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Abstract—Deep neural networks (DNNs) have recently been
applied in the classification of radio frequency (RF) signals.
One use case of interest relates to the discernment between
different wireless technologies that share the spectrum. Although
highly accurate DNN classifiers have been proposed, preliminary
research points to the vulnerability of these classifiers to ad-
versarial machine learning (AML) attacks. In one such attack,
a surrogate DNN model is trained by the attacker to produce
intelligently crafted low-power “perturbations” that degrade the
classification accuracy of the legitimate classifier. In this paper,
we design four DNN-based classifiers for the identification of
Wi-Fi, 5G NR-Unlicensed (NR-U), and LTE LAA transmissions
over the 5 GHz UNII bands. Our DNN models include both
convolutional neural networks (CNNs) as well as several recur-
rent neural networks (RNNs) models, particularly LSTM and
Bidirectional LSTM (BiLSTM) networks. We demonstrate the
high classification accuracy of these models under “benign”
(non-adversarial) noise. We then study the efficacy of these
classifiers under AML-based perturbations. Specifically, we use
the fast gradient sign method (FGSM) to generate adversarial
perturbations. Different attack scenarios are studied, depending
on how much information the attacker has about the defender’s
classifier. In one extreme scenario, called “white-box” attack, the
attacker has full knowledge of the defender’s DNN, including
its hyperparameters, its training dataset, and even the seeds
used to train the network. This attack is shown to significantly
degrade the classification accuracy even when the FGSM-based
perturbations are low power, i.e., the received SNR is relatively
high. We then consider more realistic attack scenarios, where the
attacker has partial or no knowledge of the defender’s classifier.
Even under limited knowledge, adversarial perturbations can still
lead to significant reduction in the classification accuracy, relative
to classification under AWGN with the same SNR level.

Index Terms—Deep learning, signal classification, adversarial
machine learning, shared spectrum, wireless security

I. INTRODUCTION

Waveform discernment plays an important role in next-

generation wireless systems. It is used to identify the un-

derlying technologies in a spectrum-sharing scenario, e.g.,

coexisting Wi-Fi and cellular transmissions over the unlicensed

5/6 GHz bands [1] or LTE/radar transmissions over the CBRS

band [2]. It can also be used to identify (without signal

decoding) the nature of observed interference. Certain exoge-

nous interference is caused by spurious emissions of benign

effect; others may produce strong intentional (adversarial) or

unintentional interference. In particular, malicious parties can

generate many types of emissions, some aimed at disrupting

receptions (jamming attacks) while others aimed at imper-

sonating legitimate users [3]. In mission-critical applications,

such as military systems and autonomous vehicles, the ability

to discern between legitimate and rogue waveforms is quite

critical to the overall safety and security of the network.

Recently, deep neural networks (DNNs) have been applied

to RF signal classification problems, including modulation

and coding scheme (MCS) identification [4], [5], unknown

signal detection [6], and protocol classification [1]. In con-

trast to traditional feature-based spectrum sensing, DNN-based

classification is data driven, and does not require explicit

specification of any technology-dependent features. Different

types of DNNs have been considered, including convolutional

neural networks (CNNs) [7]–[9] and recurrent neural networks

(RNNs) [2], [10]. A CNN employs convolution layers to

extract features in multidimensional data. However, it is not

effective at capturing temporal dependencies. In contrast, an

RNN uses a recurrent structure to capture the memory (time

dependency) in the data, which explains its widespread use

in forecasting problems, such as language modeling, speech

recognition, and trajectory prediction of moving objects. In [7],

the authors used a CNN-based model to classify Wi-Fi devices

using a 2-by-N matrix as its input, where N is the number

of successively received and down-converted samples. Each

sample is associated with an in-phase (I) and a quadrature

(Q) components. The authors in [10] applied a multi-layer

long-short-term-memory (LSTM) network, a class of RNNs,

for automatic modulation classification. Their proposed design

outperforms the CNN model at high SNRs. In [2], the authors

used CNNs and LSTM networks to detect radar signals in the

3.5 GHz band. Their results show that both CNN and LSTM

models have the potential to achieve high signal classification

accuracy. A combined CNN/LSTM architecture was proposed

in [1] to identify Wi-Fi, 5G NR, and LTE signals over the

unlicensed 5 GHz bands.

