and multi-hop broadcast transmissions.

7 PERFORMANCE AND SECURITY EVALUATION

In this section, we evaluate the performance of TDBS by analyz-
ing the broadcast delay, defined as follows.

Definition 11: Broadcast Delay D: Number of slots required
until all broadcast group members have received a copy of the
broadcasted message.

The broadcast delay is the inverse measure of the throughput
achieved by the TDBS broadcasting operation. In the absence of
jammers, the broadcast delay of TDBS is given by the following
two propositions.

Proposition 4: The broadcast delay of the TDBS-SU is D =
d nK e(2n− 1) slots.

Proof: The proof is provided in Appendix 4.

Proposition 5: The TDBS-AB mode minimizes the broadcast
delay when broadcast is realized as a series of concurrent
unicast transmissions. This minimum delay is equal to D =
d nK edlog2(2n)e slots.

Proof: The proof is provided in Appendix 5.

Although TDBS is designed for enabling broadcast in the
presence of internal jammers, we can evaluate the per-node
throughput in the absence of jamming. By design, a node has
the opportunity to access one slot every d nK e slots. Hence, the

per node throughput is equal to 1
d n
K e

, if a node is backlogged with
traffic to all other nodes. Alternatively, the per-node throughput
can be defined as the inverse of the delay to rendezvous with a
specific node. For the latter definition, the per-node throughput is
equal to the inverse of the delay stated in Proposition 4. This is
because two nodes rendezvous every d nK e(2n− 1) slots.

7.1 Security Analysis
We first analyze the resilience of TDBS to external and internal
jammers for single-hop networks.

7.1.1 Resilience to External Jammers
Under an external threat model, the FH sequences assigned
to various nodes are assumed secret. This is because the FH
sequences are based on random permutations of the channel set
C, which independently change on a per-slot basis. Hence, within
a FH sequence period, knowledge of previous channel hops does
not reveal any information about future ones. A jammer acting as
an eavesdropper by randomly hopping on various channels would
require many FH sequence periods to reconstruct the FH sequence
of a node. To do so, the node must be a transmitter at every slot
within a FH sequence period (or several periods) and the jammer
must overhear every transmission made by the target node.

For the external jammer scenario, we assume that the adversary
deploys multiple jamming devices that can jam up to J frequency
bands per time slot, with J < K. For convenience, we assume
K ≥ n so that all node pairs corresponding to a 1-factor
can communicate in parallel in one time-slot. Our results can
be extended to the K < n case in a straightforward manner.
Suppose that a jammer attempts to jam the broadcast of a single
node vj . To compute D, we evaluate the average number of 1-
factorizations needed to complete the broadcast in the presence
of the external jammer, and for each TDBS mode.

Proposition 6: In the presence of an external jammer, the
expected number E[Z] of 1-factorizations needed to complete a
broadcast operation in the SU mode is:

E[Z] = (1− p)2n−1 +
∞∑
i=2

i(1− pi−1)2n−1 ×

2n−1∑
k=1

(
2n− 1

k

)(
pi−1(1− p)
1− pi−1

)k

, (1)
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Fig. 8: (a) E[Z] as function of the jamming probability p when K = 20, (b) E[D] as a function of jamming probability p when
K = 20, (c) E[D] as a function of K when 2n = 10.

where p = J
K denotes the jamming probability.

Proof: The proof is provided in Appendix 6.

We further compared the theoretical value of E[Z] with the sim-
ulated one as a function of p = J

K . We performed our simulation
experiments using MATLAB 2012 [20]. We generated sequences
of length 1, 000 according to Algorithm 1. We randomly selected
J channels to be jammed per time-slot, out of a total of K = 20
channels. To isolate the impact of jamming, we ignored any
losses due to the imperfections of the wireless channel. Two
nodes scheduled to rendezvous over a jamming-free channel were
assumed to successfully complete one packet transmission. If the
jammer was present on the rendezvous channel, the packet was
assumed to be lost. All results were averaged over 100 runs. In
Fig. 8(a), we observe that the simulation values of E[Z] agree with
the theoretical ones. As expected, the number of 1-factorization
needed to complete a broadcast increases with p.

