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Abstract—We study secure and distributed power control in a
multi-link interference network that is tapped by an external
eavesdropper. To conceal information from the eavesdropper,
legitimate links are equipped with both transmitter-based friendly
jamming (TxFJ) and receiver-based friendly jamming (RxFJ).
Each transmitter-receiver (Tx-Rx) pair seeks to maximize its
secrecy rate by determining the best power assignment (PA) for
the information, TxFJ, and RxFJ signals. Joint optimization of
these parameters is a non-convex problem, thus computationally
demanding. Hence, we seek sub-optimal solutions that aim to
provide positive secrecy for each link. Specifically, we find a
lower bound on the allocated power to TxFJ above which positive
secrecy is achievable for a given link. Once positive secrecy is
achieved, the secrecy rate becomes monotonically increasing in
the power at the Tx (Alice). Therefore, the rest of Alice’s power
is allocated to the information signal. Despite its sub-optimality,
such an approach precludes the possibility of employing a strong
multiuser detector (e.g., successive interference cancellation) by
the eavesdropper. The TxFJ PA at a link is done with respect to
the observed interference at the corresponding Rx and at Eve,
whereas the RxFJ of that link is adjusted using an on-off PA
that depends only on the link’s local channel state information
(CSI). With every link following such a strategy, we model
this interaction as a non-cooperative game. Assuming knowledge
of eavesdropper’s CSI (E-CSI), we derive sufficient conditions
for the uniqueness of the resulting Nash equilibrium. We then
propose an algorithm to implement the PA game. Lastly, we relax
knowledge of E-CSI and propose a framework that is robust to
unknown E-CSI. Our results indicate that the performance of
this robust framework is close to when E-CSI is fully known to
legitimate links. Moreover, empirically it is shown that the secrecy
sum-rate scales with the power budget of legitimate transmitters.

Index Terms—Interference network, friendly jamming, full-
duplex radios, game theory, distributed design

I. INTRODUCTION

Physical-layer (PHY-layer) security has recently gained con-
siderable attention because of its potential to provide secrecy
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in scenarios where it is either expensive or computationally de-
manding to use cryptographic methods. The most basic model
for information-theoretic PHY-layer security is the so-called
wiretap channel. The wiretap channel involves communication
between a legitimate transmitter (Alice) and a corresponding
receiver (Bob); such communication is to be secured from an
eavesdropper (Eve).

Among proposed methods for PHY-layer security, artificial
noise (or friendly jamming) has been noticeably the subject of
many research efforts. According to this method [2], Alice can
use multiple antennas and a portion of her transmit power to
create a bogus signal –known as artificial noise or transmitter-
based friendly jamming (TxFJ)– alongside the information
signal to confuse a nearby Eve. Assuming that Alice knows
Alice-Bob channel, she creates TxFJ via precoding techniques
such that the precoded TxFJ signal falls in the null-space of
Alice-Bob channel, hence not affecting Bob’s reception. In
addition to the TxFJ method, secrecy can also be provided
with the help of another node (e.g., a relay) that is dedicated
to generate friendly jamming (FJ) signals [2]. Such a method
is usually referred to as cooperative jamming (CJ)1. Despite
having a similar effect as the TxFJ method, CJ approaches
face several implementation challenges related to mobility,
trustworthiness, and synchronization.

To address these challenges, some authors suggested equip-
ping Bob with in-band full-duplex (FD) capabilities, allowing
him to generate his own friendly jamming signal while re-
ceiving the information signal from Alice [3], [4]. Such an
FJ signal is hereafter referred to as receiver-based friendly
jamming (RxFJ) [3]. Using RxFJ, many of the disadvantages
of CJ can be mitigated. Other works study PHY-layer security
with FD capability at both Alice and Bob for bidirectional
communications, i.e., Bob transmits information signals to
Alice rather than generating RxFJ (see [5] and references
therein). In this paper, we focus on the case where Bob is
employed to generate RxFJ.

While the single-link scenario is of great importance in
developing early observations, secrecy analysis for multi-link
settings introduces new challenges not present in the single-
link scenario. The definition of secrecy in multi-link settings

1Similar TxFJ, the FJ signals emitted from the helper node in CJ do not
affect Bob’s reception.
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depends on the specific network under consideration. For
instance, legitimate links may or may not be interested in
listening to the transmissions of their neighboring links. In
the former case, the design must ensure that a given link’s
transmission is secured from other links. Such a network is
referred to as multi-link channel with confidential messages.
Another possibility is when external Eves exist in the network
and the transmissions of legitimate links must be kept secure
from these Eves. Such a network is referred to as multi-link
wiretap channel.

In this paper, we study PHY-layer security in a multi-link
wiretap channel. In our network model, legitimate links share
the same bandwidth, thus interfering with one another. At the
same time, an eavesdropper snoops on ongoing communica-
tions, hence the name wiretap interference channel. Legitimate
links are capable of TxFJ and RxFJ. Our design parameters
are the RxFJ power, and the power assignment (PA) between
the information and TxFJ signals. The joint optimization of
these parameters is a non-convex, computationally intractable
problem. To address it, instead we seek sub-optimal solutions
but distributed solutions that can be implemented by individual
links. Our work is motivated by the following simple observa-
tion: For a given link, when no secrecy is required, the higher
the power budget at Alice, the higher is the information rate
at the intended receiver (Rx). However, when secrecy is also
a requirement, although the information rate still increases
monotonically with Alice’s power, the secrecy rate may not
necessarily behave as such because more power transmitted
from Alice also increases the leakage rate at Eve [2]. Motivated
by this observation, we find a lower bound on the TxFJ power
above which positive secrecy is achievable for a given link.
Once positive secrecy is achieved, the secrecy rate becomes
a monotonically increasing function of Alice’s power, thus
having the same trend as the information rate. Therefore, the
rest of Alice’s power can be allocated to the information signal.
Although guaranteeing positive secrecy does not offer any sort
of optimality in terms of individual or network-wide secrecy,
it ensures that no link experiences zero secrecy. In contrast,
when the aim is to maximize the sum of secrecy rates, we
cannot ensure that every link achieves a non-zero secrecy rate
[6]. A zero secrecy scenario can be exploited by Eve, who
can perform sophisticated multiuser detection techniques (e.g.,
successive interference cancellation or SIC) to decode ongoing
communications. Such an issue was reported in [7], and it
was shown in [8] that an SIC-capable Eve can significantly
decrease the network secrecy if some links experience zero
secrecy rates. By ensuring that every link achieves a non-zero
secrecy rate, Eve cannot apply SIC2.

We assume that when legitimate nodes set their transmission
parameters, there is no centralized authority responsible for
computations and optimization. Hence, links have to make
distributed decisions. Such a design inevitably produces inter-
ference at several links. However, because Eve also receives

2A full description of the effect of a zero secrecy rate on the secrecy
of an interference network was given in [8], where we showed that Eve
can cancel the interference coming from links with zero secrecy rates, thus
increasing the signal-to-interference-plus-noise-ratio (SINR) while snooping
on other transmissions with non-zero secrecy rates.

interference from all links, a careful design ensures that
interference at legitimate links is properly managed while
interference at Eve is kept high as much as possible. We model
these interactions between legitimate links using the theory of
non-cooperative games.

The works in [9]–[11] studied secure precoding in wiretap
interference networks. Moreover, the authors in [12] studied
power control in a multi-channel interference network without
considering TxFJ and RxFJ. All of these works assumed
that Alice has full knowledge of the eavesdropper’s chan-
nel state information (E-CSI), which may not be a prac-
tical assumption. Regarding the power assignment between
the information and TxFJ signals, the works in [13] and
[14] focused only on a single-link scenario, and their ap-
proaches are not extendable to the case of multiple links.
The authors of [15] exploited full-duplex capability at the
base station of a broadcast/multiple-access wiretap channel
to secure multiple half-duplex downlink and uplink users by
generating RxFJ/TxFJ for uplink/downlink communications.
They proposed a multi-objective optimization framework to
find the best tradeoff in minimizing downlink and uplink
powers, subject to certain constraints on information and
secrecy rates of downlink and uplink users. The work in
[16] studied power minimization for the information, TxFJ,
and RxFJ signals in a broadcast channel with confidential
messages under given guarantees on the secrecy rate for each
Bob. Power minimization was done at the BS in centralized
fashion (the BS must acquire the CSI between itself and all
downlink users). We investigate a more challenging scenario
(i.e., interference channel) where contrary to [16], distributed
computation and limited coordinations are required.