Despite their advantages, DNN-based classifiers are prone

to adversarial machine learning (AML) attacks [11]. Such

attacks have been studied in object classification/recognition

problems (e.g., [12], [13]), and more recently in RF signal

classification (e.g., [14]–[16]). The general idea is to train

a surrogate DNN classifier, henceforth called the attacker’s
classifier, to produce properly crafted perturbations. When

combined with a test input, these perturbations mislead the

legitimate classifier, henceforth called the defender’s classifier,

into incorrect labels; see Figure 1. Note that in an object
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Fig. 1. AML-based attack on the signal classifier of a legitimate receiver.

recognition application, the same training dataset is used at

both the attacker’s and defender’s classifiers. In contrast, for

the RF signal classification problem, different datasets may

be used to account for differences in the channel conditions

between the attacker and defender (“legitimate receiver"). The

authors in [14] designed various AML attacks that take into

account channel conditions. In [16], the authors showed that

the accuracy of a CNN-based classifier used for modulation

classification drops tremendously when receiving a slightly

perturbed input. In our paper, we study four CNN- and RNN-

based classifiers for Wi-Fi, LTE, and 5G NR signals that

coexist over the unlicensed 5 GHz band. We first verify the

high accuracy of these classifiers under noisy but benign

perturbations (i.e., AWGN). We then study the impact of

AML-based perturbations on their classification accuracy.

II. SYSTEM MODEL

We consider a wireless system that consists of a legiti-

mate transmitter-receiver pair and an adversarial device. The

transmitter randomly generates waveforms according to one of

several possible protocols in an interleaved manner, (i.e., one

transmission at a time). The defender’s classifier resides at the

legitimate receiver and is trained to identify waveforms based

on the received baseband I/Q samples. The attacker eavesdrops

on ongoing transmissions (called benign data) and uses them

to train its own classifier. Subsequently, the attacker transmits

its perturbations that interfer with the defender’s classifier,

pushing it into wrongly classifying the received samples.

We refer to the combined benign data plus perturbations as

adversarial data.

Consider the defender’s classifier. Its output can be rep-

resented as z = f(x; θ), where x is the input and θ is the

set of learnable DNN parameters, i.e., weight matrix and

bias vectors. The input x is a 2-by-N matrix, where N is

the window size (number of consecutive samples) and the

first (second) row represents the sequence of I (Q) values.

By applying an activation function σ, we have the numerical

output vector z according to the class number K: σ(z) ⊂ R
K .

After that, the classifier assigns the label to the received input

l(x; θ) = arg maxk(σ(z)k), where k ∈ K. In this formulation,

σ(z)k is the numerical output of classifier f corresponding to

the kth protocol type.
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Fig. 2. DNN structures used for waveform classification. Structure (a)-(c) are
RNN-based classifiers, whereas structures (d) is a CNN-based classifier.

We define Htd as the channel matrix from the legitimate

transmitter to the defender, Hta as the channel matrix from the

legitimate transmitter to the attacker, and Had as the channel

matrix from the attacker to the defender. We assume AWGN

(n) at any receiving device. In the absence of AML perturba-

tions, the defender receives xt
d = Htdxo + n, where xo is the

transmitted waveform. The attacker receives xt
a = Htaxo+n.

To launch an AML attack, the adversary uses its received

signal xt
a to generate and transmit the perturbations η. Under

this attack, the defender receives xt,a
d = Htdxo +Hadη + n.

To generate η, we consider the fast gradient sign method
(FGSM) [11], which has been widely applied in AML-based

attacks on image classifiers. Specifically, the attacker solves

the following problem for η:

max
η

I
{
l(xt

d; θ) �= l(xt,a
d ; θ)

}

s.t. ‖η‖∞ ≤ ε
(1)

where ε is a preset parameter that is used to limit the power

of the perturbations and ensure that the attack is hard to

detect. I is an indicator function that reflects the number of

misclassified labels in a given training set. We assume the

attacker is close to the defender, hence, Hadη ≈ η.

