
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 1

Joint Task Partitioning and User Association for
Latency Minimization in Mobile Edge Computing

Networks
Mingjie Feng, Marwan Krunz, Fellow, IEEE, and Wenhan Zhang, Student Member, IEEE

Abstract—Mobile edge computing (MEC) is a promising so-
lution to support emerging delay-sensitive mobile applications,
such as self-driving, augment/virtual reality, and various Internet
of Things (IoT) applications. By deploying MEC servers at
network edge, e.g., close to cellular base stations (BSs), the
computational tasks generated by these applications can be
offloaded to edge nodes (ENs) and be quickly executed there. At
the same time, with the projected large number of IoT devices,
the communication and computational resources allocated to each
user can be quite limited, making it challenging to provide low-
latency MEC services. In this paper, we investigate the problem
of task partitioning and user association in an MEC system,
aiming to minimize the average latency of all users. We assume
that each task can be partitioned into multiple subtasks that
can be executed on local devices (e.g., vehicles), MEC servers,
and/or cloud servers; each user can be associated with one of the
nearby ENs. The subtasks can be independent of or dependent
on each other. For each case, we formulate the joint optimization
of task partitioning ratios and user association as a mixed integer
programming problem. Each problem is solved by decomposing
it into two subproblems. The lower-level subproblem is task
partitioning under a given user association, which can be solved
optimally. The higher-level subproblem is user association, we
propose a dual decomposition-based approach and a matching-
based approach to derive near-optimal solutions. Simulation
results show that compared to benchmark schemes, the proposed
schemes reduce the average latency by about 50% and 40% for
the cases of independent and dependent subtasks, respectively.

Index Terms—Mobile edge computing; delay-sensitive IoT
applications; task partitioning; user association.

I. INTRODUCTION

Emerging mobile Internet of Things (IoT) applications
(e.g., autonomous driving, augmented/virtual reality) require

Manuscript received Feb. 4, 2021; revised Apr. 9, 2021; accepted May
20, 2021. This work was supported in part by NSF (grants CNS-1910348,
CNS-1563655, CNS-1731164, CNS-1813401, and IIP-1822071) and by the
Broadband Wireless Access & Applications Center (BWAC). Any opinions,
findings, conclusions, or recommendations expressed in this paper do not
necessarily reflect the views of NSF. An abridged version of this paper was
presented at IEEE International Workshop on Intelligent Cloud Computing
and Networking (ICCN’21) [1]. The review of this paper was coordinated by
Prof. D. Tarchi. (Corresponding author: Mingjie Feng.)

Copyright (c) 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

M. Feng is with Wuhan National Laboratory for Optoelectronics, Huazhong
University of Science and Technology, Wuhan, 430074 China. He was with the
Department of Electrical and Computer Engineering, University of Arizona,
Tucson, AZ, 85721 USA. M. Krunz and W. Zhang are with the Department
of Electrical and Computer Engineering, University of Arizona, Tucson,
AZ, 85721 USA. Email: mzf0022@auburn.edu, krunz@email.arizona.edu,
wenhanzhang@email.arizona.edu.

Digital Object Identifier 10.1109/TVT.2021.XXXXXXX

executing computationally intensive tasks with stringent delay
requirements [2]. Given the limited processing capability of
mobile devices, completing these tasks in a timely manner
is challenging. Mobile edge computing (MEC) is a promis-
ing solution to support delay-sensitive IoT applications. By
deploying MEC servers at the network edge, e.g., close to
base stations (BSs) or access points (APs), mobile users can
offload their computational tasks to nearby MEC servers for
fast processing [3], [4]. Benefiting from the proximity to end-
users, low latency can be achieved.

Meanwhile, with the deployment of 5G networks, tens of
billions of mobile devices can soon be connected to the
Internet [6], many of which are to be supported by future
MEC systems. These devices will compete for the limited
computational and communication resources, and increase
the workload of edge servers, hence making it less likely
for the MEC systems to deliver low-latency services to all
connected users [20]. To address this challenge, the design
of task offloading strategy and the optimization of resource
allocation among users served by an MEC server have been
explored in the literature (e.g., [8], [20], [22]). The challenge
of degraded latency performance caused by increased traffic
load can also be addressed via collaboration between multiple
MEC servers [17], [18], [26], which enables computational
tasks to be transferred between these servers for improved
load balancing.

Another approach for latency reduction in MEC is task
partitioning. Most existing works on task offloading assume
that the computation of a task begins after the whole task
has been offloaded to the MEC or cloud server. In con-
trast, if a given computational task can be partitioned into
multiple portions of subtasks and assign various portions to
the local device, the MEC server, and/or the cloud server
for execution, the workload at each of these entities can
be reduced. Besides, the offloading and computing processes
can be performed concurrently, resulting in lower latency.
Obviously, task partitioning ratios need to be optimized based
on various system parameters, e.g., computational capabilities
of different devices/servers, channel quality between user and
edge node (EN)1, traffic load, etc. Note that, the subtasks
can be independent of or dependent on each other. For the
latter case, the subtasks have to be executed in a certain order,
adding constraints on how the subtasks can be partitioned and
assigned.

1Here, an EN refers to a combination of a BS/AP and an MEC server.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 2

Cloud Servers

EN 2

EN 1 EN 3

User 1

User 2

User 3

: BS : MEC server : subtasks

Fig. 1. System model of a multi-user MEC system with one cloud server and
multiple MEC servers.

Task partitioning has recently been considered based on
the model of a single EN (e.g., [23], [24]) or a single user
(e.g. [26]). In an MEC system with multiple ENs serving
multiple users (see Fig. 1), user association is a key design
factor, as it determines the traffic load at each EN and the
latency associated with offloading a task to different ENs.
Thus, user association directly impacts the task partitioning
strategy, necessitating a joint optimization of the two designs.

In this paper, we investigate joint optimization of task par-
titioning and user association, aiming to minimize the average
latency of users in a cellular network-based MEC system. We
develop efficient schemes to obtain near-optimal solutions to
the problem. The main contributions are as follows:

• We formulate the problem of joint optimization of task
partitioning and user association in MEC systems. Two
types of tasks are considered: tasks that are composed
of independent subtasks and tasks in which the subtasks
follow a sequential dependency structure. For each case,
a mixed-integer linear programming (MILP) problem is
formulated with the objective of minimizing the average
latency of all users.

• For each case of subtask dependency, we decompose the
original problem into two subproblems. The lower-level
subproblem targets optimizing the task partitioning ratio
under a given user association, which can be optimally
solved. The higher-level subproblem is user association,
for which we develop two schemes to obtain the solution:
one is based on dual decomposition and the other is based
on a matching between users and ENs.

• To demonstrate the near optimality of our solutions, we
derive a lower bound on the average latency.

• We evaluate the performance of the proposed schemes
via simulations. The results show that, compared to
benchmark schemes, the proposed schemes reduce the
average latency by around 50% and 40% for the cases of
independent and dependent subtasks, respectively.

The remainder of this paper is organized as follows. We

review related literature in Section II. The system model
is presented in Section III, followed by latency analysis in
Section IV. Afterward, the problem formulation is given in
Section V. Algorithmic solutions are presented in Section VI.
We present our simulation results and discussion in Sec-
tion VII. Finally, the paper is concluded in Section VIII.

II. RELATED WORK

MEC has attracted considerable attention from both industry
and academia. Standardization efforts by the Industry Spec-
ification Group (ISG) of the European Telecommunications
Standards Institute (ETSI) were initiated [3], with the first
MEC platform developed by Intel in 2014 [7]. From a research
perspective, an overview of MEC can be found in [4]. A recent
analytical framework that incorporates various components of
MEC, including communication, computation, caching, and
control, was introduced in [5].

Task assignment in MEC systems was also investigated in
prior works (e.g., [8]–[15]). The majority of existing works
are based on binary task assignment, where a task can either
be offloaded to an MEC server or executed locally. In these
works, the processing of multiple tasks at the MEC server
is performed in parallel [11], [12], or sequentially [13], [14].
For servers that can execute tasks in parallel, the allocation of
computational resources is a key factor that impacts execution
latency. For sequentially processed tasks, the key design issue
is the execution order of these tasks, which directly impacts
the queueing delay (the waiting time of a task before execution
is initiated). While most existing works consider models based
on homogeneous tasks, task assignment for heterogeneous
tasks was recently studied [15]. For example, delay-sensitive
tasks can be assigned to the MEC server for immediate
processing, whereas delay-tolerant tasks can be assigned to
the cloud server. In contrast to these works, we extend the
notion of task assignment to fully exploit the computational
capability of local devices, MEC servers, and cloud servers by
allowing individual tasks to be partitioned.

