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Abstract—Currently, Wi-Fi (IEEE 802.11) is the most widely
adopted wireless technology for mobile traffic offloading at hot
spots. Despite its great success, Wi-Fi is constrained by the over-
crowded unlicensed spectrum, which leads to poor user experience,
especially in urban areas. This work introduces an opportunis-
tic cooperation framework that allows mobile service providers
(MSPs) to offload traffic onto each other’s network by harvesting
short-lived spectrum/resources of cellular systems. Specifically,
through traffic offloading, MSPs aim to maximize their profit
while maintaining their quality of service (QoS) commitments. For
that purpose, we model the strategic cooperation between MSPs
as a stochastic Markov game in which the dynamics of resource
availability and user behaviors are captured via a Markov decision
process (MDP). We prove that the game is irreducible and admits a
Nash Equilibrium at which all MSPs benefit from traffic offloading.
A practical algorithm that uses only local information to govern
traffic offloading at MSPs is then developed. Numerical simulations
show that by designing appropriate profit sharing contracts, our
proposed algorithm can achieve almost the same performance as
that of a socially optimal solution. The derived traffic offloading
strategies not only improve QoS and revenue for MSPs, but also
can be used to guide MSPs on when to turn off their base stations
while the traffic volume is light (e.g., during nighttime).

Index Terms—Traffic offloading, short-lived whitespaces, coop-
eration, incentives, cellular systems, noncooperative game, stochas-
tic Markov game, Markov decision process, queuing theory.

I. INTRODUCTION

Mobile data traffic has grown dramatically in recent years,
and is estimated to increase by more than a thousand-fold in the
next 10 years [2]. To accommodate such ever-increasing traffic
demand, mobile service provider/operators (MSPs) will have to
either acquire additional radio spectrum or improve spectrum
utilization by deploying additional small cells and reuse the
spectrum more intensively. However, both approaches can be
costly and time-consuming. Another alternative is to offload
mobile traffic to Wi-Fi networks. According to Cisco [3], by
2021, 63% of the total mobile data traffic will be offloaded.
Currently, Wi-Fi (IEEE 802.11) is the most widely adopted
solution for offloading mobile traffic at hot spots (through dual-
mode devices). In 2016, more traffic was offloaded from cellular
networks (onto Wi-Fi) than the traffic that remained in cellular
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networks. Despite its great success, Wi-Fi is constrained by the
over-crowded unlicensed spectrum, which leads to poor user
experience, especially in urban areas [4].

In this work, we take a further step to enable traffic offloading
between MSPs. Specifically, when receiving service requests,
an MSP can decide whether to serve its customers (we use
the terminology “customers” or “service requests” in queuing
theory to mean communications sessions in cellular systems)
or redirect them to other MSPs. An MSP should also decide to
either serve or reject customers offloaded from other MSPs. The
decision depends not only on the MSP’s resource availability,
but also on the reward/payment from the customer, and the
quality of service (QoS) commitment. This commitment requires
that an MSP will only share its resources if its QoS target is
guaranteed. In this article, QoS is measured in terms of the
probability that a given customer is not served.

Traffic offloading between MSPs is in line with the well-
known spectrum sharing/trading concept, in which temporar-
ily unused spectrum can be traded for a profit. Despite the
many spectrum economics/sharing and auctioning mechanisms
proposed in the literature, a dynamic spectrum market is still
unlikely to be deployed in the near future. There are various hur-
dles to overcome, including both policy and economic aspects,
e.g., MSPs unwillingness to help improve the performance of a
competitor. Additionally, temporarily unused spectrum chunks
are highly dynamic in both temporal and spatial dimensions.
Consequently, MSPs are not willing to share/trade their spec-
trum but rather maintain their exclusive ownership so that they
can access the spectrum whenever and wherever needed.

Existing works on spectrum and base stations sharing (e.g.,
[5] [6] [7]) capture the user traffic using a random variable with
known pdf. In [5], the authors use the newsvendor model in
operation research to study the revenue-sharing between MSPs
for their traffic roaming/offloading service. They also investigate
the impact of traffic roaming on MSPs’ infrastructure invest-
ment strategies. A set of revenue-sharing contracts that provide
incentives for both MSPs is introduced and characterized. In
[7] and [6], the energy efficiency through base station sharing
is proposed using game theory. The competition of MSPs
for customers under spectrum sharing is explored in [8]. The
authors of [8] find that competition in the unlicensed spectrum
can potentially decrease social welfare. However, competition
under shared spectrum leads to a always non-decreasing social
welfare function.



The traffic model in the above works neglects time variability,
e.g., the arising of a service request and its service time (e.g.,
file size). In other words, these works did not take into account
the dynamics of cellular user and hence fail to harvest short-
lived whitespaces. In fact, short-lived whitespaces in the cellular
band are very significant. Real-life cellular system traces show
that short-lived whitespaces account for more than one third of
the entire frequency-time resources of the cellular bands, even
in urban areas [9], [10]. Recent spectrum sharing architectures
by FCC (e.g., Spectrum Access Systems or SAS) and ETSI
(namely Licensed Shared Access or LSA) [11] [12] tend to
ignore the short-lived whitespaces. On the other hand, the long-
lived whitespaces like the ones found in the TV bands (Figure
1) are very limited (0, 1 or 2 channels at a time) and becoming
less and less available, especially in the populated urban areas
where most traffic demand arises.

Traffic offloading is also in line with the infrastructure
sharing, e.g., [13], [14], [15], [16]. The authors in [13] propose
a model to study the network planning while accounting for
both possible cooperative resource sharing and competition
regulation amongs MSPs. [14] investigates the infrastructure
sharing using game theory and Poisson process to model the
traffic arrival. The outcomes of [14] are probabilities for a
base station to be switched off/on. The base station switching
problem is also considered in [16] under the joint consideration
of both uplink and downlink traffic. The network infrastructure
sharing has been recently addressed under the concept of
network slicing, e.g., [15] where the authors consider the slicing
of radio access network resources by multiple service providers.
All these works focus on the action of MSPs at a macro and
long-term level (e.g. at the base station). By contrast, the focus
of our work is the strategic admission of every single service
request/user to harvest short-lived spectrum whitespace.

To that end, we formulate the traffic offloading problem
between MSPs as a constrained Markov game [17] [18] in
which MSPs or players aim to maximize their revenue rate
(i.e., average revenue over the time horizon) while maintaining
the QoS commitment. We model the traffic load using a
random process and more importantly we consider the decision
(admit, offload, or reject) for every single request/user using a
Markovian game of queues. The dynamics of user behaviors
and resource availability are captured by an underlying Markov
Decision Process (MDP). Doing so allows us to utilize spectrum
opportunities/whitespace that are as small as those used to
serve a single user/request. The time-scale of spectrum/resource
sharing in our case is also as fine as that of a user/service
request. Our proposed model and results can be applicable to
any user mobility model.