Proposition 6 allows us to compute the expected broadcast
delay E[D] for an external jamming scenario. This delay is
approximated by the expected number of 1-factorizations needed
for the completion of a broadcast, times the number of slots
needed for the completion of one 1-factorization. Specifically,
the first (E[Z]− 1) 1-factorizations require (2n− 1) slots, while
the last 1-factorization requires, on average, 2n−1

2 slots (the
last successful transmission takes place on any of the 1-factors
of the last 1-factorization with equal probability). Therefore,
E[D] = (2n− 1)

(
E[Z] + 1

2

)
.

Fig. 8(b) shows the theoretical and simulated values of E[D]
as a function of the jamming probability p, when K = 20.
We observe that even when the adversary jams 80% of the
available channels (i.e., 16 out of 20), nodes can still complete
their broadcast transmissions at the expense of some delay. We
note that broadcast communication is maintained as long as at
least one channel remains jam-free. In Fig. 8(c), we show E[D]
as a function of K for various J. E[D] decreases with K, and
approaches the asymptotic value obtained in the absence of a
jammer, as it is expressed in Proposition 4.

For the AB mode, E[D] does not have a simple closed-form
expression but involves complex summation formulas. However,
we can derive useful lower and upper bounds when J = 1.

Proposition 7: Let the per-slot jamming probability be equal
to p = 1

K , and let K ≥ n. After the first successful relay of a

broadcast message m, the broadcast delay D2 until m is received
by (2n− 2) nodes (all nodes but one) is bounded by,

dlog2(2n)e − 1 ≤ D2 ≤ dlog2(2n)e. (2)

Proof: The proof is provided in Appendix 7.

Proposition 7 allows us to estimate the expected broadcast
delay for the AB mode. Let D1 denote the expected delay until the
first success, D2 the delay until (2n− 2) nodes receive message
m and D3 the delay until the last node receives m. The expected
broadcast delay is bounded by

E[D] = E[D1 +D2 +D3]

≤ K

K − 1
+ dlog2(2n)e+

K

K − 1
. (3)

In (3), we have used the fact that it takes, on average, K
K−1 slots

for the first successful relay when p = 1
K . After the first success,

dlog2(2n)e slots are needed in the worst case until (2n−2) nodes
receive m. The last node receives m after K

K−1 slots, on average.
We also studied the performance of the AB mode via simula-

tions. We generated FH sequences of length 1, 000 hops according
to Algorithm 2. We randomly selected J channels to be jammed
per time slot. All results were averaged over 100 runs. Fig. 9(a)
shows E[D] as a function of K for J = 1. We observe that
the theoretical bound derived using Proposition 7 agrees with
the simulation. In Fig. 9(b), we show the simulated average and
worst-case broadcast delay as a function of p. We observe that
even when p = 0.83 (i.e., 10 out of 12 channels are jammed), the
average and worst-case delays differ by less than six slots. This
is due to the “relay explosion” effect of the splitting algorithm.
The AB mode is significantly more resilient to jamming than the
SU mode, due to the larger number of broadcast relays. Even
when 83% of the available channels are jammed, the AB mode
requires only 38 slots to complete a broadcast, compared to 228
slots needed in the SU mode. In Fig. 9(c), we show E[D] as a
function K for different J . We observe that with the increase of
K, E[D] asymptotically approaches the performance of the AB
mode in the absence of jammers, given by Proposition 5.

7.1.2 Resilience to Internal Jammers
In this set of experiments, we assumed that the adversary has
compromised r nodes and recovered their FH sequences. We are
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interested in determining the broadcast delay until the remaining
(2n − r − 1) legitimate nodes receive a broadcast message
m. Knowledge of the r FH sequences reduces the adversary’s
uncertainty with respect to the rendezvous channels of legitimate
pairs. This is because the channels assigned to each 1-factor form
a permutation of the set of available channels C. The exact value
of E[D] depends on the 1-factorization that is used to construct the
FH sequences and the specific arrangement of the compromised
nodes on that 1-factorization. The jamming probability p varies
on a slot-by-slot basis and is given in the following proposition.

Proposition 8: Under the compromise of r nodes, the jamming
probability p is bounded by

min{1, J

K − d r2e
} ≤ p ≤ min{1, J

K − r
}. (4)

Proof: The proof is provided in Appendix 8.