Overall, our contributions can be summarized as follows:

• Using TxFJ and RxFJ, we define a lower bound on
the power allocated to the TxFJ that guarantees positive
secrecy for each given link.

• We propose a non-cooperative game to model the power
control problem in the interference network under study.
Assuming first that Alice-/Bob-Eve channels are fully
known, we derive sufficient conditions under which the
proposed non-cooperative game admits a unique Nash
equilibrium (NE).

• We propose alternative sufficient conditions for the
uniqueness of the NE. Such conditions allow for predict-
ing the existence of a unique NE in a distributed fashion.

• We show that our distributed design can be implemented
using an asynchronous update algorithm. This algorithm
is robust to transmission delays over various links.

• Lastly, we relax the assumption of full knowledge of E-
CSI at each Alice and propose a version of our algorithm
that is robust to uncertainties in knowledge of E-CSI.

We should emphasize that in this paper, we first propose a
distributed design under full knowledge of E-CSI. Although
availability of E-CSI at all links is not a practical assumption,
we use this case to build foundations for our distributed
algorithm to establish important performance metrics. After
conducting such analysis, we then relax knowledge of E-
CSI and propose a version of our algorithm that is robust to
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uncertainties in E-CSI knowledge.
Notation: Boldface uppercase/lowercase symbols denote

matrices/vectors. a ≥ b denotes element-wise inequality
between vectors a and b. The matrix I is the identity matrix of
appropriate size. E[•], •†, and Tr(•) are the expected value,
complex conjugation, and the trace of a matrix. The sets of real
and complex numbers are indicated by R and C, respectively.

II. SYSTEM MODEL

We first describe a model for the network under consider-
ation and introduce the main performance metrics. Consider
Q transmitters (Q ≥ 2), Alice1, . . . , AliceQ, that commu-
nicate with their respective receivers, Bob1, . . . , BobQ. Let
Q , {1, 2, . . . , Q}. Aliceq , q ∈ Q, has Nq transmit antennas,
and Bobq has Mq antennas. A passive Eve with L antennas is
also present in the communication range3. The received signal
at Bobq is

yq = H̃qquq +
√
τqH′qqmq +

Q∑
r=1
r 6=q

(H̃rqur + H′rqmr) + nq

(1)

where H̃rq ∈ CMq×Nr , r ∈ Q, is the Mq-by-Nr complex
channel matrix between Alicer and Bobq , uq ∈ CNq is the
transmitted signal from Aliceq , τq ∈ R+ and H′qq ∈ CMq×Mq

are, respectively, the positive-real-valued self-interference-
suppression (SIS) factor and the self-interference channel at
Bobq due to imperfect SIS4. This self-interference model
was adopted in several works (see [15], [18]), and practical
implementations of it exist in the literature (see e.g., [19])5.
mr ∈ CMr , r ∈ Q is the RxFJ signal created by Bobr,
which is a zero mean circularly symmetric complex Gaussian
random variable (ZMCSCG-RV) with covariance matrix of
E[mrm†r] = p′rI where p′r is RxFJ power. Tr(mrm†r) =
Mqp

′
q ≤ P ′q where P ′q denotes the power limit at Bobq for

RxFJ. H′rq ∈ CMq×Mr , r 6= q, is the channel from Bobr
to Bobq because the RxFJ created by other Bobs interfere
with Bobq’s reception. nq ∈ CMq is the complex additive
white Gaussian noise (AWGN) whose covariance matrix is
E[nqn†q] = N0I with N0 ∈ R+. We assume H̃rq = H̄rqd

−η/2
rq ,

where H̄rq ∈ CMq×Nr represents the small-scale fading, drq
is the distance between Alicer and Bobq in meters, and η is the
path-loss exponent. The same equivalent assumption holds for
H′rq, r 6= q, i.e., H′rq = H̄′rqd′rq

−η/2 where H̄′rq ∈ CMq×Mr

and d′rq is the distance from Bobr to Bobq .

3L can be assumed to be large enough to represent multiple multi-antenna
colluding eavesdroppers [2]. However, in this paper, for ease of presentation,
we consider the L-antenna Eve as a single entity.

4In-band full-duplex communications requires suppression of the trans-
mitted signal of the FD-enabled device at its receive chain to allow for
simultaneous transmission and reception. However, such suppression may not
be perfect, leading to residual self-interference at the receive chain [17].

5We assume that FD receivers are not experiencing dynamic range issues
that cause the additive noise at the receive chain to be dependent on the
transmit power of the FD device. Relaxing this assumption is a subject for
future research.

The received signal at Eve is

z = G̃quq + G′qmq +

Q∑
r=1
r 6=q

(G̃rur + G′rmr) + e (2)

where G̃q ∈ CL×Nq , q ∈ Q denotes, the complex channel
matrix between Aliceq and Eve. Let G̃q = Ḡqd

−η/2
qe , where

Ḡq ∈ CL×Nq and dqe is the distance between Aliceq and Eve.
G′q ∈ CL×Mq is the channel between Bobq and Eve, and G′q =

Ḡ′qd′qe
−η/2 where Ḡ′q ∈ CL×Mq and d′qe is the distance from

Bobq to Eve. Finally, e has the same statistical characteristics
as nq . For Aliceq , q ∈ Q, its transmitted signal uq = sq +
wq consists of the information signal sq and TxFJ wq . We
only consider the case of single-stream data transmission using
multiple antennas. That is, we set sq , Tqxq , where Tq ∈ CNq

is the precoder and xq ∈ C is the information signal. In other
words, we use multiple transmit and receive antennas at each
link to achieve MIMO diversity gain, and spatial multiplexing
gain, i.e., multiple antennas are used for beamforming6.

Assume that a Gaussian codebook is used for xq , i.e.,
xq is distributed as a ZMCSCG-RV with E[xqx

†
q] = φqPq ,

where Pq is the total transmit power of Aliceq and 0 ≤
φq ≤ 1 is the fraction of transmit power allocated to the
information signal. For the TxFJ, we write wq , Zqvq ,
where Zq ∈ CNq×(Nq−1) is the precoder for the TxFJ signal
and vq ∈ C(Nq−1) is the TxFJ signal with i.i.d. ZMCSCG
entries and E[vqv†q] = σqI. The scalar value σq =

(1−φq)Pq

Nq−1
denotes the TxFJ power7. Let H̃qq = UqΣqV†q denote the
singular value decomposition (SVD) of H̃qq where Σq is the
diagonal matrix of singular values in descending order, and
Uq and Vq are left and right matrices of singular vectors,
respectively. We set Zq = V(2)

q where V(2)
q denotes the matrix

of Nq − 1 rightmost columns of Vq corresponding to the
smallest singular values [2]. We assume that Aliceq knows
H̃qq

8. The information signal precoder Tq is set to Tq = V(1)
q ,

where V(1)
q is the first column of Vq corresponding the largest

singular value , achieving the maximum transmit diversity gain
[20]. Let Hqq , H̃qqV(1)

q , Hjqq , H̃qqV(2)
q , Hqr , H̃qrV(1)

q ,
Hjqr , H̃qrV(2)

q , Gq , G̃qV(1)
q , and Gjq , G̃qV(2)

q . The
terms Gq and Gjq , ∀q ∈ Q, denote the E-CSI components.

6Later on, we explain the rationale behind this choice.
7Notice that the TxFJ power is distributed uniformly between various

dimensions of vq . In the case of full knowledge of E-CSI, such power division
is not optimal. However, when no knowledge of E-CSI is available (which we
assume later in this paper), it was shown that uniform distribution of TxFJ
power among different dimensions of vq is optimal (see [2], [13]).

8Acquiring channel state information (CSI) between Aliceq and its corre-
sponding Bobq is assumed to be done securely. For example, a two-phase
channel estimation can be performed, where in the first/second time-slot,
Aliceq /Bobq sends the pilot signals to Bobq /Aliceq . This way, we avoid having
to send explicit CSI feedback from one communication end to another, thus
lowering the probability of eavesdropping on channel estimates.
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Fig. 1: System model.