III. NEURAL NETWORK STRUCTURES

We consider four DNN structures for the defender’s and

attacker’s classifiers, as shown in Figure 2. To train and

test these networks, we generate a dataset of 15,000 inputs

(see Section VI-A), each of which containing 512 noisy

I/Q samples. Approximately 60% of the dataset is used for

training, 20% for validation and early stopping, and 20% for

testing the network. To reduce overfitting, we monitor the

categorical cross-entropy with patience of three in the early

stopping for all the proposed models.



A. Recurrent Neural Networks

We consider a stacked RNN architecture where the output

of one RNN layer is used as input to the next-outer RNN

layer. The inner layer can be any RNN structure, such as a

standard RNN (i.e., the SimpleRNN in TensorFlow [17]), a

Long Short-Term Memory (LSTM), or a Gated Recurrent Unit

(GRU). During training, the various classification outcomes

of the inner layer are used as inputs to train the outer layer.

Thus, the output at the final layer (i.e., classification layer)

is expected to achieve higher classification accuracy than any

inner-layer network. This stacked architecture captures tem-

poral correlations at different time scales without using many

input samples. To further improve the classification accuracy,

we also consider a bidirectional RNN structure for the inner

layers [18]. These bidirectional layers connect two hidden

layers of opposite directions to receive information from the

past (backward) and future (forward) states simultaneously.

This layer of bidirectionality makes the network non-causal,

where future information can influence the current decision;

however, this non-causality is applied only during the training

of the RNN network and is not required when the network is

evaluated.

There are several considerations that guided the selection

of a RNN layer within the architecture. LSTM networks have

been widely used for many sequential prediction tasks, due to

the efficiency of their gated structure and high accuracy [2],

[10]. Therefore, we consider applying the bidirectional stacked

LSTM network to classify the RF signals. Such a structure

allows the lower layer to transform the raw input into a

more suitable feature representation (e.g., removing unrelated

samples and disturbances). The higher layers can make a

more precise prediction by learning the dependencies in both

directions from the refined sequence data. Figure 2(a)-(c)

shows three network configurations that are used in Section

VI.

B. Convolutional Neural Network

We also use a CNN that has been modified from LeNet [19]

to benchmark against the RNNs. The original CNN was

designed for image classification. Hence, it will not work prop-

erly for our task of sequence classification. Therefore, we use

a Conv1D layer to transform the sequence data. The sequences

may need to be padded with zeros depending on the length of

the data that are sampled; however, our experiments showed

that padding the input sequence at the convolutional layer

does not improve the performance. Therefore, we removed

the padding layer from LeNet and only reported the results

for the better-performing CNN. The final CNN configuration

is summarized in Figure 2(d). Note that the kernel size for

Conv1D layer is 2, and its stride is set to 1. The activation

functions are scaled exponential linear units for all the Conv1D
and fully-connected layers. The output layers for all networks

in Figure 2 are soft-max.

(a) Benign dataset (b) Adversarial dataset (ε = 0.3)

Fig. 3. Confusion matrices for DNN structure (b).

IV. WHITE-BOX ADVERSARIAL ATTACK

The neural networks in the previous section can be used

to generate adversarial perturbations that fool either the same

network or the other networks. In the latter situation, the attack

samples are transferable if the attacker does not know the

defender’s network but still negatively impacts the defender’s

performance. If the attacker knows the defender’s data and

network, then the attack is known as white-box and is the

worst-case scenario for the defender. To generate the adversar-

ial perturbations, we first considered using the FGSM attack

[11]. This technique uses the gradients of a neural network

to generate a perturbation η and, subsequently, the adversarial

data xadv . The defender expects to predict the same class for x
and its adversarial perturbation xadv = x+ η if every element

of η is less than the given precision. Hence, a classifier can

assign the same class to x and xadv if ||η||∞ < ε; however, the

adversary’s goal is to make sure the classifier cannot accurately

predict on the perturbed data.