For simplicity, we assume there are two MSPs in the game
(the case of more than two MSPs follows similarly). We show
that the game admits at least one Nash Equilibrium (NE) at
which both MSPs gain higher average revenue by offloading
traffic, especially when one experiences heavy traffic. When
both MSPs have very light traffic (e.g., during nighttime), the
reward rates at the NE can be used as a benchmark so that
MSPs can make decisions on switching base stations on/off to
save operating cost (e.g., energy). The theoretical results herein
are not only applicable to cellular systems but also to extend

to more general settings involving competitive and cooperative
admission control in queuing systems. It is worth noting that
although there is a rich literature in queuing theory, the study
on strategic admission control between two queues has yet been
reported.

To facilitate practical implementation, we design an efficient
algorithm that achieves a tight lower-bound on the reward rate
of the above Markov game using trunk reservation policy [19]
[20]. The algorithm requires only local information to guide
MSPs on making their decision of rejecting/admiting customers.
Note that our proposed framework that enables traffic offloading
between MSPs to harvest short-lived whitespaces in cellular
bands differs from existing opportunistic traffic offloading, e.g.
[21] [22], that facilitates offloading between mobile devices or
Wi-Fi offloading.

The problem statement is presented in Section II, where
the stochastic Markov game is formulated (Section II-A) and
its NE existence and characterization are presented (Section
II-B). The practical algorithm that uses only local information is
derived in Section III. The application of the stochastic Markov
game in switching on/off base stations (or base station sharing)
is discussed in Section V. Numerical results are presented in
Section VI, followed by conclusions in Section VII.

II. PROBLEM STATEMENT

Consider two MSPs that provide coverage to the same
residential area, each with its own base stations. Customers
arrive at MSP k, k = 1, 2, according to a Poisson process
with rate λi. Note that the Poisson process has been widely
used in cellular systems to model call arrivals, e.g., [14].
Although this model is understandably idealized, it captures the
aggregate effect from a large population of users that generate
ON/OFF calls at a call center. Even when the per-user call
arrival/departure process follows an arbitrary random ON/OFF
process, the Palm theorem guarantees that the superposition
of many such processes converges to a Poisson process. Each
customer arrival can be interpreted as a service request (either
voice or data connection) in practical cellular systems. Network
resource (e.g., spectrum) or capacity of MSP 1 and MSP 2
allows them to serve N1 and N2 customers simultaneously. The
service time for each customer is exponentially distributed with
average µ (for brevity, we normalize µ = 1). We assume that
when a customer arrives, it either gets served or rejected, i.e., the
two network operators do not queue unserved customers. MSP
1 (MSP 2) gets p1 (p2) monetary units after admitting/serving
one of its own customers for service.

We consider three scenarios. In scenario 1 (S1), the two
MSPs operate independently; in scenario 2, (S2), they partially
cooperate; and finally in the third scenario (S3), the two MSPs
fully cooperate. In S1, each MSP does not share its resource
with the other, i.e., an MSP only serves its customers (as in
conventional cellular systems). In S2 a MSP shares its resource
with the other by serving customers from the other MSP.
However, for the purpose of maximizing its own revenue, a MSP
reserves the right to reject or serve the other MSP’s customers.
It also decides whether to serve its own customers or redirect its
customers to the other MSP for service. By serving a customer
of MSP 1 (or 2), MSP 2 (or 1) is paid β1p1 (or β2p2) and the
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Fig. 1. Snapshots from the Google spectrum database that we recorded in March 2014(a), April 2015(b), and July 2017(c) for the Los Angeles region: TV
whitespaces are very limited in populated urban area (0, 1 or at most 2). Compare these snapshots in 2014, 2015, and 2017 we find that TV whitespaces are
even getting scarcer and scarcer.

Fig. 2. Transition probabilities

other fraction (1−β1)p1 (or (1−β2)p2) is paid for MSP 1 (or
MSP 2), where β1, β2 ∈ [0, 1]. The “partial cooperation” in S2

refers to the fact that the two MSPs can offload traffic/customers
to each other (i.e., sharing resource is possible) but each has its
own interest in maximizing its individual revenue (by reserving
rights to make strategic decision on accepting or rejecting a
customer).

To facilitate theoretical analysis, in S2, we also assume that
MSPs share their current resource availability information and
admitting/rejecting policies with each other. We later design
practical algorithms that guide MSPs’ decisions with only local
information. Our work aims to come up with a dynamic resource
sharing decision on a short-term basis (per service request)
while taking the longer-term revenue-sharing contract β1 and β2
as input parameters. The impact of the admission and offloading
decision on the longer-term revenue-sharing contract that would
involve long-term issues (e.g., competition, infrastructure invest-
ment plan) is an interesting issue, yet out of scope of our work.
The inter-play between revenue-sharing contract, investment,
and strategic decision on admission/offloading remains an open
problem.

Unlike S2, in S3 the two MSPs fully cooperate by chipping
in their resources so that they can serve at most (N1 + N2)
customers of both type 1 (i.e., with reward p1) and type 2
(i.e., with reward p2). The two MSPs under S3 have a common
interest in maximizing their total revenue.

We aim to answer the following questions:
• Q1: Will the two MSPs under S2 benefit from sharing their

resources, i.e., they both get higher revenue, compared with
S1?

• Q2: If so, then how to design such a cooperation policy
and what are the best strategies for each MSP in accept-
ing/rejecting/redirecting customers?

• Q3: What is the best strategies in accept-
ing/rejecting/redirecting customers if MSPs do not
share information on their resource/capacity, strategies as
well as traffic load (i.e., the customer arrival rate)?

• Q4: How is the total revenue of the two MSPs under S1

and S2 compared with that under S3? How to design a
revenue-sharing (β1, β2) mechanism between the two so
that both have incentives to fully cooperate in S3?

A. Stochastic Markov Game Formulation

For S1, each MSP can be modeled by a classical
M/M/N1/N1 (or M/M/N2/N2) queue. For S3, this is a
M/M/(N1 + N2) queue with two classes of customers. If
one removes the QoS commitment, the optimal strategy in
maximizing the revenue in S3 is the trunk reservation policy
[19]1. In this article, to enforce the QoS commitment, we will
rely on constrained Markov decision process (MDP) [23] to find
the optimal strategy for S3, as discussed in Section III.

For S2, we model the strategic traffic offloading between
MSPs as a stochastic Markov game [17]. First, we define
the underlying Markov decision process. Let i and j denote,
respectively, the number of customers which are being served
concurrently at MSP 1 and MSP 2 at a given point in time. Let x

1Trunk reservation policy states that customers with higher payment/reward
are always admitted while customers with lower payment/reward will be
admitted into the system only if the system’s size is less than a given threshold.
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denote the customer types that arrive at either MSP: x = 0 if no
customer arrives, x = 1 if a customer of MSP 1 arrives, x = 2 if
a customer of MSP 2 arrives. S def

= {s}, with s def
= (ijx), denotes

the system state space. At any time instance, the system can
be in one of these states: (ij1) (a customer of MSP 1 arrives),
(ij2) (a customer of MSP 2 arrives), or (ij0) (no one arrives).
The cardinality of S, |S| = 3(N1 + 1)(N2 + 1).