Hence, (1) and (2) can be written as

yq = Hqqxq + Hjqqvq +
√
τqH′qqmq+

Q∑
r=1
r 6=q

(Hrqxr + Hjrqvr + H′rqmr) + nq (3a)

z = Gqxq+Gjqvq + G′qmq+

Q∑
r=1
r 6=q

(Grxr + Gjrvr + G′rmr) + e. (3b)

An illustration of the system model under study is given in
Fig. 1 for a two-link network. It can be seen that the inter-
ference components at each Bob include his self-interference
signal as well as information, TxFJ, and RxFJ signals of the
other link. Eve also receives all information, TxFJ, and RxFJ
signals.

After receiving yq at Bobq , a linear receiver dq ∈ CMq is
applied. Assuming that d†qHjqqvq = 09, an estimate of xq is
given by:

x̂q = d†q
(

Hqqxq +
√
τqH′qqmq+

Q∑
r=1
r 6=q

(Hrqxr + Hjrqvr + H′rqmr) + nq
)
. (4)

Hence, the information rate for the qth link is expressed as:

Cq , log(1 +
φqPq

aq + bqp′q
) (5)

9Note that the choice of the linear receiver (to be discussed near the end
of this section) affects this assumption. In this paper, we choose the linear
receiver so that this assumption holds.

where

aq , (6a)∑Q
r=1
r 6=q

(∣∣∣d†qHrq

∣∣∣2 φrPr +
∣∣∣d†qHjrq

∣∣∣2 σr + |d†qH
′
rq|2p′r

)
+N0∣∣∣d†qHqq

∣∣∣2
(6b)

bq , τq
|d†qH

′
qq|2

|d†qHqq|2
. (6c)

Eve also applies a linear receiver rq ∈ CL while eavesdropping
on qth link’s signal to obtain the following estimate of xq

ẑq = r†q(Gqxq+Gjqvq+G′qmq+

Q∑
r=1
r 6=q

(Grxr+Gjrvr+G′rmr)+e).

(7)
Thus, the rate at Eve while eavesdropping on Aliceq (i.e.,
leaked rate of Aliceq at Eve) is

Ceq , log(1 +
φqPq

cq + dqp′q
) (8)

where

cq ,

∣∣r†qGjq

∣∣σq∣∣∣r†qGq

∣∣∣2 +

∑Q
r=1
r 6=q

(∣∣r†qGr

∣∣2 φrPr +
∣∣r†qGjr

∣∣2 σr + |r†qG
′
r|2p′r

)
+N0∣∣∣r†qGq

∣∣∣2
(9a)

dq ,
|r†qG

′
q|2

|r†qGq|2
. (9b)

Finally, the secrecy rate of Aliceq can be written as10

Csecq , max{Cq − Ceq, 0}. (10)

The linear receivers dq and rq , q ∈ Q, are chosen according
to the maximal ratio combining (MRC) [20] method so as
to maximize the reception of the signal at Bobq and Eve,
respectively. Hence, dq = U(1)

q , where U(1)
q is the first column

of Uq (recall that H̃qq = UqΣqV†q). Using this linear receiver,
the TxFJ signal of Aliceq will be nullified at Bobq . In other
words, d†qHjqqvq = 0. Let G̃q = LqDqRq be the SVD of
G̃q where Lq and Rq are matrices of left and right singular
vectors, respectively, and Dq is the diagonal matrix of singular
values in descending order. Thus, while eavesdropping on the
qth link, Eve sets its linear receiver rq = L(1)

q , where L(1)
q is

the first column of matrix Lq11.
We need to emphasize that the choice of precoder (i.e.,

beamformers) for TxFJ signal in this paper is mainly driven by
the fact that acquiring E-CSI knowledge may not be possible

10Because none of the links knows whose transmission Eve is interested
in, each link tries to protect its own transmission from Eve. Thus, the secrecy
rate of each link can be determined by (10) (see [21]).

11Other decoders (such as MMSE [20]) can also be employed by Eve. This
issue will be discussed later in the simulation section.
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in cases where Eve is a passive node. For a single-link
scenario, it was shown in [22] that optimizing the precoders of
information and TxFJ signals requires complete knowledge of
E-CSI. However, in this paper, the beamforming vector for the
TxFJ signal for each link depends only on the channel between
the two nodes comprising that link, which is relatively more
practical to obtain.

Our choice of the beamforming vector Tq comes from the
fact that the number of antennas at Eve may not be known.
As pointed out in [2], the main limitation of the TxFJ method
is that if Eve has more antennas than Alice, then Eve may be
able to nullify the effect of TxFJ on itself.

III. PROBLEM FORMULATION

In this section, we present conditions to achieve positive
secrecy and establish the foundation for our game-theoretic
formulation. We form the following optimization problem for
link q, q ∈ Q:

maximize
φq,p′q

Csecq

s.t. 0 ≤ φq ≤ 1

0 ≤ p′q ≤ P ′q. (11)

Due to the non-concavity of the objective function in (11)
w.r.t. the decision variables12, the optimization in (11) is non-
convex. To find a tractable (and yet suboptimal) solution, we
decompose the analysis of RxFJ and power assignment (PA)
between information and TxFJ signals into two sub-problems.
We first propose a tractable solution for p′q . Then, we propose
a method to find a suboptimal PA between information and
TxFJ signals.

A. Computation of RxFJ Power

Removing the max{•} and log(•) operators from Csecq in
(10), the secrecy maximization w.r.t. p′q can be written as

maximize
p′q

1 +
φqPq

aq+bqp′q

1 +
φqPq

cq+dqp′q

s.t. 0 ≤ p′q ≤ P ′q. (12)

One can do a simple one-dimensional search to find the
optimal value of p′q . However, such an approach demands
knowledge of multiuser interference (MUI) at Eve (i.e., cq),
which may not be available to Bobq . In the remainder of this
section, we propose a a different method for setting the RxFJ
power. While at first it may seem that our method requires
knowledge of MUI at Eve, we later show that this method can
be relaxed to handle the case when knowledge of Eve’s MUI
is not available.

We first obtain conditions that result in positive secrecy at
link q. Positive secrecy in (10) is achievable if and only if
the objective value in (12) is larger than one. It can be easily

12The non-concavity of objective function can be easily seen by examining
the Hessian matrix of the objective function.

shown that this is true if and only if the optimal objective
value of the following optimization is larger than one13:

maximize
p′q

g(p′q) ,

φqPq

aq+bqp′q
φqPq

cq+dqp′q

=
cq + dqp

′
q

aq + bqp′q

s.t. 0 ≤ p′q ≤ P ′q. (13)

Note that the relationship between the solutions of (12) and
(13) (that result in their corresponding objective values being
larger than one) is of necessary and sufficient type. Hence,
if we are seeking a set of conditions/solutions that result in
positive secrecy, we can examine these solutions by checking
the objective value they yield for (13) instead of (12). The first
and second derivatives of g(p′q) are as follows:

∂g(p′q)

∂p′q
= − bqcq − aqdq

(aq + bqp′q)
2

(14a)

∂2g(p′q)

∂p′q
2 = 2bq

bqcq − aqdq
(a+ bp′q)

3
. (14b)

Hence, the optimal value of p′q (i.e., p′q
∗) that solves (13) is

given by:

p′q
∗

=


P ′q if bq <

aqdq
cq

0 if bq >
aqdq
cq

.

(15)

Simplifying the first condition of (15), a threshold for SIS
factor can be established14

τq <
|d†qHqq|2

|d†qH
′
qq|2

aqdq
cq

. (16)

Later on, we show in simulations that whenever positive
secrecy is achievable (i.e., the objective in (12) is larger than
one), (15) yields the optimal RxFJ power, signifying that the
solution to (13) is very likely the optimal solution to (12) as
well.