Task partitioning has been considered in some recent
works under different partitioning patterns and design ob-
jectives [20]–[26], [33]. The partitioning between the local
device and the cloud server was considered in [20], while
task partitioning between the local device and the MEC server
was considered in [21]–[24]. In [21], joint optimization of
the task partitioning ratio, device transmit power, and device
computational speed was performed to minimize the device’s
energy consumption and task execution latency. In [25], the
impact of task partitioning on the energy consumptions of
the local device computing and task offloading was analyzed,
and an efficient design was proposed to achieve a good
balance between EN energy consumption and task processing
delay. The tradeoff between energy and latency was also
investigated in [22], where the task partitioning ratio and
communication resources were optimized to minimize the
total energy consumption under a given latency constraint.
In [23], [24], [26], the optimal partitioning ratio and resource
allocation were derived with the objective of minimizing the
overall offloading latency. Our paper differs from the above



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 3

works in that it considers the interdependency of subtasks.
Recently, dependency-aware task offloading was considered
(e.g., in [27]–[30]). In [27], joint optimization of task of-
floading decision and resource allocation was considered for
MEC systems with tasks following a task call graph to be
executed, and a deep reinforcement learning-based solution
was proposed to capture the time-varying wireless channel
and edge computing capability. In [28], task offloading policy
was optimized for the scenario of inter-user task dependency,
where the input of a task at one user device relies on the
output of the final task at another user device. In contrast
to these works, we consider the dependency between the
subtasks of a given task, rather than dependency between
tasks. In particular, the optimal task partitioning ratios are
derived based on different dependency structures. Furthermore,
previous works targeted a single EN or a single user, hence
user association and load balancing among ENs were not
considered.

To harness the benefits of utilizing multiple ENs for
task offloading, cooperation among ENs has been considered
in [16]–[18], [26], [31]. Specifically, a user can offload its
tasks to multiple ENs [16], [26], [31], or the ENs can send
their workload to each other [17], [18]. Load balancing can
also be achieved by optimizing user association in multi-
cell-based MEC systems. In [32], [33], joint optimization
of user association, computational resource allocation, and
power control was carried out to minimize the total energy
consumption. In contrast to these works, we aim to minimize
the average latency in delay-sensitive MEC applications via a
joint optimization of task partitioning and user association.

III. SYSTEM MODEL

A. Problem Setup

As shown in Fig. 1, we consider a multi-user MEC system
that consists of one cloud server and multiple MEC servers
that are placed next to or integrated into the BSs of a
wireless cellular network. The combination of a BS and an
MEC server is regarded as an edge node (EN), which is
connected to the cloud server via a backhaul connection. There
are J ENs, indexed by j ∈ {1, . . . , J} , J . These ENs
collectively serve K mobile user equipments (UE), indexed
by k ∈ {1, . . . ,K} , K. User associations are represented by
the following binary variables:

xk,j ,

{
1, if UE k is associated with EN j
0, otherwise,

k ∈ K, j ∈ J . (1)

We consider a scenario in which each UE can be associated
with at most one EN. Thus,

∑J
j=1 xk,j ≤ 1 for k ∈ K. For

UEs associated with EN j, their tasks can be executed at EN
j and/or forwarded by EN j to the cloud server for execution.
We assume that each UE generates one task at a time. Each
task can be partitioned into multiple subtasks, each with its
own data. An example of such a task is object recognition,
which is based on videos taken by cameras mounted on
an autonomous vehicle. Each video clip can be partitioned
into multiple segments and processed at the UE, EN, and

cloud server, respectively. To fully exploit the computational
capabilities of different computing units for latency reduction,
the subtasks can be grouped into three sets that are executed by
UE, EN, and cloud server, respectively. Suppose that xk,j = 1,
the ratios of subtasks assigned to UE k, EN j, and the cloud
server are denoted by αk, βk,j , and γk,j , respectively. Similar
to the definitions in [23], [24], αk, βk,j , and γk,j are the
fractions of input data (e.g., file sizes of video segments) of the
task generated by UE k, which are determined by the number
of subtasks to be executed by UE k, EN j, and cloud server,
respectively.2 By definition, if xk,j = 0, then βk,j = γk,j = 0.
Thus, βk,j ≤ xk,j and γk,j ≤ xk,j for k ∈ K, j ∈ J .
Considering that

∑J
j=0 xk,j ≤ 1 for every UE k, we have

αk +
∑J
j=1 βk,j +

∑J
j=1 γk,j = 1.

To capture the mobility of UEs, we assume that their
locations are updated at every time slot, where each UE may
stay unmoved or move in a random fashion. Accordingly,
the system configurations, including task partitioning and user
association, are optimized and updated on a per-slot basis.
Specifically, {αk}, {βk,j}, {γk,j}, and {xk,j} are optimized
based on the locations of UEs at the current time slot. When
UE locations change, the optimization will be performed again
based on the new locations at the next time slot.

B. Computational Model

The task generated by any UE k is characterized by the size
of the input data sk (in bits) and the computational complexity
zk, expressed in the number of CPU cycles required to execute
one bit of the task. Then, the number of CPU cycles required
to complete the whole task is skzk.

1) Local UE Computing Time: Let c(L)
k be the computa-

tional capability of UE k, measured in CPU cycles per second.
Given αk, the number of CPU cycles required to complete the
subtasks assigned to UE k is αkskzk. Then, the execution time
(in seconds) at UE k is given by:

t
(L)
comp,k =

αkskzk

c
(L)
k

. (2)

2) MEC Server Computing Time: We assume that each EN
is equipped with a multi-core processor, allowing it to execute
the subtasks received from multiple UEs concurrently. For
fairness, the computational capability of an EN is equally split
between all UEs associated with that EN within each time slot.
Once the input data of the subtasks have been uploaded to an
EN, the EN immediately executes these subtasks. This way,
there is no waiting time incurred at each EN.

We refer to the number of UEs associated with EN j as the
traffic load of EN j, given by Qj ,

∑K
k=1 xk,j . Let c(E)

j be the
computational capability of EN j. As this capability is equally
shared among all associated UEs, the computational capacity

allocated to UE k by EN j is given by c
(E)
k,j =

c
(E)
j∑K

k=1 xk,j
.

2Because a task cannot be partitioned into arbitrarily small subtasks, αk ,
βk,j , and γk,j can only take a finite number of values. For example, if a task
can be partitioned into 10 comparable subtasks, the partitioning ratios may
take values in the set {0, 0.1, . . . , 0.9, 1}. In this paper, we first obtain the
optimal αk , βk,j , and γk,j in the continuous domain [0, 1] and then round
them to the closest feasible values.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 4

Given βk,j , the execution time for the subtasks of UE k at
EN j is given by:3

t
(E)
comp,k,j =

βk,jskzk

c
(E)
k,j

=
βk,jskzkQj

c
(E)
j

, k ∈ K, j ∈ J . (3)

Remarks: As the subtasks offloaded by various UEs differ
in size and complexity, equal allocation of computational
capability at EN results in under-utilization of computing
resources. For example, the computational resource allocated
to some subtasks that are completed earlier cannot be re-
leased to execute the ongoing subtasks. On the other hand,
if the values of {βk,j} are known to EN j in advance, the
computational resource allocation can be optimized in a way
that maximizes the utilization of computing resource of EN j.
Specifically, if the subtasks of all UEs associated with EN j
are completed at the same time, the computational capability
of EN j would not be “wasted”. To achieve this goal, the
computational capability allocated to UE k should be set
to c

(E)
k,j = c

(E)
j

xk,jβk,jskzk∑K
k=1 xk,jβk,jskzk

. However, as indicated later
in the solutions section, the values of {βk,j} are unknown
to EN j in advance. In fact, {βk,j} are optimized by EN
j based on various parameters including c

(E)
k,j . Therefore,

the abovementioned optimization of EN computing resource
cannot be directly applied. An intuitive approach to obtain
an optimized solution is to iteratively update {βk,j} and c(E)

k,j

until convergence. However, as the configurations of different
UEs are coupled via the total computational capability c

(E)
j ,

a significant number of iterations are required to achieve
convergence. Due to such uncertainty and high complexity,
we adopt equal allocation of the computational capability.