Let A def
= {ak} = {0, 1} denote the pure action/strategy space

of each MSP. A pure action/strategy ak = 1 of MSP k means
the MSP admits the newly arrived customer, and ak = 0 if it
refuses to admit the customer. If a customer of MSP k (also
referred to as a customer of type k) is rejected by its MSP k,
it is then directed to the other MSP for service. At the second
MSP, this customer can be admitted or rejected, depending on
this MSP’s strategy. Note that a customer who has been refused
by both MSPs will be discarded.

The state space S is countable and the transition rate
is bounded. Thus, there exists an equivalence between the
continuous- and discrete-time domains for the MDP [24].
Hence, we can study this continuous MDP in its equivalent
discrete-time domain. Let P (s′|s, a1, a2) denote the transition
probability (corresponding to the transition rate in the continu-
ous time domain) to state s′ def

= (i′j′x′) when actions (a1, a2)
are implemented (by the two MSPs) at state s. For i, j > 0 and
i < N1; j < N2, the transition probabilities are illustrated in
Figure 2 and computed as follows 2 (the operator (̄.) refers to
the binary bit flip):

P (i′j′x′|ij2, a1, a2)

=
1

L



λ2 if x′ = 2; i′ = i+ a1a2; j′ = j + a2
λ1 if x′ = 1; i′ = i+ a1a2; j′ = j + a2
i if x′ = 0; i′ = i+ a1a2 − 1; j′ = j + a2
j if x′ = 0; i′ = i+ a1a2; j′ = j + a2 − 1
(L−λ1−λ2−i−j) if x′=0; i′= i+a1a2; j′=j+a2
0 for all other states

(1)

P (i′j′x′|ij1, a1, a2)

=
1

L



λ2 if x′ = 2; i′ = i+ a1; j′ = j + a2a1
λ1 if x′ = 1; i′ = i+ a1; j′ = j + a2a1
i if x′ = 0; i′ = i+ a1 − 1; j′ = j + a2a1
j if x′ = 0; i′ = i+ a1; j′ = j + a2a1 − 1
(L−λ1−λ2−i−j) if x′=0; i′= i+a1; j′=j+a2a1
0 for all other states

(2)

P (i′j′x′|ij0, a1, a2)=
1

L



λ2 if x′ = 2; i′ = i; j′ = j
λ1 if x′ = 1; i′ = i; j′ = j
i if x′ = 0; i′ = i− 1; j′ = j
j if x′ = 0; i′ = i; j′ = j − 1
(L−λ1−λ2−i−j) if x′=0; i′= i; j′=j
0 for all other states

(3)

where L = λ1 + λ2 +N1 +N2.
Let F1 and F2 be the |S|-by-2 matrices that denote the

2When either one of the MSPs is full (e.g., j = N2) or empty (e.g., i = 0),
the transition probabilities need to be revised accordingly. We omit these simple
cases here due to space limitation.

mixed/stationary strategies of MSPs 1 and 2, respectively.
Fk(s, :) denote a distribution vector whose element Fk(s, 0)
is the probability that MSP k rejects (i.e., action ak = 0
is taken) and Fk(s, 1) is the probability that MSP k accepts
(i.e., action ak = 1 is taken) the arriving customer when the
system is in state s. We have a stochastic probability transition
matrix |S|-by-|S| P(F1,F2), where element (s′, s) is denoted
as P (s′|s,F1,F2) with:

P (s′|s,F1,F2) =
∑
a1∈A

∑
a2∈A

P (s′|s, a1, a2)F1(s, a1)F2(s, a2)

(4)
The reward of operator k at state s when actions a1, a2 are

executed by the two MSPs is denoted by rk(s, a1, a2), where:

r1(ij1, a1, a2)

=

 p1 if a1 = 1 and i < N1,
p1(1− β1) if (a1 = 0 or i = N1) and a2 = 1 and j < N2,
0 for all other cases

(5)

and

r2(ij1, a1, a2)

=

{
p1β1 if (a1 = 0 or i = N1) and a2 = 1 and j < N2,
0 for all other cases

(6)

and

r1(ij2, a1, a2)

=

{
p2β2 if (a2 = 0 or j = N2) and a1 = 1 and i < N1,
0 for all other cases

(7)

and

r2(ij2, a1, a2)

=

 p2 if a2 = 1 and j < N2,
p2(1− β2) if (a2 = 0 or j = N2) and a1 = 1 and i < N1,
0 for all other cases

(8)

and r1(ij0, a1, a2) = r2(ij0, a1, a2) = 0.
Let V (a)

k (s,F1,F2) denote the reward rate (or the average
reward over time) that MSP k earns when the two MSPs start
at state s3. By definition:

V
(a)
k (s,F1,F2) = lim

T→∞

1

1 + T

T∑
t=0

r
(t)
k (s,F1,F2) (9)

where r(t)k (s,F1,F2) is the expected reward at time t (w.r.t. F1

and F2) of MSP k when the system starts in state s.
Define an |S| × 1 vector r

(t)
k (F1,F2)

def
=

[r
(t)
k (1,F1,F2), . . . , r

(t)
k (|S|,F1,F2)]. We have:

r
(t)
k (F1,F2) = P(F1,F2)trk(F1,F2) (10)

where the |S| × 1 vector rk(F1,F2)
def
=

3Note that the discounted reward criterion which is easier to analyze due to
its guaranteed convergence/existence of the reward function [17] can also be
studied in a similar manner.
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[rk(1,F1,F2), . . . , rk(s,F1,F2), . . . , rk(|S|,F1,F2)] and
rk(s,F1,F2) is the initial/immdediate expected reward when
the system starts in state s:

rk(s,F1,F2) =
∑
a1∈A

∑
a2∈A

rk(s, a1, a2)F1(s, a1)F2(s, a2).

(11)
The following proposition states the existence of the reward

rate in (9):
Proposition 1: If MSPs aim to maximize the reward rate

V
(a)
k (s,F1,F2), i.e., the average criterion is used, the un-

derlying Markov decision process with state space S and
the transition probability matrix P(F1,F2) is irreducible, and
V

(a)
k (s,F1,F2) in (9) is well-defined.
Proof: Our idea is to prove that starting from any state, we

can go to state (000) to empty the system (due to the service
completion). Then, from the empty state, the system can go to
any other state. We now can cite the Theorem 5.1.5 [17] that
states V (a)

k (s,F1,F2) in (9) is well-defined and identical for
all initial states. The detailed proof is in the Appendix A. �

While sharing its resource, an MSP needs to maintain its
QoS commitment. Specifically, the QoS of MSP k is measured
by the probability that a customer of that MSP does not get
served (the lower this probability the higher QoS), denoted by
Rk(F1,F2). The QoS commitment ensures that while sharing
its resource, an operator k either meets its QoS target, QoSk,
(i.e., QoSk ≥ Rk(F1,F2)) or at least achieves the same level
of QoS as if it did not share its resources with the other
MSP, defined as Pb(λk, Nk) (i.e., Pb(λk, Nk) ≥ Rk(F1,F2)).
Without sharing its resource, Pb(λk, Nk) is exactly the Erlang-B
blocking probability, computed as:

Pb(λk, Nk) =
λNk

k

Nk!
Nk∑
i=0

λi
k

i!