Considering (16), we can conclude the following: Given cq
and dq , if the (normalized) MUI at Bobq (aq) is not as strong

as the (normalized) self-interference channel (
|d†qHqq|2

|d†qH′qq|2
), i.e., if

|d†qHqq|2aq
|d†qH′qq|2

is small, the power of RxFJ should be very weak

to maintain positive secrecy, leading to p′q
∗

= 0. However,

if
|d†qHqq|2aq
|d†qH′qq|2

is large, the effect of RxFJ on Bobq is not as
significant as MUI, so less suppression of self-interference can
be allowed and still maintain positive secrecy, i.e., p′q

∗
= P ′q

becomes the favorable solution. An equivalent intuition holds
for dq/cq when

|d†qHqq|2

|d†qH′qq|2
and aq are given. Specifically, a large

dq/cq indicates that RxFJ degrades Eve’s reception more than
the MUI received at Eve (cq). Hence, smaller SIS suppression
(i.e., larger τq) is allowed, indicating that p′q

∗
= P ′q becomes

the favorable solution.

13 One can simply set the objective of (12) to be larger than one and end
up with g(p′q) > 1 (and vice versa), where g(p′q) is defined in (13).

14Although when p′q = 0 the benefits of RxFJ are lost, one can set a
minimum RxFJ power to prevent RxFJ from going to zero.
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It can be seen in (15) that the optimal RxFJ power that
solves (13) depends on two factors: MUI at Bobq (i.e., aq)
and MUI at Eve while eavesdropping on the qth link (i.e., cq).
It may not be practical for a legitimate node to know the MUI
at Eve. Later on, we show that using a specific technique in
setting TxFJ can help us to mitigate the dependence on Eve’s
MUI.

B. PA Between TxFJ and Information Signals
After finding a set of conditions/solutions for RxFJ power

(i.e., the rule in (15)), we now focus on finding the optimal
PA between TxFJ and information signals of Aliceq (i.e., φq).
This is done through the following formulation:

maximize
φq

Csecq

s.t. 0 ≤ φq ≤ 1. (17)

Although the optimal φq can be found via a simple one-
dimensional search, we would like to eventually solve (17)
without requiring knowledge of Eve’s MUI. In this part of
the paper, we propose a solution to (17) in the perfect E-CSI
scenario. Later on, we show that our approach is extendable
to the case of unknown E-CSI.

Similar to the approach taken in the previous section, we
approach problem (17) by first finding a bound on φq that
guarantees positive secrecy of link q. Thus, the objective in
(17) is assumed to be positive, which reduces to

φqPq
aq + bqp′q

>
φqPq

cq + dqp′q
. (18)

Simplifying this inequality, we end up with the following:

cq > aq + (bq − dq)p′q. (19)

The inequality in (19) is a bound on the TxFJ power of Aliceq
(i.e., σq) because according to (9a), cq is a function of σq .
Hence, reducing (19) gives us a bound on the portion of power
allocated to the information signal (i.e., φq) as well. However,
for ease of presentation, we do not simplify (19) to write φq
(or σq) at the left hand side of the inequality. We refer to
(19) as the lower-bound on TxFJ power of link q to guarantee
positive secrecy. To make use of this lower bound, we first
introduce the following result.

Lemma 1. If (19) is satisfied, the secrecy rate Csecq is a
monotonically increasing function of Pq and φq .

Proof: The inequality in (19) can be written as

cq = aq + (bq − dq)p′q + δ (21)

where δ > 0 is a positive real value. Replacing the term cq
in (8) with the RHS of (21), and taking the derivative of (10)
(without the max{•} operator) w.r.t. Pq and φq , we have

∂Csecq

∂Pq
=

φqδ

(aq + φqPq + bqp′q)(aq + φqPq + bqp′q + δ)
(22a)

∂Csecq

∂φq
=

Pqδ

(aq + φqPq + bqp′q)(aq + φqPq + bqp′q + δ)
(22b)

which are both positive, and hence the lemma is proven.

Recall that in setting the RxFJ power in (15), we observed
that its optimal value p′q

∗ depends on Eve’s and Bobq MUI.
In order to mitigate knowledge of MUI at Bobq and Eve in
(15) (i.e., aq and cq), we examine the following alternative
conditions for RxFJ:

p′q
∗

=

{
P ′q, if bq < dq

0, if bq > dq.
(23)

Using the bound in (19), the following property shows the
sufficiency of (23) to conclude (15).

Proposition 1. Provided that the following conditions hold,
the conditions on the optimal RxFJ power in (23) imply those
of (15):
• cq satisfies (19) and cq > 0.
• (bq − dq)P ′q + δ < 0 when bq < dq

Proof: Assume that (23) is used to obtain the RxFJ power
of link q. Hence, we set p′q

∗
= P ′q when bq < dq . If cq > 0

and cq satisfies (19) (first condition of Proposition 1), then
cq = aq + (bq − dq)P ′q + δ > 0 when bq < dq . Assuming that
(bq − dq)P ′q + δ < 0 (second condition of Proposition 1), one
can conclude that aq > cq , or equivalently aq > aq + (bq −
dq)P

′
q+δ. Hence, bq < dq is readily sufficient to deduce bq <

aqdq
cq

that appear in (15). Similarly, bq > dq can be proven to

be sufficient to satisfy bq >
aqdq
cq

. Specifically, we set p′q = 0
according to (23). Hence, cq must satisfy cq = aq + δ. Since
δ > 0, aq < cq . Therefore, bq > dq is sufficient to deduce
bq >

aqdq
cq

that appear in (15).

Remark 1: If bq < dq and cq = aq + (bq − dq)P ′q > 0,
then bq < dq is sufficient to satisfy bq <

aqdq
cq

, so both RxFJ
schemes in (15) and (23) result in p′q

∗
= P ′q . However, when

bq < dq (suggesting p′
∗
q = P ′q in (23)) but cq = aq + (bq −

dq)P
′
q < 0, we have bq >

aqdq
cq

(suggesting p′
∗
q = 0 in (15)).

Hence, we have conflicting decisions made by (15) and (23).
Condition (bq − dq)P ′q + δ < 0 sets an upper bound on δ, i.e.,
0 < δ < (dq− bq)P ′q if bq < dq . According to (6) and (9), the
terms bq and dq are in fact functions of self-interference, Alice-
Bob, Bob-Eve, and Alice-Eve channels. Hence, if Proposition
1 holds, Bobq only has to check whether or not

τq <
|d†qHqq|2|r†qG

′
q|2

|d†qH
′
qq|2|r

†
qGq|2

(24)

to decide whether RxFJ is needed or not. In other words, (23)
is sufficient to set the RxFJ power of Bobq15. The intuitive
interpretation of (24) is that the SIS factor needs to be small
if the self-interference channel (i.e., |d†qH

′
qq|) has a large value,

but if the Bob-Eve channel (i.e., |r†qG
′
q|2) is large enough, it

can cancel out the effect of self-interference channel. In other
words, Bobq must not use RxFJ if the self interference is not
removed well enough. However, if Eve suffers more from the
generated RxFJ, then Bobq can use it. Compared to (15), the
RxFJ power assignment in (23) is more desirable, as it does not

15The sufficiency of (23) is examined in [23, Fig. 3] but is skipped in this
paper due to space limitation.
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φq ≤ max

{
min

{
1− 1

Pq

Q∑
r=1
r 6=q

{
(Aq,r −Bq,r)φrPr + Cq,rPr +Dq,rp

′
r

}
−
p′q
Pq
Eq −

Fq
Pq
δ, 1

}
, 0

}
(20)

require real-time tracking of Eve’s MUI at Bobq . Combining
(19) and (23), we have{

cq > aq + (bq − dq)P ′q, if bq < dq

cq > aq, if bq > dq
. (25)

Since the inequalities in (25) are strict, we write the following:{
cq = aq + (bq − dq)P ′q + δ, if bq < dq

cq = aq + δ, if bq > dq
. (26)

With some mathematical manipulations of Equations (18)–
(26), we can convert problem (17) to the following problem:

maximize
φq, δ

Csecq

s.t. cq = aq + (bq − dq)p′q
∗

+ δ

cq > 0 (27)
0 < δ < (dq − bq)P ′q + J(1− tq)
0 ≤ φq ≤ 1

where p′q
∗ in the first constraint is set according to (23), J is

a sufficiently large positive number, and

tq =

{
1 if bq < dq

0 if bq > dq
. (28)

The first constraint in (27) is a constraint on φq , which is
needed so that the optimal solution yields positive secrecy16.
In other words, this constraint replaces the more general
constraint in (17), so that we can ignore the max{•} operator
in Csecq = max{Cq − Ceq}. This constraint together with
the second and third constraints in (27) ensure that setting
p′q
∗ according to (23) is sufficient to satisfy the more general

conditions in (15). Note that tq is not a decision variable of
(27), and can be easily computed by knowing bq and dq .