We simplify the NN’s mapping function f with parameters θ
as f(x; θ). Even though the difference between the adversarial

input xadv and benign input x is a small perturbation η, the

output difference δ = f(x + η; θ) − f(x; θ) is not a linear

increase with η. In fact, the impact of δ can be learned by

AML techniques and change the label sign by calculating

back-propagated gradients. Therefore, we can expect that small

perturbations in the input add up to change the expected label

of the original output. The adversarial perturbation is formally

given by

η = εsign(�xL(x, y; θ)). (2)

where L(x, y; θ) is the loss function of the model with

parameters θ [11]. The adversarial data are generated by max-

imizing the loss function with respect to the classifier’s input

x based on the gradients �xL(x, y; θ). The final adversarial

perturbation is given by:

xadv = x+ εsign(�xL(x, y; θ)). (3)

The gradient �x can be computed via back-propagation, where

the loss function of the perturbed signal is L(xt,a
d , ytrued ; θ) ≈

L(xt
d, y

true
d ; θ)+ηT�xt

d
L(xt

d, y
true
d ; θ). The final optimization

of the adversarial perturbation becomes one to maximize the

loss function subject to η = ε�xL(x
t
d, y

true
d ; θ).



The scaling factor ε controls the power of the perturbation.

If ε is increased then the perturbation can have larger impact

on the input xt
d which will result in a poor accuracy on

the adversarial dataset xt,a
d . To show the energy level of the

proposed perturbations, we define the Signal to Perturbation

Ratio (SPR) between the received signal and the perturbation

as E(xt
d)/E(η) in dB. We will estimate the relationship

between ε and SPR in the next section. As an example for the

classification of the perturbed signal, Figure 3 shows the con-

fusion matrix of the proposed bidirectional LSTM structure (b)

on the benign and adversarial datasets. The neural network can

successfully classify the waveforms from LTE, 5G NR, and

Wi-Fi signals on the benign dataset. This model can achieve a

relatively high classification performance on each category of

waveforms. However, the performance of the same networks

drops to 8.3% by adding the FGSM based perturbations with

ε = 0.3! The confusion matrix in Figure 3(b) shows that the

legitimate user classifies the waveforms into the wrong labels

on the adversarial dataset. For example, 92% of the received

LTE signals are labeled as the 5G NR signals. Moreover, all

the Wi-Fi waveforms are classified into the LTE and 5G NR

signals. Such misclassification results in a poor accuracy for

the legitimate user and increase the packet loss.

V. ADVERSARIAL ATTACKS WITH LIMITED KNOWLEDGE

The white-box attack scenario, while the most effective

attack, is not realistic. Therefore, we consider scenarios where

the attacker only has access to partial information from the

defender. We divide such knowledge into classifier and data

domains. The white-box attack is performed when the adver-

sary knows all the information needed in the classifier and

data domain. However, the defender can protect some of their

information, and it becomes challenging to eavesdrop. We con-

sider the different levels of knowledge for the attacker in both

domains to evaluate the accuracy under limited information

leakage scenarios.

A. Limited Knowledge of Defender’s Classifier

In real-world environments, the attacker tries to eavesdrop

to obtain the information about the classification model so

they can generate attacks. When all the information has eaves-

dropped, it becomes a white-box attack. White-box attacks

are a strong assumption of the knowledge of the attacker.

Therefore, we consider a more realistic situation, where the

attacker learns a classifier fa(x; θa) based on different knowl-

edge levels of the defender’s classifier fd(x; θd).
Attack Scenario (a): The attacker knows all the hyperparam-

eters of the defender but does not know the trained weights.

The classifier is trained with the same architecture for the

defender and adversary; however, the final trained classifiers

will be different even under the same hyperparameter setting

and the same training dataset (i.e., due to random initialization,

etc.). As a result, the two classifiers will have different weights

even they have similar classification performances. In this case,

we use two different random seeds to initialize the models

before the training.

Attack Scenario (b): In this attack, the adversary knows

the overall structure of the DNN but does not know the

other hyperparameters. It is a more realistic attack, where the

attacker eavesdrops on the defender and learns the structure

instead of all the settings of a model. For example, the attacker

may know the defender is using a seven-layer CNN model with

Conv1D as the first two layers but does not know the filter

numbers of these layers. However, such filter number (or the

unit number for RNN) can significantly impact gradient back-

propagation, forcing the DNN to end up with different weights

after the training. Therefore, we consider the attack that knows

the layer numbers, types, and orders but does not know the

filter numbers of the layers.