.

Rk(F1,F2) is given by πRek where π is the stationary
distribution vector of the MDP under the stationary strategies
(F1,F2); Rek is an |S| × 1 vector whose element Rek(s) is
the probability that a customer of MSP k does not get served
given the system is in state s. For MSP 1, Re1(s) = 0 if s ∈
{(i0j0), (i0j2)} and Re1(s) = F1(s, 0)F2(s, 0) if s = (i1j0)
(as a customer does not get served if and only if it is rejected by
both operators). Similarly, Re2(s) = 0 if s ∈ {(i0j0), (i1j0)}
and Re2(s) = F1(s, 0)F2(s, 0) if s = (i0j2).

The objective of each MSP is to optimize its own stationary
strategy given the other MSP’s strategy so as to maximize its
reward rate while maintaining its QoS commitment. From the
above, V (a)

k (s,F1,F2) does not depend on which state the
system starts from. Thus, for brevity, let V (a)

k (F1,F2) denote
the reward rate of operator k. Formally, each operator k needs
to solve the following problem:

maximize
Fk

V
(a)
k (F1,F2)

s.t. C1:
∑
ak∈A

Fk(s, ak) = 1, ∀s

C2: 1 ≥ Fk(s, ak) ≥ 0, ∀s,∀ak ∈ A
C3: max(QoSk, Pb(λk, Nk)) ≥ Rk(F1,F2)

(12)

where constraints C1 and C2 are to ensure that each row of
Fk is a probability distribution vector. C3 enforces the QoS
commitment.

B. NE Existence and Characterization

Theorem 1: There exists a NE for the game (12) in which
MSPs aim to maximize their reward rates.

Proof: Game (12) belongs to the class of constrained Markov
game [18] in which players’ strategies/rewards depend on the
system state. The system state transitions, in return, depend on
players’ strategies and make an MDP. For the NE to exist, we
rely on the results in [18]. Theorem 2.1 in [18] states that a
constrained Markov game admits at least one NE if the two
following conditions hold:
• (Ergodicity) If the average criterion is used, then the state

process is an irreducible Markov chain.
• (Strong Slater) For any stationary strategy from the other

player, a player can still find its stationary strategy to
ensure that the constraint is met.

As a consequence of Proposition 1, it is easy to see that the
ergodicity condition holds. Game (12) is then an irreducible
stochastic game, and without considering C3, the game admits
at least one NE (according to Theorem 5.4.5 in [17]). In our
case, the slater condition also holds. Specifically, for MSP 1
the LHS of C3 is greater than or equal to the blocking/rejecting
probability Pb(λ1, N1). Hence, C3 can always be met if MSP
1 refuses to serve customers from MSP 2. This is realized
by executing the stationary strategy with F+

1 (s, 0) = 1,∀s ∈
{ijx|x = 2, 0}, regardless of strategies from the other player.
In other words, the Strong Slater condition holds. Thus, there
exists at least one NE to the constrained Markov game (12). �

Let (F∗1,F
∗
2) are the stationary strategies at an NE. We have

the following corollary (answering the question Q1 in Section
II).

Corollary 1: Cooperation in game (12) is rational, i.e., both
MSPs have incentives to share their resources.

Proof: If MSPs do not share their resources, the reward rates
are (1−Pb(λ1, N1))λ1p1 and (1−Pb(λ2, N2))λ2p2 for MSP 1
and MSP 2, respectively. Let F+

1 be the strategy of MSP 1 when
it does not accept customer type 2, i.e., F+

1 (s, 0) = 1,∀s ∈
{ijx|x = 2, 0}. By definition of NE strategies (F∗1,F

∗
2), we

have:

V
(a)
1 (F∗1,F

∗
2) ≥ V (a)

1 (F+
1 ,F

∗
2) ≥ (1− Pb(λ1, N1))λ1p1

V
(a)
2 (F∗1,F

∗
2) ≥ V (a)

2 (F∗1,F
+
2 ) ≥ (1− Pb(λ2, N2))λ2p2

(13)

In the above, V (a)
1 (F+

1 ,F
∗
2) ≥ (1−Pb(λ1, N1))λ1p1 because

although MSP 1 rejects customers from MSP 2, MSP 1’s
customers are still offloaded and can be accepted by MSP 2
under MSP 2’s policy F∗2. Corollary 1 is proved. �

Intuitively, Corollary 1 also guarantees that each MSP does
at least as good as he would if he does not participate in the
traffic offloading game. The following theorem states necessary
and sufficient conditions of a NE of the game (12) that can be
used to find the game’s NE(s).

Theorem 2: Any pair (F1,F2) is a NE of
the constrained Markov game (12) if and only if
z

def
= (v1,v2,F1,F2,u1,w1,u2,w2) is the globally optimal

solution of the following problem, and its optimal value is 0:
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minimize
z

2∑
k=1

1T [vk −P(F1,F2)vk]

s.t. C1: T(s,v1)F2 ≤ v1(s)1,∀s
C2: r1(s)F2 + T(s,u1)F2 ≤ (v1(s) + u1(s))1,∀s
C3: F1T(s,v2) ≤ v2(s)1,∀s
C4: F1r2(s) + F1T(s,u2) ≤ (v2(s) + u2(s))1,∀s
C5: rk(F1,F2) + P(F1,F2)wk = vk + wk, k = 1, 2
C6:

∑
ak∈A

F1(s,ak) = 1;
∑
ak∈A

F2(s,ak) = 1 ∀s

C7: 1 ≥ Fk(s,ak) ≥ 0, ∀s,∀ak ∈ A
C8: max(QoSk, Pb(λk, Nk)) ≥ Rk(F1,F2), k = 1, 2.

(14)
where 1 is a column vector with all ones; uk and wk are 1
by |S| vectors of auxiliary variables uk(s), wk(s), respectively;
T(s,vk), T(s,uk), and rk(s) are 2 by 2 matrices whose ele-
ments are

∑
s′∈S

P (s′|s, a1, a2)vk(s′),
∑
s′∈S

P (s′|s, a1, a2)uk(s′),

and rk(s, a1, a2) for a1, a2 ∈ {0, 1}, respectively.
Proof: The proof is similar to that of Theorem 3.8.4 in [17],

except the constraint C8. The detailed proof is in Appendix B.
�

The NE strategies are also the optimal strategies for each
MSP in accepting/rejecting/redirecting customers (answering
the question Q2 in Section II). Problem (14) may have multiple
solutions, i.e., multiple NEs. It is possible to characterize the
case in which the NE is unique by converting (14) to its
nonlinear complementarity problem then relying on variational
inequality theory [25] (details are omitted due to space limi-
tation). Using a gradient-based algorithm, we can numerically
obtain a solution very close (within 10−7) to the optimal value
of (14) that is lower-bounded by 0.