Because cq is a function of φq , one can simplify the first
constraint in (27) to find the value of φq that yields positive
secrecy for the objective of (27). However, we still need to
determine the value of δ to ensure that such value found for φq
is the optimal one for problem (27). A simple one-dimensional
search in the interval defined by the third constraint in (27)
can provide us with the best value of δ and subsequently
the optimal value of φq . To avoid additional computation
imposed by the one-dimensional search process, we propose
the following heuristic technique to obtain δ. On the one hand,
we do not wish to choose δ near its upper bound due to
the fact that a higher δ increases the lower bound on TxFJ,
which subsequently decreases the amount of power allocated
to the information signal. On the other hand, selecting δ
close to zero is also not desirable, as in (22b) the growth

16Note that the term cq is a function of φq (see (9)). An equivalent expanded
version of this constraint is given in equation (20). In (27), however, for the
sake of simplicity, we present this constraint in a more compact form.

rate of secrecy rate would be decreased. Hence, we choose
δ = 1

2 |dq − bq|P
′
q . We show later that this heuristic choice of

δ yields a performance close to that of the optimal solution
found by a one-dimensional search.

IV. GAME FORMULATION

In this section, using the ideas in Section III, we propose a
power control scheme based on non-cooperative games. The
first constraint in (27) can be written in a general form, as
follows {

cq ≥ aq + (bq − dq)P ′q + δ, if bq < dq

cq ≥ aq + δ, if bq > dq.
(29)

Simplifying (29) and taking into account the other constraints
of (27), an upper bound on φq can be written as in (20), with
δ = 1

2 |dq − bq|P
′
q and the newly introduced notations in (20)

are given in (30):

Aq,r ,
Nq − 1

Nr − 1

|r†qGq|2

|d†qHqq|2|r†qGjq|2
(
(Nr − 1)|d†qHrq|2 − |d†qHjrq|2

)
(30a)

Bq,r ,
Nq − 1

Nr − 1

(Nr − 1)|r†qGr|2 − |r†qGjr|2

|r†qGjq|2
(30b)

Cq,r ,
Nq − 1

Nr − 1

|r†qGq|2|d†qHjrq|2 − |d†qHqq|2|r†qGjr|2

|r†qGjq|2|d†qHqq|2
(30c)

Dq,r , (Nq − 1)
|r†qGq|2|d†qH′rq|2 − |d†qHqq|2|r†qG′r|2

|r†qGjq|2|d†qHqq|2
(30d)

Eq , (Nq − 1)
τq|r†qGq|2|d†qH′qq|2 − |d†qHqq|2|r†qG′q|2

|r†qGjq|2|d†qHqq|2
(30e)

Fq , (Nq − 1)
|r†qGq|2

|r†Gjq|2
. (30f)

Hence, link q’s optimization problem in (27), where q ∈ Q,
can be written as

maximize
φq

Csecq

s.t. (20). (31)

With every legitimate link following such a strategy, the
resulting interaction between them can be modeled as a non-
cooperative game, where players are links, the strategy set of
the qth player is the set of constraints in (31), and the utility
of each player is his secrecy rate. According to Lemma 1,
upon achieving positive secrecy for link q (i.e., satisfying the
constraint in (31)), the secrecy rate becomes a monotonically
increasing function of φq . Hence, the best-response of the qth
link, q ∈ Q, is when φq meets its upper bound in (20) with
equality. The Nash equilibrium is a point at which no player is
willing to unilaterally change his strategy given the strategies
of other players.
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A. Existence and Uniqueness of Nash Equilibrium

The first game-theoretic analysis that we perform is to
examine whether the game characterized by (31) admits a NE.
An NE exists if the strategy set of each player is non-empty,
compact, and convex; and the utility function of each player
is a continuous and (quasi-)concave function of its action, i.e.,
Csecq is concave w.r.t. φq . Convexity of each player’s strategy
set is easy to prove, and thus omitted for brevity. Replacing
cq with aq + (bq − dq)P ′q + δ in (10) (as the first constraint in
(27) suggests) and taking the second derivative of (10) w.r.t.
φq , we have:

∂2Csecq

∂φ2q
= P 2

q

(
1

aq + δ + φqPq + bp′q
− 1

aq + φqPq + bp′q

)
(32)

which is always negative, indicating that Csecq is concave w.r.t.
φq . A necessary and sufficient condition for the uniqueness of
NE is proven in the following theorem.

Theorem 1. The game in (31), for which the best response
of each player is when (20) holds with equality, has a unique
NE iff:

ρ(A + B) < 1 (33)

where ρ(•) indicates the spectral radius of a matrix (i.e.,
largest absolute value of eigenvalues of a matrix), A is a
matrix whose (q, r) element, ∀(q, r) ∈ Q2, is given by

[A]q,r ,

−
Pr
Pq
Aq,r , r 6= q

0 , r = q

,∀(r, q) ∈ Q (34)

and [B]q,r, ∀(q, r) ∈ Q2 is defined as:

[B]q,r ,


Pr
Pq
Bq,r , r 6= q

0 , r = q

. (35)

with Aq,r and Bq,r defined in (30).
Proof: The uniqueness of NE can be proven by leveraging

the fixed-point theorem. In fact, if the iterative computation
of each player’s best-response (i.e., φq meeting its upper
bound in (20) with equality for all q) has a fixed point,
the convergence point is the NE of the game [24]. We first
analyze the existence of a fixed point for the argument inside
max{min{•, 1}, 0} in (20). Then, we extend the analysis to
include max{min{•, 1}, 0}. Concatenating the best responses
of all links, the following fixed-point problem in its n−th
iteration can be established:

Φ(n+1) = T (Φ(n)) = 1 + (A + B)Φ(n) + f (36)

where Φ = [φ1, . . . , φQ]T , 1 is a vector of appropriate size
whose entries are all 1, and f is a vector constructed by
concatenating other terms in (20) for all q. The rest of the
proof is presented in [23, Appendix A].

Remark 2: Using the condition in (33), the convergence
of the Jacobi iterative algorithm in the sense of [24, Ch. 2,
Proposition 6.8] is guaranteed. In fact, at every iteration, all
players simultaneously update their actions. Later on, we prove
the convergence of our secure power control game under totally

asynchronous updates (in the sense of [24, Ch. 6]).

B. Algorithm Design

We now design an algorithm to implement the proposed
power control game. Let Tq, ∀q ∈ Q, be the set of iteration
numbers when the qth link updates its action. For example,
Tq = {1, 3, 5} indicates that the qth links performs the update
in (31) in first, third and fifth iterations. Furthermore, Let
Θ

(n)
q = {θ(n)1,q , . . . , θ

(n)
Q,q} denote the set of most recent times

that the interference coming from each link is measured at
Bobq in the nth iteration. Hence, θ(n)r,q is the most recent
iteration in which the interference from the rth link, r 6= q
is captured/updated, and θ

(n)
r,q ≤ n − 1. Therefore, in the

nth iteration, the qth link, q ∈ Q, performs the update in
(31) based on Θ

(n)
q if n ∈ Tq . Using these definitions, we

can now present an asynchronous algorithm that implements
our proposed game, which is shown in Algorithm 1. Other
termination criteria can be used instead of the maximum
iteration number.

Algorithm 1 Asynchronous Iterative Secure Power Allocation
(full E-CSI version)

1: Set p′q and δ according to (23) and Proposition 1 (see
Section III).