3) Cloud Server Computing Time: We assume that the
cloud server provides a fixed computational capability to UE
k, given by c

(C)
k . The value of c(C)

k is based on the plan of
service purchased by UE k. Suppose the subtasks of UE k
is offloaded to EN j and then forwarded to the cloud server
(xk,j = 1). The execution time at the cloud server is given by:

t
(C)
comp,k,j =

γk,jskzk

c
(C)
k

, k ∈ K, j ∈ J . (4)

C. Communication Model

The cellular network considered in this paper adopts an
orthogonal time-frequency resource allocation, e.g., OFDMA,
as used in LTE and 5G systems. We assume that the com-
munication resource is equally allocated among all UEs as-
sociated with an EN to achieve sum-logarithmic rate max-
imization [35]. We assume that each EN can measure the
uplink signal-to-interference-plus-noise ratio (SINR) of UEs
associated with it [5], [22]–[24]. This can be implemented
by having UEs send pilot or beacon signals to the EN at
the beginning of each time slot. Such an approach has been
widely used in cellular systems, where multiple orthogonal

3Here, we assume that the computational resource allocated to each task is
fixed within a time slot. Specifically, if some subtasks are completed earlier
than others, the unused computational capacity would not be allocated to the
tasks that are still being executed, due to the short period of a time slot and
the overhead for reallocation. The length of a time slot is set to be a value
such that all tasks can be completed during one time slot.

OFDM symbols are used as pilots and are sent from UEs
to BSs for channel estimation. With the estimated channel
state information (CSI), the SINRs of different UEs can be
calculated. Let W be the bandwidth of the access channel for
each EN, and let θk,j be the SINR for the uplink from UE k
to EN j. The data rate of UE k when associated with EN j is
given by:

Rk,j =
W log (1 + θk,j)

Qj
. (5)

Note that ENs may use the same spectrum band (universal
frequency reuse) or different spectrum bands (fractional fre-
quency reuse). For both cases, the data rate expression in (5)
is applicable as long as the SINR can be obtained. We assume
that the connection between UE k and EN j can be established
only when θk,j is greater than or equal to a given threshold
θth. Let πk be the set of ENs that can be employed by UE k
for task offloading, πk = {j |θk,j ≥ θth }. Then, we have:

xk,j = 0,∀j /∈ πk. (6)

We assume that the number of UEs that can be served by EN
j is upper-bounded by Sj (e.g., Sj is the number of channels).
The programs of user applications are pre-installed in MEC
and cloud servers. Thus, a UE only needs to send the input data
of subtasks to the associated EN. The subtasks to be executed
by the cloud server are offloaded by a UE via its associated
EN, along with the subtasks to be executed by the EN. Then,
the offloading time from UE k to EN j is given by:

t
(E)
off,k,j =

(βk,j + γk,j)sk
Rk,j

=
(βk,j + γk,j)skQj
W log (1 + θk,j)

. (7)

We consider a wired backhaul link of rate Mj between EN
j and the cloud sever. The backhaul capacity is sufficiently
large so that there is no congestion, and this capacity is equally
split between all UEs served by the EN. Thus, the total time
required for offloading the subtasks of UE k to the cloud server
via EN j is given by:

t
(C)
off,k,j = t

(E)
off,k,j + t

(B)
off,k,j (8)

where t(B)
off,k,j is the backhaul transmission time, given by:

t
(B)
off,k,j =

γk,jskQj
Mj

. (9)

Due to the small size of the output data, the latency for
sending the outcome of a task back to a UE is neglected in
our analysis [22], [31]. In case such latency is non-negligible,
the time for downloading the task outcome can be calculated
in the same way as in (7).

IV. LATENCY ANALYSIS

A. Independent Subtasks

We first consider the scenario in which a computational
task can be partitioned into multiple independent subtasks.
An example of such a task is object recognition using video
processing, where a video clip can be segmented into multiple
episodes and separately processed at the local device, EN, and
cloud server. Let t(L)

k , t(E)
k , and t(C)

k be the total elapsed time



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 5

until the subtasks of UE k are completed at the local device,
EN j, and cloud server, respectively. We have:

t
(L)
k = t

(L)
comp,k

t
(E)
k,j = t

(E)
off,k,j + t

(E)
comp,k,j

t
(C)
k,j = t

(C)
off,k,j + t

(C)
comp,k,j . (10)

Because subtasks are independent, they can be concurrently
executed. Thus, the latency for completing the whole task is
the latency of the latest completed part, which is given by:

Tk = max

t(L)
k ,

J∑
j=1

xk,jt
(E)
k,j ,

J∑
j=1

xk,jt
(C)
k,j

 . (11)

B. Dependent Subtasks

In some applications, the computational task is composed
of multiple inter-dependent subtasks. For example, the task
of a navigation system can be divided into multiple subtasks,
including localization, map downloading and updating, traffic
information acquisition, and route planning. Obviously, the last
subtask relies on the outcomes of previous subtasks. The inter-
dependency could also lie in the program code, where the code
of a task consists of multiple stages that need to be executed
in a certain order.

In this paper, we consider a task with subtasks that need
to be executed sequentially in different stages. For such a
task, the output of one subtask is an input to the subsequent
subtask. Based on the required order of execution, we divide
the subtasks into three parts, which are sequentially executed
in three stages: the beginning stage, the middle stage, and the
final stage. Specifically, subtasks in the beginning stage are to
be executed first, and then the output of the beginning stage is
used to trigger the execution of subtasks in the middle stage.
The same applies to subtasks in the middle and final stages.
The subtasks in the beginning stage are assigned to the local
device for execution. Once the local device starts executing,
it also starts offloading the rest of the subtasks to the EN at
the same time. After the local device completes executing its
subtasks, it sends the output to the EN. Upon receiving the
output, the EN begins executing the subtasks in the middle
stage. At the same time, the EN sends the subtasks to be
executed at the final stage to the cloud server. After the EN
has completed the subtasks in the middle stage, it sends the
output to the cloud server. Lastly, the cloud server returns the
final output of the task to the UE after it completes executing
its part. Let t̃(L)

k be the time unit the EN starts executing its
subtasks, t̃(E)

k,j be the time from the beginning of execution at
the EN to the beginning of execution at the cloud server, and
t̃
(C)
k,j be execution time at the cloud server. These quantities

are calculated as follows:

t̃
(L)
k = max

{
t
(L)
comp,k, t

(E)
off,k,j

}
,

t̃
(E)
k,j = max

{
t
(E)
comp,k,j , t

(B)
off,k,j

}
,

t̃
(C)
k,j = t

(C)
comp,k,j . (12)

Then, the latency of completing the whole task is given by:

T̃k = t̃
(L)
k +

J∑
j=1

xk,j t̃
(E)
k,j +

J∑
j=1

xk,j t̃
(C)
k,j . (13)

V. PROBLEM FORMULATION

In this paper, we aim to minimize the average latency of
UEs, which is equivalent to minimizing the sum latency of
all UEs. Let α, β, γ, and x denote the vector [αk]k∈K,
the matrix [βk,j ]k∈K,j∈J , the matrix [γk,j ]k∈K,j∈J , and the
matrix [xk,j ]k∈K,j∈J , respectively. For the case of independent
subtasks, the problem is formulated as:

P1 : min
{α,β,γ,x}

K∑
k=1

Tk (14)

s.t.: αk +

J∑
j=1

βk,j +

J∑
j=1

γk,j = 1, k ∈ K (15)

J∑
j=1

xk,j ≤ 1, k ∈ K (16)

K∑
k=1

xk,j ≤ Sj , j ∈ J (17)

βk,j , γk,j ≤ xk,j , k ∈ K, j ∈ J (18)
0 ≤ αk, βk,j , γk,j ≤ 1, k ∈ K, j ∈ J (19)
xk,j ∈ {0, 1} , k ∈ K, j ∈ J (20)
xk,j = 0, k ∈ K, ∀j /∈ πk. (21)

The constraints in (15) come directly from the definitions of
α, β, and γ; the constraints in (16) indicate that each UE
can be associated with at most one EN; the constraints in (17)
specify the upper bound on the number of UEs that can be
served by EN j; the constraints in (18) are due to the fact
that a UE can assign a certain ratio of its task to EN j and/or
to the cloud server via EN j only when it is associated with
EN j; and finally the constraints in (21) result from the SINR
constraint as described in (6).