We further used simulations to investigate the impact of node
compromise on the broadcast delay. We generated FH sequences
of length 1, 000 hops according to Algorithms 1 and 2 (depending
on the TDBS mode). We randomly selected r of these sequences
to be exposed to the adversary. At each time slot, the adver-
sary randomly jammed J bands, excluding the exposed ones.
A broadcast was deemed successful, when all legitimate nodes
obtained a message copy. All results were averaged over 100
runs. Figs. 10(a) and 10(b) show E[D] as a function of r when
J = 3 and K = 10, 12, and 20. We observe that legitimate nodes
complete their broadcast transmissions even when more than 50%
of the broadcast group has been compromised. The AB mode
exhibits significantly lower delay compared with the SU mode,

due to the use of multiple relays. Note that when K is small and
several nodes are compromised, the jammers have a high chance
of jamming legitimate pairs. This fact can be seen from the sharp
increase of E[D] when K = 10.

In Figs 10(c) and 10(d), we show E[D] as a function of r
and for various J when K = 10, for the SU and the AB
communication modes. Even with the increase of J , legitimate
nodes are able to complete their broadcast transmissions in both
modes, with the AB mode being the most efficient. Note that in all
graphs of Fig. 10, E[D] decreases when a large number of nodes
is compromised, since fewer legitimate nodes need to receive the
broadcast message for completing a broadcast transmission.

7.2 Evaluation of Multi-hop Scenarios

In this section, we evaluate TDBS for multi-hop networks.
We focus on the jamming-resistance of the inter-cluster phase,
since for the intra-cluster phase, the security analysis for single-
hop networks holds. For the inter-cluster phase, we define the
following performance metrics.

Definition 12: Flooding Delay Df : Number of slots needed
until all clusters adjacent to a cluster x, have received a broadcast
that originated from a node in x.

Definition 13: Escape Delay De: Number of slots needed until
a broadcast message that originated at a cluster x is received by
any node in any adjacent cluster.

Definition 14: Escape diversity DIV : Fraction of adjacent
clusters that receive a broadcast directly from a cluster x, when
a subset of the border nodes in x are compromised.
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We first analytically evaluate E[Df ] in the presence of external
jammers. Assume a cluster with NC adjacent clusters. Let NL

denote the average number of “bridge links” between two adjacent
clusters.

Proposition 9: In the presence of an external jammer, E[Df ]
is equal to

E[Df ] = (1− p̃)NC +

∞∑
i=2

i(1− p̃i−1)NC ×

NC∑
k=1

(
NC

k

)(
p̃i−1(1− p̃)
1− p̃i−1

)k

, (5)

where p̃ =
(
J
K

)NL denotes the probability that all NL links to
an adjacent cluster are jammed at a particular slot.

Proof: The proof of Proposition 9 follows the same steps
as the proof of Proposition 6, by substituting p = J

K with p̃ =(
J
K

)NL . We refer to the proof provided in Appendix 6.

We also verified Proposition 9 via simulations. In our setup, we
generated a multi-hop topology consisting of 50 nodes, organized
in clusters. We then generated FH schedules for all nodes in the
network for the inter-cluster phase, according to the algorithm
described in Section 6.2. At each time slot, the jammer was
assumed to block J random frequency bands across the entire
network. Results were averaged over all clusters in the network.
Fig. 11(a) shows E[Df ] as a function of the jamming probability
p. We observe that, even when 80% of the available frequency
bands are jammed, only 13 inter-cluster slots are needed until
all neighboring clusters directly receive a broadcast. We also
evaluated the expected escape delay E[De] under the compromise
of r border nodes.

Proposition 10: Under the compromise of r border nodes of a
cluster x, E[De] is given by,

E[De] =
1

1−
(
PNL
c +

∑NL

i=1

(
NL

i

) (J(1−Pc)
K−r

)i)NC
, (6)

where Pc =
r

NC×NL
denotes the compromise probability.

Proof: The proof is provided in Appendix 9.

The expected escape diversity E[DIV ] is evaluated in the
following proposition.

Proposition 11: Under the compromise of r nodes, E[DIV ] is
given by

E[DIV ] = 1− PNL
c . (7)

Proof: The proof is provided in Appendix 10.