2: for n=1 to maximum iteration do

3: Set φ(n)q =

{
Equal to RHS of (20), if n ∈ Tq
φ
(n−1)
q otherwise

,

∀(q) ∈ Q.
4: end for

Special cases of the asynchronous scheme include Jacobi
(or simultaneous) and Gauss-Seidel (or sequential) schemes
[24]. The Jacobi scheme can be described as follows (q ∈ Q):

Tq = {1, 2, ..., itmax}
Θ(n)
q = {n− 1, ..., n− 1}

where itmax is the maximum iteration number. In other words,
in the Jacobi scheme, all links simultaneously update their
actions at each iteration. The Gauss-Seidel scheme can be
described as follows:

Tq = {q, q +Q, q + 2Q, ..., q +

(
itmax
Q
− 1

)
Q}

Θ
(n)
j =

{
{n− (q − 1), ..., n− 1} if j = 1, . . . , q − 1

{n, n− (Q− 1), ..., n− q} if j = q, . . . , Q

which means that in each iteration, only one link updates
its action, while all other links use their previously chosen
actions. The following theorem guarantees the feasibility of
asynchronous implementation of our proposed game:

Theorem 2. Algorithm 1 converges asynchronously to the
unique NE of the proposed game if Theorem 1 holds.

Proof: See [23, Appendix B].

Note that (20) was derived only to proceed with the game-
theoretic analysis of the problem. A detailed procedure to find
the optimal value of φq in a node is as follows. At a given
iteration of our algorithm, say the nth iteration, after setting
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the optimal value of RxFJ, in order to determine the optimal
PA, Bobq needs to first measure the interference at his receive
chain, i.e., a(n−1)q +b

(n−1)
q p′q

∗ must be measured, where a(n−1)q

and b
(n−1)
q indicate the values of aq and bq at the previous

iteration. Assuming that full knowledge of E-CSI is available,
Bobq also knows the MUI at Eve in the previous iteration,
i.e., c(n−1)q + d

(n−1)
q p′q

∗ is known17. Hence, Bobq does the

following: 1) He subtracts the term |r
†
qGjq|σ(n−1)

q

|r†qGq|2 from c
(n−1)
q ;

2) He adds the result of subtraction to d(n−1)q p′q
∗. Denote the

result of this addition as gq; 3) He finds the optimal PA in the
nth iteration, which can be described as:

φ∗q = max

{
min

{
1−

∣∣r†qGq

∣∣2∣∣∣r†qGjq

∣∣∣Pq

(a(n−1)
q +b(n−1)

q p′q−gq), 1
}
, 0

}
.

(37)
It can be seen that setting the optimal PA involves simple

addition, subtraction and division of scalar values. Moreover,
there is no need to know all interference terms at Bobq and
Eve because only the aggregate of these terms (i.e., aq and
cq) need to be known.

C. Discussion on Sufficient Conditions for NE Uniqueness

Although (33) is a tight condition, evaluating it requires
knowledge of the whole matrix A + B, which is not desir-
able for distributed implementation. We introduce a sufficient
condition which can be evaluated in distributed fashion. It is
shown in [24, Proposition A.20] that for any induced matrix
norm18 ||•|| and any square matrix M we have ρ(M) ≤ ||M||.
Using this property, we consider the induced norm || • || to
be || • ||∞, which is the infinity norm. Hence, assuming that
M is a Q-by-Q matrix, a sufficient condition for ρ(M) < 1
is whether ||M||∞ < 1. Using this property in our game,
a sufficient condition for our game to have a unique NE is
whether

||A + B||∞ = max
q

Q∑
r=1

Pr
Pq
|Aq,r −Bq,r| < 1. (38)

The physical intuition drawn from the condition in (38) is
not straightforward. One way to interpret this condition is to
decompose this condition as follows: The term Aq,r in (38) is
mostly related to the MUI at each Bob which should be low
enough, i.e., |d†qHqq|, ∀q ∈ Q in Aq,r should be large enough
to guarantee the uniqueness of NE (see (30)). A sufficient
separation between the links can satisfy this condition. The
term Bq,r in (38) is related to E-CSI components (see (30)).
At first, it may seem that this condition requires each link
to be the dominant interferer at Eve w.r.t. other links (i.e.,
|r†qGjq|, ∀q ∈ Q in Bq,r should be large enough). However,
this is physically not possible.

It can be seen that the uniqueness condition depends on
the location of Eve because both Aq,r and Bq,r depend on

17Notice that throughout the iterations of our algorithm, b(n−1)
q = b

(n)
q and

d
(n−1)
q = d

(n)
q . However, the values of aq and cq can vary across iterations.

18The induced norm of matrix M is defined as ||M|| ,
max||x||=1 ||Mx|| where x is a vector and both norms in the RHS are
vector norms.

Eve’s channels. Other studies such as [6], [9], [12] have
also confirmed the dependency of the unique NE (of non-
cooperative secure power control games) on Eve’s channels.
Such a coupling is neither practical (because E-CSI must be
known) nor favorable (because Eve plays a role in the stability
of the game). In what follows, we aim to mitigate knowledge
of E-CSI and set the NE uniqueness (derived in Theorem 1)
free of Eve’s role. None of the approaches in [6], [9], [10], [12]
were shown to be extendable to the case of unknown E-CSI.
However, we show that our approach can be simply extended
to cover the case of unknown E-CSI.

V. ROBUST POWER ALLOCATION GAME

In this section, we incorporate the assumption of unknown
E-CSI in our game.

A. Computing the Best Response Under E-CSI Uncertainties

As knowledge of E-CSI becomes unknown, each legitimate
link needs to ensure that positive secrecy is still preserved.
Recalling the inequalities in (29) and (20), positive secrecy
happens when cq > aq + (bq − dq)p′q or equivalently

(1− φq)Pq > ψq + τqp
′
qEq (39)

where

ψq ,
Q∑
r=1
r 6=q

{(Aq,r −Bq,r)φrPr + Cq,rPr +Dq,rp
′
r} .

Under unknown E-CSI, for a given probability of positive
secrecy, denoted by ε, the qth link needs to satisfy the
following:

Pr{(1− φq)Pq > ψq + τqp
′
qEq} ≥ ε. (40)

Using (23) and the Bayes law of total probability, we have

Pr{(1− φq)Pq > ψq + τqp
′
qEq} =

Pr{bq < dq}(1− Pr{(1− φq)Pq ≤ ψq + τqP
′
qEq})+

Pr{bq > dq}(1− Pr{(1− φq)Pq ≤ ψq}). (41)

We assume that ψq + τqp
′
qEq is a non-negative number for

both values of p′q , i.e., Pr{ψq + τqp
′
qEq > 0} = 1, otherwise

(40) is always satisfied when ψq + τqp
′
qEq < 0, and Aliceq

can spend all of the transmit power on information signal19.
Using Markov inequality in (41), the following holds

Pr{bq < dq}(1− Pr{(1− φq)Pq < ψq + τqP
′
qEq})+

Pr{bq > dq}(1− Pr{(1− φq)Pq < ψq}) >

Pr{bq < dq}(1−
E[ψq + τqP

′
qEq]

(1− φq)Pq
)+

Pr{bq > dq}(1−
E[ψq]

(1− φq)Pq
). (42)

19Intuitively, if Eve is not closeby no power needs to be allocated to TxFJ,
hence suggesting that ψq + τqp′qEq < 0.
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Hence, (40) remains true as long as we have

Pr{bq < dq}(1−
E[ψq + τqP

′
qEq]

(1− φq)Pq
)+

Pr{bq > dq}(1−
E[ψq]

(1− φq)Pq
) ≥ ε. (43)

Simplifying this inequality, we end up with (44) shown at the
top of the next page. For the rest of this section, we explain
how different terms in (44) can be computed. We first focus
on computing Pr{bq < dq}. Using (6) and (9), we simplify
bq < dq , which is as follows

bq < dq ⇒ |r†qGq|2 <
|d†qHqq|2

τq|d†qH
′
qq|2
|r†qG

′
q|2. (45)

The probability Pr{bq < dq} can be written as

Pr{
|r†qGq|2

|r†qG′q|2
<
|d†qHqq|2

τq|d†qH
′
qq|2
}. (46)

The small-scale fading components of r†qG
′
q and r†qGq

are ZMCSCG-RVs with unit variances. Hence |r†qGq|2 and
|r†qG

′
q|2 both have chi-square distributions with 2 and 2Nq

degrees of freedom, respectively. The division of a (central)
chi-square random variable by another independent (central)
chi-square random variable has F-distribution. To tackle the
issue of unknown large-scale fading components of r†qG

′
q and

r†qGq we use stochastic geometry [25]. One can model nodes’
positions according to a spatial distribution, e.g., a Poisson
point process (PPP). For instance, stochastic geometry has
been used in modeling eavesdroppers’ positions in several
recent works [26]. We model the location(s) of Eve(s) ac-
cording to an independent homogenous PPP, namely Ω, with
density λ. Such a representation can be used to model single or
multiple Eves depending on the choice of λ20. In summary, let
Γγ ,

|r†qGq|2

|r†qG′q|2
where Γ and γ are RVs that represent large-scale

and small-scale fading components of
|r†qGq|2

|r†qG′q|2
, respectively.