For the case of dependent subtasks, the problem is formu-
lated as:

P2 : min
{α,β,γ,x}

K∑
k=1

T̃k (22)

s.t.: (15)− (21)

VI. SOLUTION ALGORITHMS

In this section, we present solutions to the formulated
problems. For both cases of subtask dependency, we decom-
pose the formulated problems (P1 and P2) into two levels
of subproblems. The lower-level subproblem determines the
task partitioning for a given user association, which can be
optimally solved. The higher-level subproblem determines
the user association given that optimal task partitioning has
been applied. Two schemes are developed to solve the user
association problem, one is based on dual decomposition and
the other is based on a matching between UEs and ENs.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 6

time

UE k

EN j

Cloud 

server

(L)

comp,kt

(E)

comp, ,k jt
(E)

off , ,k jt

(E)

off , ,k jt (B)

off , ,k jt (C)

comp, ,k jt

Fig. 2. Optimal task partitioning for the case of independent subtasks.

A. Optimal Task Partitioning for a Given User Association

1) Independent Subtasks: For the case of independent sub-
tasks, the latency of a task equals to the latency of the set of
subtasks that are last to complete among the local device, EN,

and the cloud server. Since αk+
J∑
j=1

xk,jβk,j +
J∑
j=1

xk,jγk,j =

1, a decrease of one ratio would cause an increase of at least
one of the other ratios. Thus, the optimal task partitioning is
achieved when the subtasks executed at the local device, the
EN, and cloud server are completed at the same time, as shown
in Fig. 2. Then, we have the following equation:

t
(L)
k =

J∑
j=1

xk,jt
(E)
k,j =

J∑
j=1

xk,jt
(C)
k,j . (23)

Let α∗k, [β∗k,j ]j∈J , and [γ∗k,j ]j∈J be the optimal task par-
titioning ratios of UE k. Applying the expressions in (10)
to (23), we have:

α∗kskzk

c
(L)
k

=

(
J∑
j=1

β∗k,j+
J∑
j=1

γ∗k,j)skQj

W log (1 + θk,j)
+

J∑
j=1

β∗k,jskzkQj

c
(E)
j

=

(
J∑
j=1

β∗k,j+
J∑
j=1

γ∗k,j)skQj

W log (1 + θk,j)
+

J∑
j=1

γ∗k,jskQj

Mj
+

J∑
j=1

γ∗k,jskzk

c
(C)
k

.

(24)

Combine (24) with the equation α∗k +
J∑
j=1

β∗k,j +
J∑
j=1

γ∗k,j = 1,

we can solve for α∗k,
∑J
j=1 β

∗
k,j , and

∑J
j=1 γ

∗
k,j . Finally, based

on [xk,j ]j∈J , the optimal αk, [βk,j ]j∈J , and [γk,j ]j∈J can be
obtained.

2) Sequentially Dependent Subtasks: For the case of se-
quentially dependent subtasks, the optimal task partitioning
is achieved when: (1) the execution at the local device and
the offloading from UE to EN are completed at the same
time; (2) the execution at EN and the offloading from EN
to cloud server are completed at the same time. The reason
behind the first condition is that if the local device execution
is completed before or after the offloading from UE to EN,
the execution at the EN cannot be initiated until the latter of
the two is completed. To minimize the elapsed time before the
execution at the EN starts, the task partitioning ratios should
be set such that the local execution time and offloading time

time

UE k

EN j

Cloud 

server

Output

Output

(L)

comp,kt

(E)

off , ,k jt (E)

comp, ,k jt

(E)

off , ,k jt (B)

off , ,k jt (C)

comp, ,k jt

Fig. 3. Optimal task partitioning for the case of sequentially dependent
subtasks.

(from UE to EN) are equal. The same argument extends to the
EN execution and the offloading from EN to the cloud server.
As illustrated in Fig. 3, we have:

t
(L)
comp,k = t

(E)
off,k,j , t

(E)
comp,k,j = t

(B)
off,k,j . (25)

Applying (10), the optimal task partitioning ratios are calcu-
lated with the following:

α∗kskzk

c
(L)
k

=
(
∑J
j=1 β

∗
k,j +

∑J
j=1 γ

∗
k,j)skQj

W log (1 + θk,j)
,∑J

j=1 β
∗
k,jskzkQj

c
(E)
j

=

∑J
j=1 γ

∗
k,jskQj

Mj
. (26)

The solution for α∗k, [β∗k,j ]j∈J , and [γ∗k,j ]j∈J can be obtained
in the same way as described above.

B. Dual Decomposition-Based User Association

In this part, we present the dual decomposition-based user
association scheme. We first derive the latency expression of a
UE as a function of x, given that optimal task partitioning has
been applied. Based on this expression, a dual decomposition
algorithm is applied to obtain the solution for user association.
Due to page limits, we only present the solution for the case
of dependent subtasks. This solution can be easily customized
to the case of independent subtasks.

For the case of dependent subtasks, the solution for the
optimal task partitioning with a given x can be obtained by
solving the equations in (26). The solution is given by:

α∗k =
c
(L)
k Qj

zkW log(1 + θk,j) + c
(L)
k Qj

β∗k,j =
zkW log(1 + θk,j)c

(E)
j(

zkW log(1 + θk,j) + c
(L)
k Qj

)(
c
(E)
j + zkMj

)
γ∗k,j =

z2
kW log(1 + θk,j)Mj(

zkW log(1 + θk,j) + c
(L)
k Qj

)(
c
(E)
j + zkMj

) .
(27)

Let Γk,j be the latency of UE k when associated with EN
j under optimal task partitioning. This Γk,j is calculated
by applying the optimal partitioning ratios in (27) to the
latency expression in (13). The closed-form expression for
Γk,j is given by (28) (see next page). This expression is



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 7

Γk,j = skzk

[
c
(E)
j + zkMj + zkW log(1 + θk,j)

]
Qj +W log(1 + θk,j)

z2kMj

c
(C)
k

c
(L)
k

(
c
(E)
j + zkMj

)
Qj + zkW

(
c
(E)
j + zkMj

)
log(1 + θk,j)

. (28)

only applicable to the case when UE k is associated with an
EN. For the case when UE k is not associated with any EN,
i.e.,

∑J
j=1 xk,j = 0, the latency of UE k is given by skzk

c
(L)
k

.
Combining the two cases, the latency of UE k under optimal
task partitioning T̃ ∗k is given by:

T̃ ∗k =

J∑
j=1

xk,jΓk,j +

1−
J∑
j=1

xk,j

 skzk

c
(L)
k

. (29)

Then, the objective function of the user association problem
is given by:

K∑
k=1

T̃ ∗k =
K∑
k=1

skzk

c
(L)
k

+
K∑
k=1

J∑
j=1

xk,j

(
Γk,j −

skzk

c
(L)
k

)
. (30)

Let ∆k,j , skzk
c
(L)
k

− Γk,j . This ∆k,j can be interpreted
as the achievable latency reduction for UE k when it is
associated with EN j, compared to UE k executing the task
by itself. From (30), we can see that minimizing sum latency∑K
k=1 T̃

∗
k is equivalent to maximizing the sum latency reduc-

tion
∑K
k=1

∑J
j=1 ∆k,j . Then, the user association problem can

be formulated as:

P3 : max
{x}

K∑
k=1

J∑
j=1

xk,j∆k,j (31)

s.t.:
J∑
j=1

xk,j ≤ 1, k ∈ K, j ∈ J (32)

K∑
k=1

xk,j ≤ Sj , j ∈ J (33)

xk,j ∈ {0, 1} , k ∈ K, j ∈ J (34)
xk,j = 0, k ∈ K, ∀j /∈ πk. (35)

Problem P3 is an integer programming problem that is difficult
to solve directly. To derive an effective solution algorithm, we
relax the integer constraint by allowing all xk,j to take any
values in [0, 1]. Although the relaxed problem, P3-Relexted,
is non-convex, we can apply a dual decomposition approach
to obtain a near-optimal solution for it.

Let Q = {Q1, . . . , QJ} be a set of auxiliary variables
and add constraints

∑K
k=1 xk,j = Qj , j ∈ J . With the new

constraints added, we have the following problem:

P4 : max
{x}

K∑
k=1

J∑
j=1

xk,j∆k,j (36)

s.t.: (32), (33), and (35)
K∑
k=1

xk,j = Qj , j ∈ J (37)

xk,j ∈ [0, 1], k ∈ K, j ∈ J . (38)

We apply a partial relaxation on the constraints∑K
k=1 xk,j = Qj , j ∈ J . The corresponding Lagrangian

function is given by:

L (x,λ) =

K∑
k=1

J∑
j=1

xk,j∆k,j +

J∑
j=1

λj

(
K∑
k=1

xk,j −Qj

)
(39)

where λ = {λ1, . . . , λJ} are the Lagrangian multipliers for
the constraints in (37). Then, the dual problem of P4 is given
by:

P4-Dual: min
{λ}

g(λ) (40)

where g(λ) is given by:

g(λ) = max
{x}
L (x,λ) . (41)

The problems in (40) and (41) are solved iteratively. At each
iteration, x and λ are updated by UEs and ENs, respectively.

