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Abstract—Wi-Fi networks are susceptible to aggressive be-
havior caused by selfish or malicious devices that reduce their
minimum contention window size (CWmin) to below the standard
CWmin. In this paper, we propose a scheme called Minimum Con-
tention Window Estimation (CWE) to detect aggressive stations
with low CWmin’s, where the AP estimates the CWmin value of all
stations transmitting uplink by monitoring their backoff values
over a period of time and keeping track of the idle time each
station spends during backoff. To correctly estimate each backoff
value, we present a cross-correlation based technique that uses
the frequency offset between the AP and each station to identify
stations involved in uplink collisions. The AP constructs empirical
distributions for the monitored backoff values and compares
them with a set of nominal PMF’s, created via Markov analysis
of the DCF protocol to estimate CWmin of various stations. After
detecting the aggressive stations, the AP can choose to stop
serving those stations. Simulation results show that the accuracy
of our collision detection technique is 96%, 94%, and 88% when
there are 3, 6, and 9 stations in the WLAN, respectively. For the
former WLAN settings, the estimation accuracy of CWE scheme
is 100%, 98.81%, and 96.3%, respectively.

I. INTRODUCTION

Wi-Fi end-users, also known as stations, demand fair al-
location of the channel airtime. The 802.11 MAC protocol
[1], known as the Distributed Coordination Function (DCF),
uses Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) with exponential backoff to provide fair channel
access in a distributed manner, provided that all stations com-
ply with the DCF protocol. Under DCF, a station that wants
to transmit must first sense the channel for a fixed duration,
called the DCF initial Inter-Frame Space (DIFS). If the channel
is sensed to be idle during the DIFS period, the station starts
its transmission; otherwise, the station defers its transmission
and waits for a random backoff period. The backoff period
consists of k idle slots, where k is randomly chosen from
{0, 1, ...,CW − 1}. Initially, CW is set to a default value
CWmin. After a collision, CWmin is doubled until it reaches the
maximum allowable contention window (CWmax). Generally, a
station that has consecutively collided for j times chooses its
k randomly from {0, 1, ...,min(2jCWmin,CWmax) − 1}. The
exponential increase in CW helps stations avoid collisions.
Following a successful transmission, a station resets its CW
to CWmin.
In a Wi-Fi system, aggressive behavior for channel access can
be attributed to malicious reasons to degrade the network’s
performance [2], [3], [4], [5] or it can be caused by selfish
stations that try to gain more access to channel airtime [6], [7],

[8], [9]. An example of malicious behavior is channel jamming
attacks [2], [10], which can be considered as a particular
type of Denial-of-service (DoS) attack [3], [11], [12]. In
addition to transmitting a high-power signal to disrupt other
users’ transmissions, a malicious station can also transmit fake
packets to prevent normal users from communicating [6]. In
contrast, a selfish station alters its protocol parameters to get
an unfair share of the channel airtime at the expense of other
well-behaving stations. For example, this station may reduce
the value of its SIFS or DIFS below the standard values. It may
choose a larger value of the remaining transmission duration
field in the MAC header to force other stations to back off for
longer periods. It may also lower its CWmin so that it captures
the channel more often than other stations. Although DCF
does an excellent job in ensuring fairness among devices and
reducing collisions, it is still vulnerable to aggressive stations
that do not abide by the standard protocol, hence harming the
performance of compliant stations.
To cast more light on this issue, consider a Wi-Fi network with
three backlogged stations, all following the DCF protocol with
access category A3 [1]. All stations are in each other’s sensing
range. Stations S1 and S2 select a standard CWmin of 16.
In Figure 1, we show the per-station throughput for different
values of S3’s CWmin. Whenever CWmin of S3 is less than
16, S1 and S2 have lower throughputs than S3. Our goal is to
enable the AP to detect aggressive stations by estimating their
CWmin and comparing them with a standard defined value.
The problem of detecting stations with low CWmin values
has been studied in the literature, as described in Section V.
However, prior works propose protocol modifications [8], [13],
[14], [15], assume backlogged stations [6], [16], [17], [18],
[19], or they do not consider the hidden terminal problem
[6], [18], [19]. In this paper, we consider the problem of
detecting aggressive stations with low CWmin setting, but with-
out imposing any computational overhead on any station. Our
approach is only implemented at the AP, but without altering
the DCF protocol. We make no assumptions about the traffic
type of any station. Further, we take into consideration the hid-
den terminal problem by introducing a new correlation-based
technique for collision detection. Our Minimum Contention
Window Estimation (CWE) has two phases, a monitoring phase
and an estimation phase. In the monitoring phase, the AP
monitors transmission activity of each station and notes down
the idle durations in which stations decrease their backoff
counters. The AP translates the monitored idle durations to
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Fig. 1: Per-station throughput for a network of three stations
vs. CWmin of S3 (CWmin = 16 for S1 and S2).