Furthermore, let ν ,
|d†qHqq|2

τq|d†qH′qq|2
. Using stochastic geometry

and F-distribution, we have the following theorem21:

Theorem 3. An analytical solution for (46) that is used in
(44) is as follows:

Pr{Γγ < ν} = exp

(
− λ

∫ d0

0

∫ 2π

0

Pr
{
§qγ > ν

}
β dβdϕ

)
(47)

where §q ,
(

β√
dqq2+β2−2dqqβcosϕ

)η
and Pr{§qγ > ν} =

(1 + ν
§q )
−Nq .

20For example, if Eve is known to be distributed inside a certain region,
we can find a suitable λ (that represents the density as λ Eves per unit of the
surface area) such that the PPP matches our settings.

21In [1], we assumed that the large-scale fading component of eavesdrop-
per’s channels were known. However, in Theorem 3, we provided an analytical
approach to cover the case of unknown large-scale fading components of E-
CSI in our power control game.

Proof: See [23, Appendix C].

We now turn our attention to E[ψq + τqP
′
qEq] and E[ψq]

in (44). We propagate the expectation in E[ψq + τqP
′
qEq] to

each term inside ψq using (30). Because the expectation terms
in E[ψq + τqP

′
qEq] contain non-negative RVs we can use the

following identity:

E

[
|r†qGq|2

|r†qG′q|2

]
=

∫ ∞
0

Pr{Γγ > ν}dν (48)

where Pr{Γγ > ν} can be derived from Theorem 3. Hence, the
terms involving expectation in E[ψq+τqP

′
qEq] are computable

and can be treated the same as E
[
|r†qGq|2

|r†qG′q|2

]
.

Note that we focus on no E-CSI knowledge in only Section
V of our paper. However, for the purpose of laying a theoretical
foundation, until Section V of the paper, we assumed that E-
CSI was available. In the scenario where knowledge of E-
CSI is not available, it can be shown that our robust scheme
is aimed at maximizing the ergodic secrecy rate. The details
of describing our robust scheme as an ergodic secrecy rate
maximization method can be found in [23, Appendix E.A].

B. Distributed Power Control Under E-CSI Uncertainties

Using (44)-(48), we construct a game with the same struc-
ture as in Section IV where each link’s best response is
computed from (44). Same as what we did in the proof of
Theorem 1, we concatenate the solution in (44) for all q
to establish the following fixed point problem in its n−th
iteration

Φ(n+1) = 1 +
1

1− ε

(
E[A + B]Φ(n) + E[f ]

)
(49)

It can be seen that (49) is similar to (36) with the only
difference that in (49) we applied expectation w.r.t E-CSI
to all terms. To analyze the uniqueness of NE, the fixed
point problem in (49) must be in closed form, i.e., the
expectation terms in (49) must be computable. The close-form
representation of these terms was given in (45)–(48). Hence,
all the analysis that we did for the NE in the full-ECSI scenario
is applicable in the robust scheme as well.

Using the same logic behind Theorem 1, the following must
hold to ensure a unique NE for the robust game:

ρ

(
E[A + B]

1− ε

)
< 1 (50)

where the expected value is element-wise. Note that E[Bq,r] =
022, so one can see that the analysis of E [A + B] is simplified
to E [A]. Therefore, the E-CSI is no longer present in NE
uniqueness conditions. Moreover, for the qth link, q ∈ Q to
perform the PA scheme in (44), it requires the PA’s set by
other links (i.e., φr, ∀r ∈ Q, r 6= q), as well as the interfering
channels between other legitimate links and Bobq (i.e., Hrq

and Hjrq, H ′rq, ∀r, q ∈ Q, r 6= q). Hence, no knowledge of
MUI at Eve or E-CSI components is needed. Same as the
previous section, an alternative condition to (50) is to replace

22A full treatment of this derivation is given in [23, pp. 27-29].



11

φq ≤ max

{
min

{
1− Pr{bq < dq}

E[ψq + τqP
′
qEq]

(1− ε)Pq
− Pr{bq > dq}

E[ψq]

(1− ε)Pq
, 1

}
, 0

}
. (44)

the spectral radius with the infinity norm (see also (38)).
Interestingly, the alternative condition for the robust game has
a nice interpretation. Specifically, (50) is deduced if

||E[A]

1− ε
||∞ = max

q

Q∑
r=1

1

1− ε
|E[Aq,r]| < 1. (51)

Intuitively, if the interfering channels are small enough, a
unique NE exists. Thus, the uniqueness conditions in the
robust schemes are not dependent on E-CSI. The following
asynchronous algorithm implements the robust version of our
game:

Algorithm 2 Asynchronous Iterative Secure Power Allocation
(robust version)

1: Given ε, calculate (46) and set p′q = P ′q if Pr{bq < cq} ≥
0.5, or p′q = 0 if Pr{bq < cq} < 0.5.

2: for n=1 to maximum iteration do

3: Set φ(n)q =

{
Equal to RHS of (44), if n ∈ Tq
φ
(n−1)
q otherwise

,

∀(q) ∈ Q.
4: end for

VI. NUMERICAL RESULTS

In this section, we verify our theoretical analyses23. We
show our results for a four-link network24. Eve is located at
(Xe, Ye) on a 2-D coordinate system. Alices are randomly
placed on the boundary of a circle, known as simulation
region, with radius rcirc whose center is at the origin of the
coordinate system. Each Alice has a fixed distance (communi-
cation range) with her corresponding Bob denoted as dlink25.
Each Bob is placed randomly around his corresponding Alice
on the boundary of a circle whose center is the location of
Bob’s corresponding Alice with radius dlink. The noise level
is set to 0 dBm. Unless stated otherwise, the power constraint
for each legitimate link is set to Pq = 20 dBm, ∀q, the
maximum RxFJ power at each Bob is P ′q = 15 dBm, η = 2.5,
τq = −100 dB26, dlink = 10 m, and finally Jacobi algorithm
is used in all simulations. Regarding the unknown location for
Eve, Bobq assumes that Eve is distributed in a circle around
him with radius r0 = 5 m according to a PPP with λ = 1

25π
Eve/m2, q ∈ Q.

For the first numerical result, we set up our system model in
the presence of an eavesdropper where the PA between TxFJ
and information signal for all links is set to φ = 0.5. We
aim to find out if the RxFJ PA scheme in (15) is sufficiently

23We did not include several other numerical results due to space limitation.
Please find the more comprehensive version of this section in [23].

24The results for this case can be generalized to larger number of links.
25Using a common communication range is a generic assumption in

wireless ad hoc networks [26].
26Such an SIS factor was reported in recent practical implementations of

full-duplex radios [17].
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Fig. 2: Probability of having both positive secrecy and the
assignment in (15) as the optimal solution for a single-link
scenario (Xe= Ye= 0, Nq = 8,Mq = L = 5, Pq =
25 dBm,∀q,Q = 4)

close to an optimal scheme to solve (12). To do so, we
perform the optimal assignment of RxFJ power for (12) with
a simple one-dimensional search method for several channel
realizations and count the times when the solution found from
one-dimensional search reduces to the solution in (15). In
Fig. 2, we plot the probability of having both positive secrecy
and the optimal value of RxFJ power for problem (12) (found
from a one-dimensional search) being either the maximum
or zero according to the scheme in (15) for all links. Such
probability shows how frequent the scheme in (15) gives us
the optimal value of RxFJ power. It can be seen in Fig. 2 that
this probability is very high even for when the power budget
for RxFJ is high. Also, the size of simulation region has a
negligible effect.