The problem of maximizing L (x,λ), as described in (41),
can be decomposed into K subproblems, each solved by the
corresponding UE. To obtain the optimal solution of each
subproblem at iteration t, each UE k selects EN j∗[t] that
satisfies:

j∗[t] = arg max
j∈πk

{
∆k,j(Q

[t]
j )− λ[t]

j

}
. (42)

After the selection, each UE sends a notice to its selected EN.
Upon receiving the selections from various UEs, each EN j
updates xj = [x1,j , . . . , xK,j ] with the following rule:

x
[t]
k,j =

{
1, j = j∗[t]

0, otherwise
(43)

On the other hand, Problem P4-Dual can be decomposed
into J subproblems, each solved by the corresponding EN.
For each EN j, it updates λ[t]

j with the following gradient
approach:

λ
[t+1]
j = λ

[t]
j − ρ

[t]
j η

[t]
j (44)

where η[t]
j is the gradient of λ[t]

j , given by:

η
[t]
j = Q

[t]
j −

K∑
k=1

x
[t]
k,j (45)

and ρ[t]
j is the step size, given by:

ρ
[t]
j =

g(λ[t])− g(λ∗)∥∥η[t]
∥∥2 . (46)

After updating λ[t]
j , EN j updates Q[t]

j as follows:

Q
[t+1]
j = min{

K∑
k=1

x
[t]
k,j , Sj}. (47)



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 8

Algorithm 1: Dual Decomposition-Based User Asso-
ciation Algorithm

1 Initialize Q and λ do
2 for k = 1 : K do
3 UE k selects the optimal EN according to (42) and

informs the selected EN
4 end
5 for j = 1 : J do
6 EN j updates xj according to (43) ;
7 Updates ηj according to (45) ;
8 Updates λj according to (44) ;
9 Updates Qj according to (47) ;

10 end
11 t+ +
12 while (x does not converge);

Finally, EN j broadcasts the updated values of λ[t]
j and Q

[t]
j

to nearby UEs. The UEs then initiate the next iteration of EN
selection. The procedure of the dual decomposition-based user
association algorithm is summarized in Algorithm 1. At each
iteration of Algorithm 1, the signaling overhead includes: (1)
the notification message sent by each UE to its selected EN;
(2) the broadcasting messages sent by each EN that indicate
the updated values of the Lagrangian variable and traffic load.
It can be seen that the overhead of information exchange
between ENs and UEs at each iteration is quite small. Thus,
the computational complexity of Algorithm 1 is dominated by
the number of iterations required to achieve convergence.

Lemma 1. Algorithm 1 converges faster than the sequence
{1/
√
t}.

Proof. Consider the optimality gap of λ, we have:

‖λ[t+1] − λ∗‖2

=

∥∥∥∥∥λ[t] − g(λ[t])− g(λ∗)

‖η[t]‖2
η[t] − λ∗

∥∥∥∥∥
2

=
∥∥∥λ[t] − λ∗

∥∥∥2

− 2
(
λ[t] − λ∗

)T g(λ[t])− g(λ∗)∥∥η[t]
∥∥2 η[t]

+

(
g(λ[t])− g(λ∗)∥∥η[t]

∥∥2

)2 ∥∥∥η[t]
∥∥∥2

(a)

≤ ‖λ[t] − λ∗‖2 − 2

(
g(λ[t])− g(λ∗)

)2

‖η[t]‖2

+

(
g(λ[t])− g(λ∗)

‖η[t]‖2

)2

‖η[t]‖2

≤ ‖λ[t] − λ∗‖2 −

(
g(λ[t])− g(λ∗)

)2

η̂2 .

Inequality (a) is due to the convexity of problem P4-dual,
i.e., g(λ[t]) − g(λ∗) ≤

(
λ[t] − λ∗

)T
η[t]. η̂ is an upper

bound on η[t]. Since lim
t→∞

λ[t+1] = lim
t→∞

λ[t], it follows that

lim
t→∞

g(λ[t]) = g(λ∗). Summing the above inequalities over t,

we have:
∞∑
t=1

(
g(λ[t])− g(λ∗)

)2

≤ η̂2
∥∥∥λ[1] − λ∗

∥∥∥2

. (48)

The rest of the proof proceeds by contradiction. Suppose
that g(λ[t]) converges slower than {1/

√
t}. Then, we have

lim
t→∞

√
t
(
g(λ[t])− g(λ∗)

)
> 0. As a result, there must be a

positive number ε and a sufficiently large t′ such that:
√
t
(
g(λ[t])− g(λ∗)

)
≥ ε,∀t > t′. (49)

Taking the square sum of (49) from t′ to ∞, we have:
∞∑
t=t′

(
g(λ[t])− g(λ∗)

)2

≥ ε2
∞∑
t=t′

1

t
=∞. (50)

This contradicts (48). Thus, we conclude that g(λ[t]) converges
faster than the sequence {1/

√
t}.

Lemma 2. An upper bound on the complexity of Algorithm 1
is 1/κ2, where κ is the threshold for the convergence of
g(λ[t]).

Proof. From Lemma 1 and for a sufficiently large t, we have
g(λ[t]) − g(λ∗) < 1/

√
t. Then, for a sufficiently small κ <

1/
√
t, g(λ[t])−g(λ∗) is guaranteed to be smaller than κ. This

means when the sequence g(λ[t]) achieves an optimality gap
that is less than κ, the number of iterations is less than 1/κ2.
Thus, given the convergence threshold κ, the total number of
variable updates is upper bounded by 1/κ2, which serves as
an upper bound on the complexity of Algorithm 1.

Remarks: An effective approach to reduce the number of
iterations in Algorithm 1 is to properly select the initial values.
In a low mobility environment, the distribution of UEs does
not change dramatically. Then, the values of Q obtained at the
end of the previous iteration can be used as the initial values
of Q in the current iteration.

To obtain a near-optimal solution and also reduce the
number of iterations, the initial values of {λj} can be set to be
close to their optimal values. Note that λj can be interpreted
as a price for associating with EN j. When λj is larger than
its optimal value, according to (41), fewer users will select EN
j. Then, the value of ηj will increase, causing λj to decrease
in the next iteration. In the same way, when λj is smaller than
its optimal value, it will increase in the next iteration. Based
on this property, we can set λj to a relatively large value when
the current traffic load of EN j is higher than the empirical
value, and vice versa when the traffic load is low.

Performance Bound: To show that a near-optimal solution
can be achieved by the proposed schemes, we derive a lower
bound that will be used for comparison in simulations. First,
we exhaustively search all feasible traffic load vectors Q. For
each Q, we relax the feasibility constraints in (34) and (35)
from P4 and solve the following linear programming (LP)
problem:

P5 : max
{x}

K∑
k=1

J∑
j=1

xk,j∆k,j (51)

s.t.: (32), (37) and (38).



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 9

Algorithm 2: Strategy of EN j During the Matching
Process

1 while (matching is not converged) do
2 if (EN j receives more than Sj applications) then
3 Keep the top Sj UEs with largest ∆k,j in the

waiting list and reject the rest
4 else
5 Keep all UEs that applied to EN j in the waiting list
6 end
7 end

Since each element in Q has Sj possible values, the total
number of LPs to be solved is

∏J
j=1 Sj . Among the

∏J
j=1 Sj

LPs, we find the one with the largest value for the objective
function

∑K
k=1

∑J
j=1 xk,j∆k,j . Then, the largest value of∑K

k=1

∑J
j=1 xk,j∆k,j is an upper bound on the sum latency

reduction. Subtracting this value from the sum of UE local
computing time

∑K
k=1

skzk
c
(L)
k

, the outcome is a lower bound on
the sum latency of all UEs.

C. Matching-based User Association

In the dual decomposition-based user association scheme,
a considerable number of iterations is required to achieve
convergence, which incurs a significant amount of informa-
tion exchange and overhead. In this section, we propose
a matching-based user association approach to reduce the
overhead. We formulate a many-to-many matching based on
the model of college admission problem, and demonstrate that
the matching process will converge to a stable matching.

In the college admission problem, multiple students are ap-
plying to multiple colleges. Each student has a preference list
over all the colleges, which indicates the order of willingness
to attend these colleges. Each college also has a preference
list over the students and a capacity that limits the number
of admitted students [37]. During the matching process, each
college has a waiting list that indicates its temporary selection
of students.