their representing backoff values and constructs an empirical
distribution (PMF) of these backoff values. The AP makes sure
that the periods of time each station is idle is due to its backoff
process and not caused by an empty transmission buffer. We
assume that all transmitted frames include the Queue Size
subfield of the QoS Control field of the MAC header [1]1.
Thus, the AP derives backoff values only for packets that
their prior transmission indicated a non-empty transmission
buffer, i.e. non-zero Queue Size value. Another important
aspect of correctly estimating the backoff value is for the
AP to detect collisions in the uplink and identify stations
that are involved in a collision. Most prior works related
to misbehavior detection do not consider the possibility of
hidden terminals, and if they do, they discard any observation
related to a collision. To determine the identities of colliding
stations, we present a correlation-based technique that uses
the frequency offset (FO) between each station and the AP.
For each station-AP pair, the technique calculates the cross-
correlation of a collided signal with the 802.11 preamble that
is modified to include the FO effects of the station-AP pair,
and looks for peaks in the cross-correlation that are higher
than a given threshold to identify colliding stations.
In the second phase of CWE, the constructed PMF’s are com-
pared with a set of nominal PMF’s, which are derived based
on Markov Chain (MC) analysis of the CSMA/CA protocol
[20] whereby all stations but one are compliant and the CWmin
of the non-compliant station is changed within a range to
construct different nominal PMF’s (one per CWmin value of
the non-compliant station). The observed and nominal PMF’s
are compared using Jensen-Shannon divergence measure. The
CWmin with a nominal PMF of least divergence measure
with the observed PMF is taken as the estimated CWmin
for the station under observation. Stations with estimated
CWmin values lower than the standard value are considered
as aggressors.

1IEEE 802.11 standard requires all QoS data packets to include the Queue
Size subfield in their MAC headers.

Simulation results with three, six, and nine stations show
that our collision detection technique achieves an accuracy of
96%, 94%, and 88%, respectively. The corresponding accuracy
of the CWmin-estimation algorithm is 100%, 98.81%, and
96.3%, respectively. The paper is organized as follows. In
Section II, we introduce CWE along with the backoff value
estimation algorithm. Our collision identification technique
and evaluation results are presented in Sections III and IV,
respectively. Finally, we survey related works and conclude
the paper in Sections V and VII, respectively.

II. MINIMUM CONTENTION WINDOW ESTIMATION (CWE)

Our system model includes a WLAN with N stations and an
AP. We denote the jth station by Sj and the standard CWmin by
Ws. To estimate CWmin of an arbitrary station, say Sj , the AP
tracks the backoff values selected by Sj over an observation
period T . The set of backoff values selected by Sj are denoted
by Kj = [Kj(1),Kj(2), ...,Kj(Lj)], where Kj(i) is the ith
backoff value selected by Sj during T and Lj is the total
number of selected backoff values by Sj . In Section II-A, we
explain the process of obtaining the vector Kj . For now, we
assume that Kj(i)’s have been estimated by the AP. The AP
constructs an empirical probability mass function (PMF) from
the vector Kj , as:

Hj(n) =

∑Lj

i=1 1(Kj(i) == n)

|Kj |
, n ∈ {0, 1, ..., 2MWs − 1}

(1)
where M is the maximum number of allowed retransmissions.
Consider an arbitrary station S ∈ {S1, ..., SN} with CWmin=
W . If S is compliant, then W is the standard value. Different
CWmin settings for S result in different backoff values, thus
different PMF’s. After each successful transmission, S samples
its backoff values from a uniform distribution U[0,W−1]. Be-
cause stations double their contention window after a collision,
S will select its backoff values from U[0,2W−1] after any
collision that follows a successful transmission. Considering
the possibility of collisions, the overall PMF of the backoff
values selected by S, denoted by H , depends on W and the
collision probability in the WLAN.
The AP maintains a set of nominal PMF’s, denoted by
P(N) = {P (N)

2 , P
(N)
3 , ..., P

(N)
Ws
}, where P

(N)
l is the PMF of

selected backoff values of a station with a CWmin= l in a
WLAN of N stations, where all other N − 1 stations have a
CWmin= Ws. To obtain W , the AP compares H with each
P