Remark 1: First, (14) is a nonlinear problem (with nonlinear
constraints and its objective function) that involves 10 × 3 ×
(N1 + 1)× (N2 + 1) variables. For a reasonable cell size (e.g.,
10 customers per pico-cell), the number of variables 30× 11×
11 = 3630 is very large. Hence, the computational complexity
involved in solving (14) is significant. In fact, we attempted
to solve (14) using a gradient-based algorithm but the running
time is quite long. Second, computing the NE via problem (14)
requires a MSP to reveal its capacity and resource availability
status to the other MSP. Besides the MSPs’ willingness to share
their business privacy with other MSPs, this approach requires
additional communication overhead for them to exchange this
information. In the following, we derive a practical algorithm
that only relies on local information and achieves a lower-bound
(it is shown to be tight via simulations) for NE utilities of game
(12).

III. PRACTICAL IMPLEMENTATION TO ACHIEVE A TIGHT
LOWER BOUND

Even ignoring the complexity of solving (14), if one operator
in game (12) does not want to share its state (i.e., its on-going
number of customers or the resource availability), the the other
operator is unable to derive its NE strategies. In such a case, it
is vital to derive an alternative strategy by looking into only the
local information at the operator (addressing the question Q3

in Section II). In this section, we will derive a simple policy

that yet achieves a low-bound on the reward rate of (14) which
is shown to be tight via simulations.

Note that the offloaded traffic from a MSP is not an overflow
process4. In fact, its statistical characteristics depend on the
MSP’s strategy. That makes the approach in [26] not readily
applicable. However, we observe that the actual offloaded traffic
process from MSP k (in game (14)) is comprised of not only
overflow customers (rejected because of not having enough
resources, with rate Pb(λk, Nk)λk) but also customers rejected
even when having enough resources. Thus, we can find a lower
bound for the reward rate under the optimal strategy (derived
from (14)) by replacing the offloaded traffic process with an
overflow process with rate Pb(λk, Nk)λk. The resulting reward
rate is a lower bound because its derived accept/reject policy
is suboptimal for (14) (by always rejecting customers offloaded
by the MSP who still has enough resources).

We now limit our interest to MSP 1, and the following
results/analysis also apply to MSP 2. MSP 1 serves two types
of customers, one arriving according to a Poisson process of
rate λ1 and the other following an overflow process of rate
Pb(λ2, N2)λ2. The authors in [26] pointed out that the average
reward rate of MSP 1 can be well approximated by assuming
the overflow process also follows a Poison process. Now, MSP
1 serves two types of customers, arriving according to Poisson
distribution with rates λ1 and λ′2

def
= Pb(λ2, N2)λ2.

Remark 2: Note that the following approach is also appli-
cable to scenario S3 in which two MSPs fully cooperate by
contributing their resource and maximize their total reward rate
(i.e., a M/M/(N1 +N2) queue with two classes of customers
arriving at rates λ1 and λ2, and rewards p1 and p2, respectively).

To solve for the optimal admission policy, we denote the
system state at MSP 1 as s = (ix), where i is the number
of customers being served and x is the type of the incoming
customer at the MSP (x = 0 if no one arrives). The system
space S′ def

= {s}. The transition probability of the state process
and corresponding rewards are as follows:

P (i′x′|i0, a1) = 1
N1+λ1+λ′

2


λ′2 if x′ = 2; i′ = i
λ1 if x′ = 1; i′ = i
i if x′ = 0; i′ = i− 1
(N1 − i) if x′ = 0; i′ = i
0 for all other states

P (i′x′|i1, a1) =
1

N1 + λ1 + λ′2


λ′2 if x′ = 2; i′ = i+ a1
λ1 if x′ = 1; i′ = i+ a1
i if x′ = 0; i′ = i+ a1 − 1
(N1 − i) if x′ = 0; i′ = i+ a1
0 for all other states

= P (i′x′|i2, a1)
r(i0, a1) = 0
r(i1, a1) = a1p1
r(i2, a1) = a1p2β2

Without the QoS commitment constraint, the optimal ad-
mission strategy that maximizes the average reward is the
(deterministic) trunk reservation policy [20]. However, with the

4For a finite queue/capacity system, an overflow process captures customers
who are not admitted due to overflow.
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QoS commitment, one faces a constrained MDP whose optimal
admission policy is generally not deterministic. As MSPs do
not reveal their strategies, MSP 1 has to maintain its QoS
commitment regardless of MSP 2’s strategy. The probability that
a customer of MSP 1 does not get served R′1(F1) is computed
as R′1(F1) = π′Re′1, where π′ is the stationary distribution
of the MDP with state space S′. Re′1, similar to Re1, is a
vector whose element Re′1(s) = F1(s, 0) if s = (i1) and
Re′1(s) = 0 if s = (i0).

The optimal stationary policy F1(s, a1) that maximizes the
average reward V ′(a)1 for the constrained MDP with the states
and transition probabilities above is obtained by solving the
following problem [27]:

maximize
f

V ′
(a)
1 =

S′∑
s=1

∑
a∈A

r(s, a1)f(s, a1)

s.t. C1: Wf = 0
C2: 1f = 1
C3: max(QoS1, Pb(λ1, N1)) ≥ R′1(F1)
C4: f ≥ 0.

(15)

where W is an |S′| × 2|S′| matrix with ws′,(s,a1) = δ(s, s′)−
P (s′|s, a1) (δ(s, s′) is a Kronecker delta function). C3 is
needed to enforce the QoS commitment. f is a vector of
nonnegative auxiliary variables that are used to compute the
optimal stationary policy as F1(s, a1) = f(s,a1)∑

a1∈A

f(s,a1)
.

Remark 3: The two operators do not need to share infor-
mation regarding their resources, capacity, and traffic load (i.e.,
λ1, λ2 ). The only external input for each operator to make
its decision is the rate of offloaded traffic from the other. This
rate can be estimated/learnt locally and accurately with initial
training time, so are customer/traffic arrival rates (i.e., λ1, λ′2).

The above resource sharing framework is feasible for imple-
mentation in existing and future cellular systems. MSPs just
need to negotiate the revenue-sharing contracts, i.e., parameters
β1 and β2. The values of β1 and β2 that achieve the social
optimality (i.e., maximizing the total utilities of the two MSPs)
can be found numerically, e.g., in Figures 4 to 7. After setting
β1 and β2, the two MSPs do not need to exchange any control
messages. The length of the contract is up to MSPs but can be
as short as days or as long as years before renegotiating. The
proposed methods allow MSPs to harvest resource/spectrum
opportunity as fine as to serving a single service request (as it
guides MSPs to make decision for every single service arrival).