In our problem, we regard the UEs and ENs as the students
and colleges, respectively. The ENs in the preference list of UE
k follow the descending order of ∆k,j . From the perspective
of UE k, the value of ∆k,j is determined by multiple factors,
including the channel gain θk,j , UE k’s computing capability
c
(L)
k , UE k’s available cloud computational capability c(C)

k , and
the size and computational complexity of the task requested
by UE k (sk and zk), as indicated in (28). To minimize the
latency (equivalently maximize the latency reduction), UE k
selects EN according to:

xk,j∗ = 1, j∗ = arg max
j∈πk

∆k,j . (52)

From the perspective of EN j, UEs in its preference list follow
the descending order of ∆k,j , and the maximum number of
UEs that can be admitted is Sj . To minimize the sum latency,
EN j decides to hold or reject a UE according to Algorithm 2.

Before the matching starts, UEs and ENs establish their
preference lists with the following steps. First, UE k sends an

offloading request to nearby ENs j (j ∈ πk). The request is
sent along with the task size sk and complexity zk, as well
as the computational capability of UE k’s device c(L)

k and the
computational capability that the cloud server is allocating to
UE k (which is determined by the computing service plan
purchased by UE k and is known to UE k in advance), given
by c

(C)
k . Upon receiving the offloading request and various

parameters, EN j calculates the achievable latency reduction
∆k,j using (28), based on the received parameter values as
well as its current traffic load Qj , the observed channel
gain θk,j , the backhaul data rate Mj , and its computational
capability c

(E)
j . Then, EN j creates its preference list based

on the rank of ∆k,j values of different UEs. Finally, EN j
sends the calculated ∆k,j to the UEs, which will be used by
them to create their preference lists. Along with ∆k,j , the
values of {α∗k, β∗k,j , γ∗k,j} are sent to the UEs, which are later
used to perform task partitioning after the matching process
converges.

The matching process is based on multiple rounds of
message exchange between UEs and ENs. This process starts
with each UE sending an offloading application to the ENs
according to the strategy given in (52), i.e., the UE always
applies to the EN at the top of its preference list. Upon
receiving applications of different UEs, an EN decides whether
to put the UEs in its waiting list according to Algorithm 2.
After the decisions are made, the EN sends rejection notices
to the UEs it decided to reject. The EN also updates its Qj
and broadcasts it to nearby UEs. Each UE then updates its
preference list by calculating ∆k,j with the updated Qj . A
UE would make another round of applications under one of
the following cases:
Case (a): Its application has been rejected;
Case (b): It is currently in the waiting list of EN j, but a higher
latency reduction can be achieved by switching to another EN
j′ and such switching is feasible. A switching is feasible only
when one of the following conditions is satisfied:
Condition (i): The waiting list of EN j′ is not full, i.e.,
Qj′ < Sj′ ;
Condition (ii): The waiting list of EN j′ is full, i.e., Qj′ = Sj′ ,
but there is another UE k′ currently in the waiting list of EN
j′ who is less competitive than UE k, i.e., ∆k′,j′ < ∆k,j′ .

After receiving another round of applications, each EN
makes decisions by comparing the new applicants with ones
that are already in the waiting list according to Algorithm 2.
With the decisions made by ENs, the UEs update their
preference lists and submit another round of applications if
they are under Case (a) or Case (b). Such a matching process
continues until convergence is achieved.

Compared to a standard college admission problem with
static preference lists for both students and colleges, the
preference lists of UEs and ENs in our problem change over
time. Despite such a difference, we show that the matching
process converges to a stable matching.

Definition 1. In a stable matching, there is no UE-EN pair
such that: the UE can be matched to a better EN than the
current associated EN, and the EN can be matched to a UE
who is better than one of the UEs that are currently associated



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 10

with it.

The convergence of the matching is given in Theorem 1.

Theorem 1. The proposed matching process converges and
the outcome is a stable matching.

Proof. Suppose for contradiction, a stable matching cannot
be achieved. By definition, if the matching is not stable, there
must be at least one pair of UE k and EN j such that UE k is
currently associated with EN j and UE k can switch to another
EN j′ that is better than EN j. Then, we have ∆k,j′ > ∆k,j

and it is feasible for UE k to switch from EN j to EN j′. As
a result, either Condition (i) or Condition (ii) is satisfied. If
Condition (i) is satisfied, i.e., Qj′ < Sj′ , then UE k should
have already switched to EN j′, contradicting the fact that it
is currently associated to EN j. If Condition (ii) is satisfied,
i.e., Qj′ = Sj′ , then there must be at least one UE k′ that is
associated with EN j′ who is less competitive than UE k from
the perspective of EN j′, i.e., ∆k,j′ > ∆k′,j′ . Meanwhile, as
UE k′ is currently in the waiting list of EN j′ while UE k
is not, the only reason is that UE k has never submitted an
application to EN j′ before. However, since UE k prefers EN
j′ over EN j, it must have applied to EN j′ prior to EN j,
which leads to a contradiction. Thus, we conclude that the
matching process converges to a stable matching.

VII. SIMULATION RESULTS

We evaluate the performance of the proposed schemes via
simulations. We consider a 500 m × 500 m area with 10
randomly located ENs. UEs are uniformly distributed in the
area. We adopt the parameter values in [24], [31]. Specifically,
the channel is modeled as a combination of distance-dependent
path loss 140.7+36.7log10d in dB and Rayleigh fading, where
d is the distance in meters. The UE transmission power is
set to 20 dBm and the noise density is −174 dBm/Hz. The
uplink bandwidth is 10 MHz. The data rate for the backhaul
link is uniformly distributed in [20, 80] Mbps. Sj is set to 15
for all ENs. Unless otherwise stated, the default number of
users is 100, and the default size and complexity of the tasks
are sk = 200 KB and zk = 1000 CPU cycles/bit, respectively.
The computational capabilities of the local device, EN, and the
cloud server are 1 GHz, 50 GHz, and 100 GHz, respectively.
Each task can be partitioned into 50 subtasks, yielding a reso-
lution of 0.02 for the task partitioning ratios. When evaluating
the impact of a parameter on the latency performance, the
value of this parameter is varied while all other parameters
are set to be their default values.

We consider two schemes for the proposed approaches. The
first scheme is called DD-UA, which applies the optimal task
partitioning and the dual decomposition-based user associa-
tion. The second scheme is called matching-UA, which applies
the optimal task partitioning and the matching-based user
association. The two proposed schemes are compared with
several benchmark schemes. To demonstrate the effectiveness
of the proposed task partitioning solution, four benchmark
schemes are considered. The first two schemes are called edge-
only and cloud-only, where all subtasks are executed at the
EN and the cloud server, respectively. These two schemes are

50 100 150 200 250

Number of users

0

20

40

60

80

100

120

140

A
v
er

ag
e 

la
te

n
cy

 (
m

s)

DD-UA

Matching-UA

Heuristic-UA

Cloud-only

Edge-only

Lower bound

Local & edge

Local & cloud

Fig. 4. Average latency vs. number of users (independent subtasks).

50 100 150 200 250

Number of users

0

20

40

60

80

100

120

A
v
er

ag
e 

la
te

n
cy

 (
m

s)

DD-UA

Matching-UA

Heuristic-UA

Cloud-only

Edge-only

Lower bound

Local & cloud

Local & edge

Fig. 5. Average latency vs. number of users (sequentially dependent subtasks).

based on binary offloading (i.e., offloading whole tasks), which
has been considered in exiting works on adaptive offloading.
The other two schemes are called local & edge and local
& cloud, which are similar to the solutions presented in
existing works on task partitioning. The local & edge scheme
is based on the proposed task partitioning solution, but only
applies partitioning between the local device and EN; the local
& cloud scheme is based on the proposed task partitioning
solution, but only applies partitioning between the local device
and cloud server. To provide a fair comparison, the dual
decomposition-based user association is applied to these four
schemes. We show the effectiveness of the proposed user
association solution by comparing it with a heuristic user
association scheme called heuristic-UA, in which each UE is
associated with the EN that has the maximum SINR. For a
fair comparison, the optimal task partitioning is also applied
in the heuristic-UA scheme. Finally, the derived performance
lower bound is plotted.