Attack Scenario (c): The attacker knows the classifier type

(CNN or RNN) but does not know the structure. In this attack,

we use a differently structured classifier at the attacker side

to generate the adversarial perturbations. Mostly, we consider

using the same type of the DNN model but with different layer

numbers (e.g., we use a three-layer RNN structure (a) for the

defender but use a two-layer structure (c) for the attacker).

Attack Scenario (d): The attacker does not know the clas-

sifier type. We use f(x; θ) to present the DNN. The mapping

function f can differ significantly with classifier types, espe-

cially if a CNN represents features much differently than an

RNN. In this scenario, we consider the situation when the

attacker uses RNN based classifier to generate the adversarial

perturbations, but the defender uses the CNN-based classifier

as the detector and vice versa.

B. Limited Knowledge of Defender’s Training Data

In the real environment, benign waveforms received by the

attacker are xt
a = Htaxo + n, and signals received by the

defender are xt
d = Htdxo+n. Considering the channel impact,

the transmissions received by the attacker and the receiver

are different. Therefore, the attacker needs to train its own

classifier fa based on the dataset xt
a. Due to the training data

being different from the defender’s, the trained parameters θa
will be different even with the same hyperparameter setting. As

a result, the adversarial perturbations must to be generated with

fa(x; θa). The loss function L(xt,a
d , ytrued ; θd) is approximated

by L(xt
a, y

true
a ; θa) + ηT�xt

a
L(xt

a, y
true
a ; θa). We denote this

type of adversarial signal as Attack Scenario (e): The attacker

gains a different dataset to train its classifier. The signal is

broadcasted by the legitimate transmitter, so the attacker and

the defender will receive the waveforms that contain the same

bit-level information. Due to the channel impact and the noise,

datasets are different in baseband waveforms. We consider the

AWGN channel between all the communication nodes, and

same levels of SNR for the transmission received defender

and the attacker.

VI. PERFORMANCE EVALUATION

A. Data Generation

The Matlab Communication and the 5G Toolboxes are used

to generate the waveforms of the LTE, Wi-Fi, and 5G NR

signals. A set of signal features, including channel bandwidth,
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Fig. 4. Accuracy of proposed DNN classifiers under benign and AML-based
perturbations (white-box attack).

modulation schemes, I/Q imbalance, DC offset, and subcarrier

spacing can be adjusted by the protocols. By knowing these

features, we simulate waveforms of the three technologies

under different parameter settings supported by the standards.

Of the various possible features, we consider the baseband

I/Q samples at the receiver (with added noise) as input to the

classifier. I/Q samples are obtained before decoding the signal,

and they provide a rich representation of the actual waveform.

These samples are divided into multiple sequences by apply-

ing a sliding window with a step size of one, each consisting

of 512 I/Q pairs. These sequences are used as datasets to

train and test the classifiers. In this paper, we assume all

protocols are transmitted in the same center frequency and

have a channel bandwidth of 20 MHz. In addition, we consider

the LTE, Wi-Fi, and 5G NR signals that are transmitted

under an AWGN channel with SNR = 15 dB. The Wi-

Fi waveform is transmitted by generating baseband samples

of 802.11 ac (VHT) with BPSK modulation and 1/2 rate.

The LTE waveform is generated by downlink RMC with the

reference channel of R.9, which has a 64 QAM modulation.

We also generate 5G waveforms using 5G DL FRC with QPSK

modulation, a rate of 1/3 with a subcarrier spacing of 15 kHz.

B. Impact of White-box Adversarial Attack

We evaluate the four neural network architectures in Fig-

ure 2 and present the accuracy of the defender’s classifier un-

der the benign (i.e, AWGN) and adversarial perturbations. As

shown in Figure 4, the RNN-based models (a)-(c) achieve ap-

proximately 91% accuracy under benign perturbations, while

the CNN structure (d) can achieve 97% accuracy. The three

RNN structures (a) and (c) have comparable performance

because of their comparable bidirectional LSTM designs. We

also observe that structure (a) performs the best when ε is

larger than 0.15. The accuracy drops for all four classifiers as

we increase the magnitude of the adversarial perturbations via

ε. Even though the CNN achieves the best performance under

benign perturbations, it suffers more from the AML attacks.