Figs 11(b) and 11(c) show E[De] and E[DIV ] as a function
of the number of compromised border nodes. In our simulation,
compromised border nodes do not relay messages and their FH
sequences are assumed to be known to the jammer. From Fig.
11(b), we observe that a small number of slots is sufficient for
the first copy of a broadcast message to reach one adjacent cluster.
From Fig. 11(c), we observe that more than 90% of neighboring
clusters are guaranteed to receive the broadcast message when
NL = 3, while this value being reduced to 50% when NL = 2.
We emphasize that even if certain adjacent clusters do not receive
the broadcast message directly from the originating cluster, such
a relay can occur indirectly via other clusters.

7.3 Evaluation of Dynamic Groups
Our evaluations so far considered network snapshots of static
broadcast groups. This is because the broadcast delay is orders
of magnitude smaller than the time scale of group dynamics. A
group membership change affects the delay characteristics of a
limited number of broadcasts due to the execution of the training
phase. In this section, we evaluate the delay overhead until the
FH schedule is updated when nodes are added or deleted.

Node addition: A node addition involves the expansion of F2n

to F2n+2, the computation of the modified FH schedule by the
CA, and the training of existing nodes by the newly deployed
ones. The construction of F2n+2 is individually performed by
existing nodes, without requiring any message exchange. The
computation of the modified FH schedule is done by the CA
before the deployment of the new node, without any input from
existing nodes. Communications take place during the training
phase only, when the newly added node communicates the FH
schedule changes to existing nodes. This phase is equivalent to
the SU operation mode.

To complete the training phase, the newly added node must
unicast one FH sequence update message to each deployed node.
The FH sequence th followed by the newly added node during the
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training phase allows this node to communicate with one existing
node per slot. This is identical to the SU mode, where the source
node unicasts the same broadcast message to one other node per
slot. Under an external jamming model, the delay incurred during
the training phase is given by Proposition 6, where 2n − 1 is
replaced with 2n (the newly added node has to communicate
with 2n other nodes instead of 2n − 1). For internal jammers,
the broadcast delay is obtained by the simulations presented in
Section 7.1.2 for the SU mode. This delay represents the training
phase delay.

Node deletion: When nodes are deleted from the broadcast
group, the remaining nodes individually modify their FH se-
quences without any information exchange. The only information
required is the identities of the deleted nodes, which can be
communicated using a single broadcast message originating from
the group leader.

8 RELATED WORK
The jamming problem has been extensively studied under an
external threat model (for example, see [30] and the references
therein). Jamming is typically mitigated by spreading the trans-
mitted signal to a larger bandwidth using a secret PN code.
Without knowledge of the PN code, the jammer has to transmit
with several orders of magnitude more power than the transmitter
(typically 20-30 dB) to interfere with ongoing transmissions.
However, in broadcast communications, compromise of common
PN codes suppresses the advantages of SS.

Several researchers have considered the jamming problem
under an inside threat model. Chan et al. showed that a jammer
that targets the broadcast control channel in GSM networks
can reduce the required power for performing a DoS attack by
several orders of magnitude [8]. To alleviate jamming, the authors
proposed the BBK scheme, in which base stations (BSs) broadcast
over several control channels in parallel. Each node is preloaded
with the “locations” of a subset of the available channels. These
locations are determined according to a cryptographic combi-
natorial design. If the number of compromised nodes is less
than a threshold T , all legitimate nodes receive the broadcast
transmission in one slot. Otherwise, all broadcast communications
are blocked. Compared with the BBK scheme, in TDBS, nodes
transmit on one channel per slot. Moreover, TDBS implements
an any-to-any communication model as opposed to an one-to-
any communication model. In [31], [32], the BBK scheme was
extended to a probabilistic combinatorial design that provides a
graceful degradation in performance as a function of the number
of inside jammers. Similar to the BBK scheme, the authors allow
the BS to simultaneously broadcast over multiple channels.

Alternative methods eliminate the dependency on shared secrets
[16], [19], [26]. Pöpper et al. proposed a DSSS-based method
called Uncoordinated DSSS (UDSSS) [26]. In UDSSS, broadcast
transmissions are spread according to a PN code, randomly
selected from a public set of codes. Receivers must exhaustively
apply all codes in the codebook to recover the broadcast message.
Liu et. al. showed that UDSSS is vulnerable to a reactive jammer
with sufficient computational power to recover the PN code before
the end of an ongoing transmission [19]. They proposed RD-
DSSS, a randomized differential DSSS scheme, that expands

the public code set and discloses the selected code after the
message transmission has ended, thus providing resilience to
reactive jammers. The computational efficiency of RD-DSSS was
further improved in [17] by encoding the seed of the PN code
used to spread a message, at the end of that message. This delayed
seed disclosure prevented a jammer from acquiring the PN code
before the message was fully received.