(N)
l for l ∈ {2, 3, ...,Ws}, the l with the nominal PMF

of P
(N)
l that has the least difference from H is considered

as the estimated CWmin for station S. If S does not collide
during its transmissions, then it will always randomly select a
backoff value k from the uniform distribution d0 = U[0,W−1].
On the other hand, if S is involved in j consecutive col-
lisions, it will randomly select k from dj = U[0,2jW−1].
Therefore, the overall PMF of backoff value selections of
a station with CWmin= W , i.e. P

(N)
W , is a composition of

d0, d1, ..., dM , where M is the maximum number of allowed
retransmissions. To derive P

(N)
W , we define a random variable



X that represents the backoff stage of S. X takes values from
{0, 1, ...,M}. For instance, X = j means that S has collided
j consecutive times and will randomly select its backoff value
from {0, 1, ..., 2jW − 1}. The overall distribution of k is the
weighted superposition of d0, d1, ..., dM :

P
(N)
W =

M∑
i=0

Pr[X = i]× di. (2)

To find Pr[X]’s, we need to find the collision probabilities for
when S selects a CWmin= W . In [16], authors obtain collision
and packet transmission probabilities for different CWmin
settings each station in the WLAN. Their analysis is based on
Bianchi’s MC modeling of the 802.11’s DCF protocol [20].
For this work we only need to obtain the former probabilities
for when all stations except one are compliant (CWmin= Ws).
This simplification does not degrade the performance of CWE;
instead, it further reduces the computational complexity of
CWE from O(NWs−1) to O(Ws − 1).
Bianchi developed a bidimensional MC for a WLAN with
N stations, where all stations have a CWmin= Ws, and
assumed that the collision probability is constant, denoted
by p. Let {s(t), b(t)} represent the state of the MC, where
s(t) ∈ {0, 1, ...,M} is a stochastic process that represents the
backoff stage of a station, and b(t) is a stochastic process
that represents the backoff counter for the station. At a stage
s(t) = i, i ∈ {0, 1, ...,M}, b(t) can take values from the set
{0, 1, ...,Wi− 1}, where Wi = 2iWs. The one step transition
probabilities are represented as:


Pr[i, k|i, k + 1] = 1 k ∈ {0, ...,Wi − 2} i ∈ {0, ...,M}
Pr[0, k|i, 0] = 1−p

Ws
k ∈ {0, ...,Ws − 1} i ∈ {0, ...,M}

Pr[i, k|i− 1, 0] = p
Wi

k ∈ {0, ...,Ws − 1} i ∈ {0, ...,M}
Pr[M,k|M, 0] = p

WM
k ∈ {0, ...,WM − 1},

(3)
where Pr[i, k|j, l] = Pr[s(t + 1) = i, b(t + 1) = k|s(t) =
j, b(t) = l]. Deriving the steady state probabilities, The
probability of a transmission in a randomly chosen time slot,
denoted by τ is:

τ =
2(1− 2p)

(1− 2p)(Ws + 1) + pWs(1− (2p)M )
. (4)

And the probability of a collision can be represented as:

p = 1− (1− τ)N−1. (5)

Equations 4 and 5 form two nonlinear equations with two
unknowns which can be solved numerically to obtain p and
τ . It is important to note that Equations 4 and 5 are only
valid when all the N stations have CWmin = Ws, which is
not the case in our system model, since an aggressor has a
lower CWmin value than the standard value. To calculate the
collision probability for S with CWmin= W , which is needed
to obtain the proper Pr[X]’s in Equation 2, we assume that
all N − 1 other stations have a CWmin= Ws. We denote the
transmission and collision probabilities for S by τ and p,

respectively. The transmission and collision probabilities for
the compliant stations (CWmin= Ws) are denoted by τ

′
and

p
′
, respectively. Following the analysis presented in [16] the

probabilities can be obtained by solving the following four
nonlinear equations:


τ = 2(1−2p)

(1−2p)(W+1)+pW (1−(2p)M )

p = 1− (1− τ
′
)N−1

τ
′
= 2(1−2p

′
)

(1−2p′ )(Ws+1)+p′Ws(1−(2p′ )M )

p
′
= 1− (1− τ)(1− τ

′
)N−2.