IV. K MSPS CASE (K > 2)
As aforementioned, the above results are still valid when

more than two MSPs are considered. Theoretically, for more
than two MSPs, one can follow similar analysis in [28] of a
Markov stochastic game with K users (K > 2) under both
discounted and limiting average reward rate. Specifically, the
state of the underlying MDP is then a (K + 1)-tuple of which
K elements present the number of customers being served by K
MSPs and the last element presents the type of the coming re-
quest. The state space cardinality is (K+1)(N1+1)...(NK+1)
(hence finite). The action space for each MSP is the same as
the 2-MSP case. The transition probabilities can be calculated
similarly as in equations (1-3). NE existence and a NE of the

game can be proved and found similarly by solving a nonlinear
programming in Theorems 2.1 and 3.2 of [28]. For K-user case,
the cooperation is also rational to all MSPs.

Practically, computing the NE of the game will require MSPs
to reveal their capacity, resource availability status to each
other. Additionally, the number of variables involved in NE
computation is 10 × 3 × (N1 + 1)...(NK + 1). Even for a
reasonable capacity Nk, this is a large number of variables.
As such, one can rely a practical solution in Section III. For
the case with K MSPs, the transition probabilities are similar
to the case with 2 MSPs and as follows:

P (i′x′|i0, a1) = 1
N1+λ1+λ′

2


λ′k if x′ = k; i′ = i, k 6= i
λ1 if x′ = 1; i′ = i
i if x′ = 0; i′ = i− 1
(N1 − i) if x′ = 0; i′ = i
0 for all other states

P (i′x′|i1, a1) =
1

N1 + λ1 + λ′2


λ′k if x′ = k; i′ = i+ a1, k 6= i
λ1 if x′ = 1; i′ = i+ a1
i if x′ = 0; i′ = i+ a1 − 1
(N1 − i) if x′ = 0; i′ = i+ a1
0 for all other states

= P (i′x′|ik, a1), k = 2, ...,K

Given the fact that the offloading rate λk with k = 2, ...,K
can be estimated, the optimal admission strategy of the MSP k
can be obtained by solving the problem (15).

V. APPLICATION IN SHARING BASE STATIONS

We now consider an extreme, but interesting, case of the
above, in which an MSP wishes to turn off its base stations
and relies on the other MSP to carry its traffic. This case is of
great interest when both MSPs experience light traffic (e.g.,
at nighttime) and base stations can be switched off to save
operational costs (e.g., energy consumption). In the sequel, we
determine when a MSP should turn its base station on or off
based on traffic conditions.

For that purpose, we formulate the interactions between
MSPs as a noncooperative game in which MSPs are players,
aiming to maximize their own profit rates. The profit rate of
MSP 1 (similarly for MSP 2) under different pure strategies of
the two MSPs (turning on/off their base stations) is defined as:

U1(on,on)=V
(a)
1 (on,on)− E1

U1(on,off )=V
(a)
1 (on,off )− E1

U1(off,on)=

{
V

(a)
1 (off,on) if MSP 1’s QoS commit’ is honored,
−∞ otherwise

U1(off,off )=−∞

where E1 is the expense to operate a BS of MSP 1 per time
unit, (on, on) refers to the case when both operators turn on
their BSs. The other cases (on, off ), (off, on), and (off, off ) are
defined in an analogous manner.

Note that the above utility equations implicitly enforce the
QoS commitment. Specifically, the only possibility that QoS
commitment of a MSP is violated is when its BS is turned
off (however, turning off a BS does not always lead to QoS
commitment violation, thanks to traffic offloading). Such a case
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is eliminated by setting the MSP’s utility to −∞ (to discourage
the MSP from turning its BSs off).

Let (o1, o2) denote the strategies of the two MSPs; ok = on
(or ok = off ) if MSP k keeps its BS on (or turns its BS off).
By definition of a NE, (o∗1, o

∗
2) is an optimal NE strategy if and

only if U1(o∗1, o
∗
2) ≥ U1(o1, o

∗
2) and U2(o∗1, o

∗
2) ≥ U1(o∗1, o2).

We have the following theorem:

Fig. 3. Pure NE of BSs switching on/off game.

Theorem 3: For MSP k, the optimal BS switching on/off
strategies are as follows: turn off if V

(a)
k (on, on) <

V
(a)
k (off, on) + Ek and its QoS commitment is honored (case
Ak); turn on otherwise (i.e., either turning off leading to
QoS commitment violation (case Bk) or V

(a)
k (on, on) >

V
(a)
k (off, on) + Ek (case Ck)).
The proof is straightforward by recalling the utility definition

above. �
The NEs for the BS switching on/off game are then stated in

the following corollary (depicted in Figure 2):
Corollary 2: For cases (B1C2), (B1B2), (C1B2), and

(C1C2), the NE is (on, on); for cases (B1A2) and (C1A2),
the NE is (on, off); for cases (A1B2) and (A1C2), the NE is
(off, on).
Proof: The corollary can be easily verified from the above
definition of NE (o∗1, o

∗
2). �

Note that there are two pure NEs when V
(a)
2 (on, on) <

V
(a)
2 (on, off ) + E2 and V

(a)
1 (on, on) < V

(a)
1 (off, on) + E1.

In this region, if one MSP turns its BSs off, then the other has
to turn its BS on. If the utilities of both MSPs at a NE are
higher than those under the other NE, then they both should
implement that NE.

Nonetheless, if only one MSP is better off by moving from
one NE to the other while the other MSP’s utility reduces,
the MSP with utility reduction should be provided with incen-
tives so that both can move to the NE with higher welfare
(i.e., at which the total utility of both operators is higher).
Let (U

(1)
1 , U

(1)
2 ) and (U

(2)
1 , U

(2)
2 ) be the utilities of the two

MSPs at the NE 1 and NE 2, respectively. Without loss of
generality, we assume the social welfare at NE 2 is higher
(i.e., U11 + U21 ≤ U12 and U11 + U21 ≤ U22) and MSP 2
is better off by moving NE 1 to NE 2. To incentivise MSP 1
to move to NE 2, MSP 2 proposes a payment of ∆ to MSP 1.
Applying a Nash bargaining mechanism [29], one can find that
setting ∆ =

U
(2)
1 +U

(1)
2 −U

(2)
2 −U

(1)
1

2 ensures that both MSPs get

the same amount of utility improvement (U
(2)
1 −U

(1)
1 +U

(2)
2 −U

(1)
2

2 )

when moving from NE 1 to NE 2.

VI. NUMERICAL RESULTS

In this section, we use Matlab simulations to evaluate the
average reward under scenarios S1, S3, and the lower-bound of
game (12) in S2. The admission policy for the lower-bound of
game (12), numerically obtained by solving (15), is then used
to govern the admission policy of two real MSPs in simulations.