The latency performance of different schemes is shown
in Figs. 4–7. In Figs. 4 and 5, we plot the average latency
versus the number of users for the cases of independent
and dependent subtasks, respectively. Expectedly, the average
latency increases as more users are served, because less
communication and computational resources are allocated to
each user. Benefiting from the proximity of MEC servers



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 11

100 150 200 250 300 350 400

Input data size (KB)

0

20

40

60

80

100

120
A

v
er

ag
e 

la
te

n
cy

 (
m

s)
DD-UA

Matching-UA

Heuristic-UA

Cloud-only

Edge-only

Lower bound

Local & edge

Local & cloud

Fig. 6. Average latency vs. input data size (independent subtasks).

to end-users, the average latency of the edge-only scheme
is lower than the cloud-only scheme when the traffic load
is low. However, when the traffic load is high (i.e., more
users are served), the average latency of the edge-only scheme
becomes higher than the cloud-only scheme, as the computing
latency at the EN is significantly increased when more users
are sharing the computational resource. The proposed schemes
(DD-UA and matching-UA) and the heuristic-UA scheme
achieve lower latencies than the edge-only and cloud-only
schemes, as the tasks are properly partitioned and assigned
to local devices, ENs, and cloud servers. Comparing different
user association approaches, we can see that the proposed
schemes outperform the heuristic-UA scheme, since the set
of UEs served by each EN are optimized and a good load
balancing among ENs is achieved. It is also observed that
the performance gaps between the proposed schemes and
the lower bound are relatively small, showing that a near-
optimal solution for user association can be achieved by the
proposed schemes. Comparing Fig. 4 with Fig. 5, it can be
seen that the latency reduction achieved by task partitioning
is more significant for the case of independent subtasks than
the case of dependent subtasks. This is because, for the case
of independent subtasks, the communication and computing
processes can be concurrently performed at the local device,
the EN, and the cloud server; while for the case of dependent
subtasks, only part of these processes can be performed in
parallel, which limits the benefit of task partitioning.

The impact of the input data size of tasks on average latency
is presented in Figs. 6 and 7, where similar trends among
different schemes are observed. As expected, the latencies of
all schemes increase linearly with the input data size. When
the data size is small, the latency reduction achieved by the
proposed schemes is small, since the local device is able
to execute the tasks in a timely manner. As the input data
size increases, a higher reduction in latency can be achieved.
We plot the average latency versus the task computational
complexity in Fig. 8. As expected, the complexity has the
same impact on the latency as the input data size.

The optimal task partitioning ratios under different system
settings are shown in Figs. 9–12. In Fig. 9 and 10, we plot
the average optimal partitioning ratios over all users versus

100 150 200 250 300 350 400

Input data size (KB)

0

20

40

60

80

100

120

A
v
er

ag
e 

la
te

n
cy

 (
m

s)

DD-UA

Matching-UA

Heuristic-UA

Cloud-only

Edge-only

Lower bound

Local & edge

Local & cloud

Fig. 7. Average latency vs. input data size (sequentially dependent subtasks).

500 1000 1500

Computational complexity (cycle/bit)

10

20

30

40

50

60

70

80

A
v
er

ag
e 

la
te

n
cy

 (
m

s)

DD-UA

Matching-UA

Heuristic

Cloud-only

Edge-only

Lower bound

Local & edge

Local & cloud

Fig. 8. Average latency vs. task complexity (independent subtasks).

50 100 150 200 250

Number of users

0

0.2

0.4

0.6

0.8

O
p

ti
m

al
 p

ar
ti

ti
o

n
in

g
 r

at
io

Cloud

Edge

Local

Fig. 9. Optimal partitioning ratios vs. number of users (independent subtasks).

the number of users. As the number of users increases, the
ratios assigned to the local device and cloud server increase,
while the ratio assigned to the edge server decreases. This is
because when the traffic load increases, both the offloading
and computing times at the EN become higher. In contrast,
the computing times at local devices and cloud servers are not
impacted by the traffic load. To minimize the total latency,
the workload assigned to the edge server should be reduced.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 12

50 100 150 200 250

Number of users

0

0.2

0.4

0.6

0.8

O
p

ti
m

al
 p

ar
ti

ti
o

n
in

g
 r

at
io

Cloud

Edge

Local

Fig. 10. Optimal partitioning ratio vs. number of users (sequentially dependent
subtasks).

100 150 200 250 300 350 400

Input data size (KB)

0

0.2

0.4

0.6

0.8

O
p

ti
m

al
 p

ar
ti

ti
o

n
in

g
 r

at
io

Cloud

Edge

Local

Fig. 11. Optimal partitioning ratio vs. input data size (independent subtasks).

We investigate the impact of input data size on the optimal
partitioning ratios for the cases of independent and dependent
subtasks in Figs. 11 and 12, respectively. For both cases, when
the input data size increases, smaller ratios are assigned to the
local device and edge server while a larger ratio is assigned
to the cloud server. This is because the total computational
workload (measured in CPU cycles) becomes larger as the
input data size increases, hence assigning more subtasks to
the cloud server can fully exploit its powerful computational
capability to reduce the execution time. Comparing Figs. 11
and 12, it can be seen that the overall partitioning patterns
of the two cases are similar, since the dominant parameters
that impact the optimal partitioning (e.g., channel condition,
computational capabilities of different computing units, user
distribution, etc.) are the same. However, there is still a
noticeable difference between the two figures. Specifically,
the ratios of EN and local device in the case of independent
subtasks are more than 10% higher than those in the case of
dependent subtasks when the data size is small. This is because
the computations at a local device and cloud server can be
performed concurrently with other processes in the case of
independent subtasks. Thus, assigning more subtasks to local
devices and edge servers reduces the latency.

Finally, we show in Fig. 13 the effectiveness of the pro-

100 150 200 250 300 350 400

Input data size (KB)

0

0.2

0.4

0.6

0.8

O
p

ti
m

al
 p

ar
ti

ti
o

n
in

g
 r

at
io

Cloud

Edge

Local

Fig. 12. Optimal partitioning ratio vs. input data size (sequentially dependent
subtasks).

1 2 3 4 5 6 7 8 9 10

EN index

0

5

10

15

N
u

m
b

e
r 

o
f 

a
s
s
o

c
ia

te
d

 U
E

s

(a)

1 2 3 4 5 6 7 8 9 10

EN index

0

5

10

15

N
u

m
b

e
r 

o
f 

a
s
s
o

c
ia

te
d

 U
E

s

(b)

1 2 3 4 5 6 7 8 9 10

EN index

0

5

10

15

N
u

m
b

e
r 

o
f 

a
s
s
o

c
ia

te
d

 U
E

s

(c)

Fig. 13. Traffic load distribution among ENs. (a) under heuristic user
association, (b) under the proposed dual decomposition-based user association,
(c) under the proposed matching-based user association.

posed user association schemes in terms of load balancing. It
can be seen that the matching-based scheme achieves better
load balancing than the heuristic user association scheme
(i.e., where UEs are associated with the EN that provides
the maximum SINR). This is because, during the matching
process, an overloaded (underloaded) EN would provide a
relatively high (low) latency to UEs, making the EN rank
lower (higher) in the preference lists of UEs. This discourages
(attracts) UEs to select this EN in the next round of matching,
resulting in balanced load distribution among ENs. The dual
decomposition-based scheme achieves the most balanced load
among ENs, as the values of {Qj} are optimized via iterative
interactions between ENs and UEs. As a result, the traffic loads
are properly assigned to various ENs in a way that reduces
congestion and improves resource utilization.

VIII. CONCLUSIONS

In this paper, we considered joint optimization of task par-
titioning and user association to minimize the average latency
of users in an MEC system. We formulated a mixed integer
programming problem for the cases of both independent and
dependent subtasks. For each case, the original problem was
decomposed into two subproblems: a lower-level subproblem
for task partitioning under a given user association, and a
higher-level subproblem for user association. We first derived
the optimal task partitioning solutions for both cases of subtask
dependency. Then, we proposed a dual decomposition-based
user association scheme that achieves a near-optimal solution.
We also proposed a matching-based user association scheme
with proven convergence. Simulation results show that the
proposed schemes outperform several benchmark schemes.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 13

Specifically, the average latency is reduced by about 50% and
40% for the cases of independent and dependent subtasks,
respectively. For future work, we will explore optimal task
partitioning under general subtask dependency (which can be
indicated by a subtask call graph). In addition, new methods
for reducing the number of iterations in the proposed user
association algorithms will be developed.

REFERENCES

[1] M. Feng, M. Krunz, and W. Zhang, “Task partitioning and user associ-
ation for latency minimization in mobile edge computing networks,” in
IEEE ICCN WKSHPS in conjunction with INFOCOM 2021, May 2021.