(6)

In Equation 2, Pr[X]’s are needed to be calculated to con-
struct nominal PMF’s (P (N)

W ’s). Pr[X = i] can be interpreted
as the steady state probability of being in a backoff stage i
(Pr[s(t) = i]), and it can be calculated as:

Pr[X = i] =


1− p i = 0

(1− p)pi i = 1, ...,M − 1

pM i = M

(7)

In Figures 2(a) and 2(b), we show the PMF of backoff value
selections of S when W = 2, N = 10, and M = 7,
where S does not and does double its contention window
in case of collisions, respectively. To obtain Figure 2(b), we
solve Equation 6 and calculate p = 0.612. To compare the
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Fig. 2: Backoff value distribution of S with W = 2, M = 7,
and N = 10 where S (a) does not and (b) does double its
contention window in the case of collisions.

constructed empirical PMF (i.e., H) with each P
(N)
l ∈ P(N)

for l ∈ {2, 3, ...,Ws}, we use Jensen-Shannon divergence [21],
which is based on Shannon’s concept of uncertainty (entropy),
to measure the similarity between two probability distribu-
tions. The Jensen-Shannon divergence measure between two
PMF’s H and P is denoted by J(H,P ), and it is calculated
as:

J(H,P ) =
1

2

[ |H|∑
i=1

P (i)ln

(
2P (i)

P (i) +H(i)

)
+

|H|∑
i=1

H(i)ln

(
2H(i)

P (i) +H(i)

)]
,

(8)



where P (i) and H(i) are the ith elements of P and H ,
respectively, and |.| is the cardinality operator. The estimated
CWmin value for Sj , i.e. Wj , can be estimated as:

Wj = argmin
l∈{2,3,...,Ws}

J(Hj , P
(N)
l ). (9)

A. Backoff Counter Estimation

To estimate backoff values selected by S for each channel
access attempt, the AP monitors S’s transmission activity
and notes down the idle durations in which S decreased its
backoff counter. Afterwards, the monitored idle durations are
translated to backoff values which caused those specific idle
periods. During the monitoring period, the AP needs to be
accurate in sensing S’s transmission, hence it needs to detect
any uplink collisions and identify stations involved in them.
We tackle the former by introducing Collision Identification
Technique (CIT) that helps identify all stations involved in an
uplink collision. Using CIT, the AP will be able to monitor
the channel and associate each channel busy time to a subset
of stations. We explain CIT in Section III. Also, the AP
needs to make sure that the duration S spent in an idle states
was due to decreasing its backoff counter and not caused
by an empty transmission buffer. The former is always true
when the WLAN is in a saturated traffic scenario, where
stations are backlogged with packets to transmit. To tackle
the stated challenge, the AP will use the information that QoS
packets must include in their QoS Data Field of their MAC
headers, namely the Queue Size subfield [1]. The Queue
Size subfield indicates the number of bytes that are present
in the queue of the transmitter at the time of transmission.
Therefore, a none-zero Queue Size value will suggest that
the transmitter entered backoff stage immediately after that
packet transmission, hence all sensed idle durations were due
to decreasing the backoff counter. Also, we know that a packet
that experiences collision will be set for retransmission for
at most an M number of retransmissions, this means that
the Queue Size of packets that are inside a collision will
be considered as nonzero for backoff value estimation, too.
Nonetheless, there is a low possibility that a packet might fail
to successfully transmit for m times and get dropped. In this
case, if there are no packets left to transmit at the buffer of S,
on average, our algorithm will mistakenly measure the backoff
value to be more than 2m+1−1

2 Ws. For this case, the AP will
disregard that backoff value estimation.
We explain how each backoff value is estimated during two
successive packet transmissions of S. We denote the jth
packet transmission by S during T by Pacj . Also, we define
COTj+1(i) to be the ith duration of time that the channel
becomes occupied by stations other than S during the con-
tention period for transmitting the (j+1)th packet of S. Figure
3 shows an example of observations seen during two packet
transmissions, i.e. Pacj and Pacj+1. To find the value of
K(j+1) (i.e., the (j+1)th backoff value selected by S during
T ), the AP has to mark the time instant of the end of Pacj’s
transmission, denoted by tf (j), and the time instant Pacj+1

started getting transmitted, denoted by ts(j + 1). We assume

Pacj Pacj+1
time (sec)

: packet transmission by S :Channel Occupied by Others ( )COT

COT1 COT2 COTq

(j)tf (j + 1)ts

Fig. 3: An example of gathering observations for estimating
the (j + 1)th backoff value selected by S.

that Pacj has a non-zero value for its Queue Size subfield;
otherwise, the AP would have disregarded the estimation of
K(j + 1). It is important to note that either Pacj or Pacj+1

may be involved in collisions; however, using CIT the AP
will be able to determine the start of packet transmissions by
different stations in a collision, and by assuming fixed packet
sizes, the AP can estimate the end of a packet transmission
in a collision, too. Therefore, our backoff estimation example
holds for the case of collisions, too. The value of K(j + 1)
can be calculated as:

K(j + 1) =
ts(j + 1)− tf (j)−

∑q
i=1 COTi − q × TDIFS

TMAC
,

(10)
where TMAC and TDIFS are the MAC time slot and the
DIFS period values, respectively, and q is the total number
of times the channel was occupied by other stations during T .
Algorithm 1 we explains how to estimate backoff values for
S. The algorithm can be configured to obtain backoff value
selections for all stations in the WLAN. The output of the
algorithm, i.e. vector K, will be used by CWE to estimate the
CWmin of S.