DSSS-based schemes are not directly comparable with TDBS
because they employ different physical-layer mechanisms for
rejecting narrowband interference. DSSS communications are
resilient to low/medium interference levels. A powerful jammer
that is unaware of the PN spreading sequence can eventually
overwhelm a DSSS receiver if its power is raised to sufficient
levels. This is because any increase in interference power in-
creases the despread noise floor in a linear fashion [2], [30]. In a
FHSS system, a narrowband interference signal has no effect on
communications taking place in frequencies outside the targeted
band. Hence, a power increase in the narrowband interference
will not impact the system’s interference rejection capability.
However, FHSS systems require band orthogonality with guard
bands exceeding the 200KHz. Moreover, FHSS transceivers must
be capable of accessing a large spectrum, thus complicating the
transceiver design.

Several methods attempt to identify the compromised nodes
that leaked information to the jammer. Lazos et al. proposed the
assignment of unique FH hopping sequences to each receiver,
overlapping in a fixed subset of hops [16]. A compromised node is
identified when the jammer follows the node’s unique PN code (or
a unique subset of it). Tague et al. proposed the GUIDE scheme
for identifying compromised nodes based on the set of channels
that are jammed. They formulated the identification problem as a
maximum likelihood estimation problem [32].

Chiang and Hu, developed a code-tree based approach for
identifying compromised PN codes [10]. In this design, each
node is assigned a subset of orthogonal pseudo-noise (PN) codes
(either DS or FH codes). A broadcasting node communicates with
the broadcast group using several PN codes. The goal of the
transmitter is to identify a set of codes that covers all legitimate
receivers and excludes the compromised ones. Once the system
converges to a disjoint set cover of the legitimate receivers, the
broadcast delay becomes equal to one slot. A broadcaster must
repeat its transmission using a minimum number of codes related
to the number of jammers.

TDBS is also related to a class of rendezvous protocols that
were recently proposed for regulating dynamic spectrum access
[1], [7], [37], [38]. Zhang et al. proposed the decomposition of
complete graphs to perfect rainbow matchings to generate the ren-
dezvous schedule of secondary users in cognitive radio networks
(CRNs) [38]. This is equivalent to creating a 1-factorizations of
complete graphs. The perfect matchings proposed in [38] are a
function of the number of available channels, but independent
of the number of nodes. When the group size is larger than the
number of channels, the same FH sequence is assigned to more
than one nodes. Moreover, the FH sequence period is equal to
(2K−1), where K is the number of available channels. In TDBS,
the perfect matchings are a function of the broadcast group size
rather than the number of channels. Hence, nodes are guaranteed
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to hop using unique, collision-free FH sequences, with much
longer periods.

Rahman et al. proposed three adaptive FH algorithms for
multicast rendezvous in DSA networks [1]. Their algorithms
guarantee the rendezvous of all nodes on the same slot without
requiring synchronous FH. The FH sequence design is based on
two special quorum systems that satisfy the rotation k-closure
property. They also account for the PU dynamics by designing
optimal channel ordering mechanisms.

9 CONCLUSION

We proposed TDBS, a scheme for jamming-resistant broadcast
communications in the presence of inside jammers. In TDBS,
broadcast is realized as a series of unicast transmissions dis-
tributed in frequency and time. Because the adversary is limited in
the number of channels he can jam, several unicast transmissions
remain interference-free. We mapped the problem of constructing
FH sequences for the TDBS to the problem of 1-factorization of
complete graphs. We further developed mechanisms for updating
the FH sequences assigned to nodes, when the broadcast group is
dynamic. We mapped the problem of minimizing the number of
FH sequence changes required for node addition, to the problem
of finding rainbow paths in proper edge-colored complete graphs.
We analytically evaluated the security properties of TDBS under
both an external and an internal threat model and showed that
TDBS maintains broadcast communications even when multiple
nodes are compromised.
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