A. Moderate Traffic at both MSPs

Let N1 = 10, N2 = 15, λ1 = 8, λ2 = 14, p1 = 14, and
p2 = 17. The corresponding blocking rates at two MSPs are
0.1217 and 0.1478. The total reward rate when the two MSPs do
not cooperate is (1−Pb(λ1, N1))λ1p1+(1−Pb(λ2, N2))λ2p2 =
302 (S1). The total reward rate when the two MSPs fully
cooperate (S3) is obtained by solving (15). It is 321 in our
case. The cooperation gain is about 6.3%. Figure 4 and Figure
5 depict the total reward rate, reward rate of MSP 1, and reward
rate of MSP 2 vs. β1 and β2, respectively (lower bounds in S2).

B. Unbalanced Traffic

N1 = 10; N2 = 15; λ1 = 5; λ2 = 25; p1 = 14; p2 = 17.
The corresponding blocking rates at two MSPs are 0.0184 and
0.443. The total reward rate when two MSPs do not cooperate
is (1 − Pb(λ1, N1))λ1p1 + (1 − Pb(λ2, N2))λ2p2 = 277 (S1).
The total reward rate when two MSPs fully cooperate (S3) is
obtained by solving (15). It is 329.5 in our case. The cooperation
gain is about 20%. This is very significant when accumulating
over the time horizon. Figure 6 and Figure 7 depict the total
reward rate, reward rate of MSP 1, and reward rate of MSP 2
vs. β1 and β2, respectively (lower bounds in S2).

As can be seen, by selecting appropriate β1 and β2, the lower
bound on total reward rate under S2 (obtained by solving (15))
is almost that under S3 when both MSPs fully cooperate (Figure
4(a), 5(a), 6(a), 7(a)). This means that the lower-bound for the
reward rate in S2 can be made very tight by tuning β1 and β2
(addressing the question Q4 in Section II). Additionally, the
reward rate of a MSP (e.g., MSP 1) monotonically increases
w.r.t. the fraction of reward (β2) it gets from serving the other
MSP’s customers (Figure 4(c), 5(b), 6(c), and 7(b)). However,
the reward rate of a MSP (e.g., MSP 1) has a almost concave
shape w.r.t. the fraction of reward (β1) it pays for the other
MSP to carry its traffic (Figure 4(b), 5(c), 6(b), and 7(c)). This
is because if the reward from serving traffic offloaded from a
MSP is too small, then the other MSP will reserve less resource
for offloaded customers. This leads to the loss of revenue for
the traffic owner. On the other hand, the traffic owner also earns
less if it pays the other MSP too much for carrying its traffic.
The critical values β1 and β2 that shape the revenue sharing
contract can be found numerically.

The average reward of both MSPs vs. traffic loads λ1 and λ2
are shown in Figure 8(a) and 8(b). As can be seen, the higher
the traffic load the higher the gain can be harvested via traffic
offloading and the gain can be up to 60%, compared with the
case without traffic offloading.
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(a) (b) (c)

Fig. 4. (a) Total reward rate, (b) reward rate of MSP 1, (c) reward rate of MSP 2 vs. β1 (moderate traffic at both MPSs).

(a) (b) (c)

Fig. 5. (a) Total reward rate, (b) reward rate of MSP 1, (c) reward rate of MSP 2 vs. β2 (moderate traffic at both MPSs).

(a) (b) (c)

Fig. 6. (a) Total reward rate, (b) reward rate of MSP 1, (c) reward rate of MSP 2 vs. β1 (unbalanced traffic).

(a) (b) (c)

Fig. 7. (a) Total reward rate, (b) reward rate of MSP 1, (c) reward rate of MSP 2 vs. β2 (unbalanced traffic).
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(a) (b)

Fig. 8. (a) Reward rate of MSP 1 and (b) MSP 2 vs. λ1 and λ2 (β1 = 0.7, β2 = 0.8).

(a) (b) (c)

Fig. 9. (a) Total utility gain, (b) utility gain of MSP 1, and (c) utility gain of MSP 2 vs. λ1 and λ2 by switching on/off BSs (β1 = 0.7, β2 = 0.8).

C. Light Traffic at both Cells: Base Station Sharing

Let N1 = 10, N2 = 15, λ1 = 5, λ2 = 8, p1 = 14, and p2 =
17. The corresponding blocking rates at two MSPs are 0.0184
and 0.0091. The total reward rate when two MSPs do not coop-
erate is (1−Pb(λ1, N1))λ1p1 + (1−Pb(λ2, N2))λ2p2 = 203.5
(S1). The total reward rate when two MSPs fully cooperate (S3)
is obtained by using the trunk reservation policy by solving (15).
It is 205.8 in our case. As we can see, the cooperation gain
is marginal due to the fact that both MSPs have light traffic
demands.

However, in such a case, it is very likely that traffic from
both MSPs can be fulfilled by only one of them while the other
is turned off for the sake of saving operational cost. Lets study
the case that E1 = 80, E2 = 100, β1 = 0.7, β2 = 0.8. Figure
10 shows the NEs of the BSs switching on/off game vs. traffic
loads in which NEs with crossly-filled patterns are in the area
having two NEs (Figure 3). As can be seen, if both MSPs have
light traffic (crossly-filled patterns), BSs of MSP 2 with higher
capacity (and also higher operating cost) are turned on only if
the total traffic is greater than a threshold (5 in this example).
Otherwise, BSs of MSP 1 with lower operating cost are turned
on (crossly- and green-filled patterns). The total and individual
profit gains of MSPs by sharing their BSs vs. traffic load are
plotted in Figure 9. It shows that the gain from sharing BSs is
very significant (about 43%) when MSPs have light traffic. From
Figure 8, we observe that both MSPs benefit from applying the
proposed sharing framework if their traffic are both heavy (i.e.,
high arrival rates). The “worst” case of the proposed framework

Fig. 10. Pure NEs of BSs switching on/off game vs. λ1 and λ2.

is when both the two MSPs have very light traffic (i.e., blue
area in Figure 8). However, under such a case, the base station
sharing method can be applied. The gain from sharing base
station is highest when the traffic at both MSPs is light. We
summarize key numerical results and their insights in the table
in Figure 11.

VII. CONCLUSIONS

We proposed a cooperation framework that allows mo-
bile/cellular service providers (MSPs) to opportunistically of-
fload traffic onto each other while maintaining their own QoS
commitments. Using Markov decision processes and a con-
strained stochastic Markov game, we proved that there exists
NEs at which all MSPs improve their performance by strate-
gically sharing their available resources (i.e., carrying traffic
from other MSPs as well as offloading traffic to other MSPs).
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Fig. 11. Summary of the gain and resource sharing methods for different
traffic scenarios.

The optimal offloading strategy for each MSP was derived
by solving constrained Markov decision processes. Numerical
results showed that the profit gain is very significant when one
MSP is in need of resources while the other experiences light
traffic. For the case that both MSPs experience light traffic, the
traffic offloading framework was used to guide them on turning
on/off their base stations to save operating costs. The theoretical
results herein are not only applicable to cellular systems but also
to a more general area of competitive and cooperative admission
control in queuing systems.
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APPENDIX A
PROOF OF PROPOSITION 1

The key idea is that starting from any state, we can go to
state (000) to empty the system (due to the service completion).
From the empty state, we can go to any other state. Specifically,
first, note that the MDP can always move from any state (ij0)
to either state (ij1) or (ij2) due to the arrival of customers.
Similarly, due to the departures of customers, from any state
(ijx) with i > 1 or j > 1, the process can move to state
((i− 1)jx′) or (i(j − 1)x′).