[2] Huawei, “5G Vision: 100 Billion Connections, 1 ms Latency, and
10 Gbps Throughput,” Accessed: June 2021. [Online]. Available:
http://support.huawei.com/huaweiconnect/carrier/en/thread-357441-1-
1.html

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing: A key technology towards 5G,” ETSI White Paper, vol. 11,
2015.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tuts., vol. 19, no. 4, pp. 2322–2358, Sept.–Dec. 2017.

[5] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and
C. S. Hong, “Joint communication, computation, caching, and control
in big data multi-access edge computing,” IEEE Trans. Mobile Comput.,
vol. 19, no. 6, pp. 1359–1374, June 2020.

[6] Cisco, “Cisco Visual Networking Index: Global Mobile
Data Traffic Forecast Update, 2017–2022” White Paper,
Feb. 2019. Accessed: June 2021. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-738429.html

[7] Intel, “Increasing mobile operators’ value proposition with edge com-
puting,” 2014.

[8] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[9] Y. H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile computing,”
IEEE Trans. Mobile Comput., vol. 16, no. 11, pp. 3056–3069, Nov.
2017.

[10] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 16, no.
8, pp. 4924–4938, Aug. 2017.

[11] M.-H. Chen, B. Liang, M. Dong, “Joint offloading and resource al-
location for computation and communication in mobile cloud with
computing access point,” in Proc. IEEE INFOCOM’17, Atlanta, GA,
May 2017, pp. 1–9.

[12] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun., vol.
36, no. 3, pp. 587–597, Mar. 2018.

[13] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency IoT services
in multi-access edge computing,” IEEE J. Sel. Areas Commun., vol. 37,
no. 3, pp. 668–682, Mar. 2019.

[14] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things J., vol. 6, no.
3, pp. 4005–4018, June 2019.

[15] X. Lyu et al., “Selective offloading in mobile edge computing for the
green Internet of Things,” IEEE Netw., vol. 32, no. 1, pp. 54–60,
Jan./Feb. 2018.

[16] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5G networks: New paradigms, scenarios, and
challenges,” IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017.

[17] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in Proc. IEEE INFO-
COM’17, Atlanta, GA, May 2017, pp. 1–9.

[18] Y. Xiao and M. Krunz, “Distributed optimization for energy-efficient
fog computing in the tactile Internet,” IEEE J. Sel. Areas Commun., vol.
36, no. 11, pp. 2390–2400, Nov. 2018.

[19] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in Proc. IEEE INFOCOM’16, San Francisco, CA,
Apr. 2016, pp. 1–9.

[20] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation parti-
tioning for latency sensitive mobile cloud applications,” IEEE Trans.
Comput., vol. 64, no. 8, pp. 2253–2266, Aug. 2015.

[21] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[22] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, Mar. 2017.

[23] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource
allocation in mobile-edge computation offloading,” IEEE Trans. Wireless
Commun., vol. 17, no. 8, pp. 5506–5518, Aug. 2018.

[24] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Trans. Veh. Technol., vol.
68, no. 5, pp. 5031–5044, May 2019.

[25] A. Bozorgchenani, D. Tarchi, and G. E. Corazza, “Centralized and
distributed architectures for energy and delay efficient fog network-based
edge computing services,” IEEE Trans. Green Commun. Netw., vol. 3,
no. 1, pp. 250–263, Mar. 2019.

[26] J. Liu and Q. Zhang, “Offloading schemes in mobile edge computing
for ultra-reliable low latency communications,” IEEE Access, vol. 6, pp.
12825–12837, 2018.

[27] J. Yan, S. Bi, and Y. J. A. Zhang, “Offloading and resource allocation
with general task graph in mobile edge computing: A deep reinforcement
learning approach,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp.
5404–5419, Aug. 2020.

[28] J. Yan, S. Bi, Y. J. A. Zhang, and M. Tao, “Optimal task offloading
and resource allocation in mobile-edge computing with inter-user task
dependency,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 235–
250, Jan. 2020.

[29] C. Shu, Z. Zhao, Y. Han, and G. Min, “Dependency-aware and latency-
optimal computation offloading for multi-user edge computing net-
works,” in Proc. IEEE SECON’19, Boston, MA, June 2019, pp. 1–9.

[30] S. Pan, Z. Zhang, Z. Zhang, and D. Zeng, “Dependency-aware compu-
tation offloading in mobile edge computing: A reinforcement learning
approach,” IEEE Access, vol. 7, pp. 134742–134753, Sept. 2019.

[31] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[32] S. Sardellitti, M. Merluzzi, and S. Barbarossa, “Optimal association of
mobile users to multi-access edge computing resources,” in Proc. IEEE
ICC’18, Kansas City, MO, May 2018, pp. 1–6.

[33] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint computation offloading
and user association in multi-task mobile edge computing,” IEEE Trans.
Veh. Technol., vol. 67, no. 12, pp. 12313–12325, Oct. 2018.

[34] M. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to offload?
The bandwidth and energy costs of mobile cloud computing,” in Proc.
IEEE INFOCOM’13, Turin, Italy, Apr. 2013, pp. 1285–1293.

[35] Q. Ye, B. Rong, Y. Chen, M.A.-Shalash, C. Caramanis, and J. G.
Andrews, “User association for load balancing in heterogeneous cellular
networks,” IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 2706–
2716, June 2013.

[36] M. Feng, S. Mao, and T. Jiang, “Joint frame design, resource allocation
and user association for massive MIMO heterogeneous networks with
wireless backhaul,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp.
1937–1950, Mar. 2018.

[37] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” American Mathematical Monthly., vol. 69 no. 1, pp. 9–14,
Jan. 1962.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 14

Mingjie Feng [S’15] is currently an associate pro-
fessor at Wuhan National Laboratory for Opto-
electronics, Huazhong University of Science and
Technology, Wuhan, China. He was a postdoctoral
research associate in the Department of Electrical
and Computer Engineering at the University of
Arizona, Tucson, AZ, USA. He received his Ph.D.
degree in Electrical and Computer Engineering from
Auburn University, Auburn, AL, USA, in 2018.
He received his B.E. and M.E. degrees from the
School of Electronic Information and Communica-

tions, Huazhong University of Science and Technology, Wuhan, China, in
2010 and 2013, respectively. He served or is serving as technical program
committee membership of several IEEE conferences, including IEEE MASS,
IEEE ICC, IEEE WCSP, and IEEE CCNC etc. His research focuses on the
design and optimization of wireless networks, the detailed directions include
heterogeneous networks, mmWave communications, massive MIMO, mobile
edge computing, and full-duplex communications. He is a recipient of Woltosz
Fellowship at Auburn University and Best Reviewer of IEEE Transactions on
Wireless Communications.

Marwan Krunz [S’93-M’95-SM’04-F’10] is a Re-
gents Professor at the University of Arizona. He
holds the Kenneth VonBehren Endowed Professor-
ship in ECE and is also a professor of computer
science. He directs the Broadband Wireless Access
and Applications Center (BWAC), a multi-university
NSF/industry center that focuses on next-generation
wireless technologies. He also holds a courtesy
appointment as a professor at University Technology
Sydney. He previously served as the site director
for the Connection One center. Dr. Krunz’s research

is on resource management, network protocols, and security for wireless
systems. He has published more than 300 journal articles and peer-reviewed
conference papers, and is a named inventor on 12 patents. His latest h-
index is 61. He is an IEEE Fellow, an Arizona Engineering Faculty Fellow,
and an IEEE Communications Society Distinguished Lecturer (2013-2015).
He received the NSF CAREER award. He served as the Editor-in-Chief
for the IEEE Transactions on Mobile Computing. He also served as editor
for numerous IEEE journals. He was the TPC chair for INFOCOM’04,
SECON’05, WoWMoM’06, and Hot Interconnects 9. He was also the general
vice-chair for WiOpt 2016 and general co-chair for WiSec’12. Dr. Krunz
is an entrepreneur, served/currently serving as chief scientist for two startup
companies that focus on 5G and beyond systems and machine learning for
wireless communications.

 

Wenhan Zhang [S’19] Wenhan Zhang received his
B.S. degree in Electrical Engineering and Automa-
tion from Hefei University of Technology, Heifei,
China, in 2016. He earned his M.S. degree in Electri-
cal Engineering from Syracuse University, Syracuse,
NY, USA, in 2018. He is working toward his Ph.D.
in Electrical and Computer Engineering at the Uni-
versity of Arizona, Tucson, AZ, USA. His research
interests include mobile edge computing, wireless
communications, and applications of machine learn-
ing in wireless networks.