When ε is greater than 0.1, the CNN model performs the

least accurately among the different structures. All the models’

accuracy saturates when ε is higher than 0.2, which indicates
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Fig. 5. Accuracy of RNN classifier (structure (a)) under different attacks.

the white-box attack can mislead the defender’s classifier with

very limited power control. To show the energy level of the

proposed perturbations, we calculate the SPR as shown in

Table I. The ratio drops faster with smaller ε, and the trend

slows down when ε becomes larger.

TABLE I
RELATIONSHIP BETWEEN E(xt

d)/E(η) AND ε

ε 0.05 0.1 0.15 0.2 0.25 0.3
SPR (dB) 24.14 18.32 14.59 12.10 10.17 8.58

C. Impact of Limited-Knowledge Attacks

After testing the white-box attacks, we consider attack

scenarios where the attacker has incomplete knowledge of

the defender’s classifier and/or the training dataset used by

the defender. The attack scenarios (a)-(e) are as described

in Section V. As shown in Figure 4, structure (a) has the

best performance, so we explore its accuracy changes under

different attacks and use it to represent RNN models.

1) Attacks on the RNN model: The accuracy for structure

(a) is presented in Figure 5. The impact of attack (a) is close

to the white-box attack, and it is because the attacker has the

same hyperparameters as the defender. Although the classifiers

are trained with different seeds, one can still inherit most of

the properties from the other. Attack (b) exchanges the filter

number of the first two layers, and attack (c) uses one less layer

(e.g., remove the third layer of structure (a)) for the attacker.

Both of them show similar performance as the defender, which

means these hyperparameters have comparable influences.

Attack (d) has the worst attack effect. This is because that

the attacker applies the CNN structure (d) to generate the

adversarial signals for the RNN model. Even though both types

of the classifier can classify the received waveforms accurately,

the actual trained weights can differ significantly from the

other’s. Therefore, a well-crafted perturbation for the CNN

may not achieve the expected effect on RNNs. Attack (e) uses

the different training datasets to generate the perturbations.

Thus, it shows more variance than other attacks. It has an
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Fig. 6. Accuracy of a CNN-based classifier under different attacks.

equivalent trend with the attack (b) and (c) but slows down

when ε exceeds 0.15.

2) Attacks on the CNN Classifier: The accuracy for struc-

ture (d) is presented in Figure 6. Similar to what was observed

in the RNN model, the impact of the attack depends heavily

on the attacker’s knowledge levels. Attack (a) was the closest

one to the white-box attack. In the simulation, attack (b)

exchanges the filter number of the two Conv1D layers, and

attack (c) removes the second Conv1D layer at the attacker

side. Compared with the RNN model, the layer and filter

number setting play a more important role in CNNs. As a

result, attacks (c) and (d) show different trends with ε. Attack

(e) shows strong similarity with the attack (a), which implies

the CNN model can have a more severe attack than the RNN

model even when the attacker has limited knowledge of the

data.

VII. CONCLUSIONS

We studied the vulnerability of DNN-based protocol clas-

sifiers to AML-based jamming attacks, considering a shared

spectrum scenario with Wi-Fi, LTE, and 5G NR transmissions.

Several DNN designs were proposed, including a CNN and

three RNN structures (with forward and bidirectional LSTM

networks). First, we showed that under “benign” (random)

noise, all four classifiers exhibit high classification accuracy

(above 90%). Replacing this random noise with adversarial

FGSM-based perturbations while maintaining almost the same

SNR level, all four DNNs were shown to suffer significant

reduction in the classification accuracy. The effectiveness of

the AML perturbations depends on the amount of information

the adversary has regarding the structure and training dataset

of the defender’s classifier. Accordingly, we studied different

attack scenarios with different levels of knowledge. In one

extreme, the attacker has full knowledge of the defender

(white-box attack). We observed that DNNs used for protocol

classification are vulnerable to these attacks even the attacker

has limited knowledge. Compared to traditional jamming,

where the attacker transmits only random noise, the proposed

FGSM based attack requires much less transmit power to

mislead the classifiers.
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