Consider MSP 1. If this MSP aims to maximize its average
reward, for any state s ∈ {(ij1), (ij2)} in which it still has
available resource (i.e., i < N1) while a customer arrives, it
should not always reject service to both types of customers. If
not (i.e., F1(ij1, 1) = 0 and F1(ij2, 1) = 0), from (11), the im-
mediate expected reward rk(s,F1,F2) can always be improved
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by having either F1(ij1, 1) > 0 or F1(ij2, 1) > 0, so is the
average reward in (9). Hence, from any state s ∈ {(ij1), (ij2)},
the process can move to state ((i+1)jx) for i < N1. In a similar
manner for MSP 2, starting from any state s ∈ {(ij1), (ij2)},
the process can move to state (i(j + 1)x) for j < N2.

Thus, the state space S contains only one communicating
class or P (s′|s,F1,F2) > 0 ∀s, s′. In other words, the MDP
with states in S is irreducible.

As the underlying Markov process is irreducible for any
pair of stationary strategies (F1,F2) that maximize the average
reward, according to Theorem 5.1.5 [17], V (a)

k (s,F1,F2) in (9)
is well-defined and identical for all initial states s. �

APPENDIX B
PROOF OF THEOREM 2

Sufficiency: We assume z∗ =
(v1,v2,F

∗
1,F

∗
2,u1,w1,u2,w2) is the globally optimal

solution of (14) and its optimal value is 0. We will prove that
(F∗1,F

∗
2) is the NE of the constrained Markov game (12).

From (9) and (10), we can rewrite V (a)
k (F1,F2) as:

V
(a)
k (F1,F2)1 = lim

T→∞

1

1 + T

T∑
t=0

P(F1,F2)trk(F1,F2)

= Q(F1,F2)rk(F1,F2)
(16)

where Q(F1,F2) is the Cesaro-limit matrix [17], defined as:

Q(F1,F2)
def
= lim
T→∞

1

1 + T

T∑
t=0

Pt(F1,F2) (17)

As the underlying Markov process is irreducible, the above
Q(F1,F2) exists (Theorem 5.1.3 in [17]). Additionally:

Q(F1,F2) = Q(F1,F2)P(F1,F2) (18)

C1 in (14) implies that:

v1 ≥ P(F1,F
∗
2)v1,∀F1. (19)

Hence, together with the definition of Q(F1,F2), we also
have:

v1 ≥ Q(F1,F
∗
2)v1,∀F1 (20)

Since the objective function in (14) is zero under z∗, from the
above, we must have: v1 = P(F∗1,F

∗
2)v1. Recall the definition

of Q(F1,F2). We then have

v1 = Q(F∗1,F
∗
2)v1 (21)

Multiply both sides of C5 with Q(F∗1,F
∗
2) on the left and

recall (18) and (21):

V
(a)
1 (F∗1,F

∗
2)1 = v1 (22)

On the other hand, C2 in (14) implies that

v1 + u1 ≥ r1(F1,F
∗
2) + P(F1,F

∗
2)u1,∀F1. (23)

Multiply both sides of (23) with Q(F1,F
∗
2) on the left and

recall (18):

Q(F1,F
∗
2)v1+Q(F1,F

∗
2)u1≥Q(F1,F

∗
2)r1(F1,F

∗
2)+Q(F1,F

∗
2)u1

(24a)

v1≥V (a)
1 (F1,F

∗
2)1 (24b)

where the last inequality follows by appealing (20).
From (22) and (24b): V (a)

1 (F∗1,F
∗
2)1 ≥ V

(a)
1 (F1,F

∗
2)1. In

a similar way, from C3, C4, and C5, we can also show that:
V

(a)
2 (F∗1,F

∗
2)1 ≥ V

(a)
2 (F∗1,F2)1. In other words, (F∗1,F

∗
2) is

the NE of the constrained Markov game (12).
Necessity: We need to prove that if (F∗1,F

∗
2) is the

NE of the constrained Markov game (12), then there ex-
ists (v1,v2,u1,w1,u2,w2) so that we can construct z∗ =
(v1,v2,F

∗
1,F

∗
2,u1,w1,u2,w2) to be the globally optimal so-

lution of (14) and its optimal value is 0.
For that purpose, we need to construct a feasible solution

z∗ (i.e., all constraints in (14) hold) and show that 0 is the
optimal value of (14) which can be then attained by z∗. First
set vk = V

(a)
k (F∗1,F

∗
2)1. Note that for a given stationary

strategy from an MSP, e.g., F∗2, MSP 1 finds its optimal sta-
tionary strategy F∗1 by solving for the optimal stationary policy
of an MDP with transition probability P(F1,F

∗
2). Applying

Proposition 2.8.4 and 2.8.5 in [17] to the MDP with transition
probability P(F1,F

∗
2), we have:

V
(a)
1 (F1,F

∗
2)1 ≥ P(F1,F

∗
2)V

(a)
1 (F1,F

∗
2)1,∀F1 (25)

and there exists u1 such that:

V
(a)
1 (F1,F

∗
2)1+u11 ≥ r1(F1,F

∗
2)+P(F1,F

∗
2)u1,∀F1 (26)

As (F∗1,F
∗
2) is the NE and recalling that vk =

V
(a)
k (F∗1,F

∗
2)1, the inequalities below must hold:

v1 ≥ P(F1,F
∗
2)V

(a)
1 (F1,F

∗
2)1,∀F1

v1 + u1 ≥ r1(F1,F
∗
2) + P(F1,F

∗
2)u1,∀F1

(27)

Since the above inequalities hold ∀F1, constraints C1 and
C2 must hold. Similarly, we can also show that there exists u2

such that C3 and C4 also hold.
According to Theorem 5.1.3 in [17], for the MDP with

transition probability P(F∗1,F
∗
2) (at the NE), constraint C5

holds for both MSPs by setting:

wk = (I−P(F∗1,F
∗
2)+Q(F∗1,F

∗
2))−1(rk(F∗1,F

∗
2)−vk). (28)

The strategy pair (F∗1,F
∗
2) is the NE of the constrained

Markov game (12). Thus, (F∗1,F
∗
2) has to be within the strategy

space of both MSPs, defined by constraints C1, C2, and C3 in
(12). Hence, constraints C6, C7, and C8 of (14) must hold. We
have just constructed a feasible solution z∗ of (14).

Note that for any feasible solutions of (14) constraints C1 and
C3 imply that vk ≥ P(F1,F2)vk. In other words, the objective
function of (14) is lower-bounded by 0. By recalling (16) and
(18), the NE stationary strategy pair (F∗1,F

∗
2) from z∗ can attain

this lower bound. The proof is completed. �
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