Next, we compare the performance of our proposed methods
for PA between TxFJ and information signals. Specifically, in
one method, we use one-dimensional search to find the best
value of δ in (27). In the other method, we use our proposed
heuristic method for finding δ, i.e., δ = 1

2 |dq − bq|P ′q . We
compare the resulting secrecy sum-rate of these two methods
in Fig. 327. It can be seen that the proposed heuristic method
has a very close performance to that of the one-dimensional
search, suggesting that we can use the heuristic method for as-
signing δ without imposing the relatively larger computational
complexity of the one-dimensional search method.

Fig. 4 shows the variation of convergence (i.e., NE unique-
ness) probabilities in robust and full E-CSI methods w.r.t
rcirc for the four-link case. The convergence probability is
calculated as number of times the conditions in (33) and
(38) (indicated by “full E-CSI, n1” and “full E-CSI, n2”,
respectively), and their equivalents for the robust game (i.e.,
(50) indicated by “Robust, n1” and (51) indicated by “Robust,
n2”) hold true divided by the number of channel realizations.
It can be seen that for the case of full E-CSI, probability of
uniqueness of NE using (38) is very low. However, in the case

27Note that the one-dimensional search is in fact the optimal approach in
solving (27).
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of unknown E-CSI, since the nodes are indifferent w.r.t. E-CSI,
far less restrictive conditions than that of full E-CSI scenario
can be achieved. In fact, although the distances between links
and Eve become larger as rcirc grows, the uniqueness of
NE in the full E-CSI case still remains unpredictable. On the
contrary, in the robust method, by increasing the radius of
simulation region, interference at each Bob becomes weaker.
So, as the physical interpretation mentioned for (51) suggested,
the NE uniqueness becomes more often. Moreover, in robust
version, as ε becomes larger, the uniqueness conditions be-
come more restrictive, which is in line with the derivation in
(50).

Fig. 5(a)-(c) show the achieved secrecy sum-rate of our
proposed power control (under known/unknown E-CSI) vs. the
radius of our simulation region. We also plotted the secrecy
sum-rate of globally optimal solutions of the secrecy sum-rate
maximization. We used Algorithm 1 when the E-CSI is fully
known to the legitimate links (indicated by “Full E-CSI” in
Fig. 5(c)), and used Algorithm 2 when E-CSI is unknown
(indicated by “Robust” in Fig. 5(a)-(b)). Furthermore, Fig. 5
(d)-(f) show the resulting sum of information and leaked
rates of our methods vs. the radius of our simulation region.
Fig. 5(a) and (d) correspond to our robust approach where the
probability of positive secrecy is ε = 0.9, while Fig. 5(b) and
(e) correspond to ε = 0.1, and Fig. 5(c) and (f) correspond to
the case of full E-CSI. We also have two baseline schemes in
Fig. 5(a)-(c): the scheme where no RxFJ is used at Bob, and
the scheme where no TxFJ is used at Alices. The maximum
amount of iterations for Algorithm 1 and 2 is 50. Each

approach is examined under two scenarios: 1) when Eve uses
MRC decoder, and 2) when Eve uses MMSE decoder.

Although our analysis was limited to the case of using
MRC decoder at Eve (see Section II), we still observed the
convergence of our algorithm for the case of MMSE decoder.
One reason that we did not analyze the case of MMSE
receivers at legitimate links or Eve is that MMSE receivers add
to the complexity of links’ best responses. In fact, in addition
to the TxFJ and RxFJ powers being updated at each iteration
of the game, the MMSE receiver needs to be updated at each
iteration of the game as well, thus increasing the complexity of
a link’s actions. In contrast, using the MRC decoder employed
at Eve/Bobs allows us to only focus on TxFJ and RxFJ PA28.

From Fig. 5(a)-(c), it can be seen that our approaches have
less secrecy compared to globally optimal solutions because
the NEs of our proposed game are not necessarily guaranteed
to be globally optimum for the secrecy sum-rate. Both cases
of the robust method have less secrecy sum-rates than that
of the full E-CSI method, although the gap is not large.
Furthermore, it can be seen that both no RxFJ and no TxFJ
schemes have significantly less secrecy sum-rates compared to
our approaches, which signifies the importance of FJ. Lastly,
in our particular simulation scenario, it seems that using no
TxFJ affects the secrecy sum-rate more than using no RxFJ.
Both of these schemes exhibit worse performance when Eve
employs MMSE receiver, which is not shown here due to space
limitations.

According to Fig. 5 (d)-(e), for a given ε in the robust
method, regardless of the decoder at Eve, the sum of in-
formation rates remains the same, which indicates that the
interference management between legitimate links in the robust
method is completely decoupled from Eve characteristics. In
other words, in the robust method, the nodes are indifferent
to E-CSI. Moreover, for when ε = 0.9, the leaked rate is
significantly reduced compared to when ε = 0.1 because the
probability of achieving positive secrecy is set to be higher
for when ε = 0.9. However, the penalty for achieving positive
secrecy with high probability (in the robust method) is that the
nodes have less power remaining for their information signals
and thus cannot manage interference between themselves as
efficiently as in the full E-CSI case or the case where ε = 0.1.
We can see that when rcirc is large (i.e., low SINR at Eve)
the performance of MRC and MMSE are very close to each
other. This is in fact expected, as the MMSE receiver at Eve
theoretically reduces to the MRC receiver for low SINR. For
smaller rcirc however, there is a gap between the performance
of MMSE and MRC receivers used at Eve.

Fig. 5(g)-(i) show that in all approaches secrecy sum-rate
grows as Pq increases. Hence, by using RxFJ and TxFJ,
positive secrecy and arbitrary secrecy levels (by changing
the links’ transmit powers) are achievable, thus extending
the same property that existed in the single-user scenario
[2]. We also verified such a scaling at the per-link level.
Same as what was discussed in previous figures, the secrecy
sum-rate achieved for the full E-CSI method (Fig. 5(i)) is

28Further discussion of the difference in computational complexity between
MRC and MMSE receivers is provided in [23, Appenndix D].
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Fig. 5: (a)-(c): Comparison of secrecy sum-rate, (d)-(e): Comparison of information/leaked rate (Xe= Ye= 5, Nq = 8,Mq =
L = 5,∀q,Q = 4), (g)-(i) Secrecy sum-rate vs. transmit power (Xe= Ye= 0, rcirc = 10 m, Nq = 8,Mq = L = 5,∀q,Q = 4)

larger than that of the robust methods (Fig. 5(g)-(h)). Also,
comparing Fig. 5(g) and Fig. 5(h), we conclude that when ε
is chosen to be too large, the nodes are not able to do an
efficient interference management, thus lower secrecy sum-
rate is achieved compared to when ε is small.

Fig. 6 shows the convergence of Algorithm 2 under different
update schemes for a settings where the NE is unique. All
schemes converge to the same point, indicating the uniqueness
of NE. The Jacobi method converges faster due to simultane-
ous updates for all users at each iteration. For the random
updates in Fig. 6(c), each link generates a random integer
between 2 and 6 that specifies the number of iterations when
its action is updated after the current one. As expected,
asynchronous actions degrade the convergence speed29.

VII. CONCLUSIONS

In this paper, we proposed a game-theoretic approach for
power control in an interference network tapped by an external
eavesdropper. We proposed a framework under which every

29We did not include several other numerical results due to space limitation.
Please find the more comprehensive version of this section in [23].

link can utilize both RxFJ and TxFJ to achieve a positive
secrecy rate. Next, we modeled the interaction between the
players as a game and derived sufficient conditions for the
uniqueness of the resulting NE. We also proposed an asyn-
chronous algorithm that can implement the proposed game.
Next, we proposed another version of our game that is robust
to when the eavesdropping channels are unknown. We showed
in simulation that our proposed approach for achieving positive
secrecy using TxFJ and RxFJ are efficient enough to be
considered as best responses for legitimate links. Moreover,
the performance of robust schemes are close to the one
that assumes knowledge of E-CSI. Lastly, the secrecy sum-
rate scales with the power budget at legitimate transmitters,
regardless of the knowledge of E-CSI.
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