III. COLLISION DETECTION & IDENTIFICATION
TECHNIQUE (CIT)

In [22], authors propose an algorithm to decode collided
packets. For their algorithm to work, the number of distinct
collisions (different overlapping combinations) that are needed
to be gathered is the same as the number of colliding stations.
Since, our backoff estimation algorithm only needs the ID’s
of colliding stations, we develop Collision Identification Tech-
nique (CIT) in which a single collision is sufficient to identify
all colliding stations without needing to decode packets. CIT
uses wireless channel and hardware characteristics of each
station-AP pair to identify stations involved in any collisions
by following a correlation-based technique. Before going
through details of CIT, we briefly present some background on
digital communication and some physical phenomenons that
affect signals transmitted over the wireless channel, namely,
frequency offset, channel attenuation and channel phase shift.

A. Digital Communications

Packets are consisted of bits, for these bits to get transmitted
over the wireless channel, they have to be modulated into com-
plex stream of numbers. For example, the BPSK modulation
scheme converts a bit of value 0 and 1 into complex symbols



Algorithm 1 Backoff Estimation for S

1: Input T : Monitoring period ;
Variables: q ← 0, idle← 0, Q← 1;
Output: K;

2: while current time < T do
3: Monitor the channel until it gets occupied
4: idle← idle+ channel idle duration;
5: if correct packet reception then
6: if transmitter’s MAC address match S’s MAC ad-

dress then
7: if Q has a nonezero value then
8: add idle−q×TDIFS

TMAC
to K;

9: idle, q ← 0;
10: end if
11: Q← Queue Size subfield value;
12: else
13: q ← q + 1;
14: end if
15: else
16: perform CIT to identify colliders
17: if S is a collider then
18: add idle−q×TDIFS

TMAC
to K;

19: idle, q ← 0;
20: else
21: q ← q + 1;
22: end if
23: end if
24: end while

ejπ = −1 and ej0 = 1, respectively. The transmitter generates
symbols each Ts seconds. We denote the nth symbol generated
by the transmitter by x(n). Considering there is only one
transmitter, we denote the nth symbol received by a receiver
with a sampling rate of 1

Ts
by y(n), which has the following

relation with x(n):

y(n) = Hx(n) +N (n), (11)

where H = Mejϕ is a complex number with a magnitude of
M and an angle of ϕ, modeling the channel attenuation and
phase shift effects, respectively. Also, N models an AWGN
channel. We consider the AP to be the receiver in our system
model (uplink transmissions), which serves N number of
stations. Therefore, Equation 11 can be generalized as follows:

y(n) =

N∑
i=1

Hixi(n− ηi)u(n− ηi) +N (n), (12)

where Hi represents the channel between Si and the AP, and
xi(n) represents the nth symbol transmitted by Si, u(n) is the
unit step function, and ηi is the index of the received symbol
at the AP where Si starts transmitting.
For the AP to correctly receive transmitted symbols of Si, it
has to compensate for frequency offset (FO), sampling offset,
inter-symbol interference, and channel equalization. However,
for the purpose of collision detection we only need to explain

the effects of FO, channel attenuation, and channel phase shift
(PS) on transmitted symbols.
FO is the absolute difference of transmitter and receiver
oscillators’ frequencies that are supposed to be centered as the
exact same frequency. The FO between a pair of transmitter-
receiver results in a linear phase shift in received symbols
that increases over time. The receiver usually estimates FO
and compensates for it. As for PS, i.e. ejϕi in Equation 12,
the phase of all symbols transmitted by Si is shifted by a
value of ϕi. The AP should compensate for the channel phase
shift effect to correctly detect collisions. Typically, receivers
estimate the channel response and compensate for the channel
effects as they do for FO effects by using the 802.11 preamble
[1]. Equation 12 can be further generalized to account for
frequency offsets between AP and its stations as follows:

y(n) =

N∑
i=1

Hixi(n− ηi)e
j2π(n−ηi)δf (i)Tsu(n− ηi) +N (n),

(13)
where δf (i) is the frequency offset between AP and Si.
CIT relies on studying the architecture of the 802.11 legacy
preamble. Standardized preambles are designed to satisfy
certain properties, including high FO estimation range, good
frame detection accuracy, low dynamic range and low peak-
to-average power ratio (PAPR) [23]. Every PHY-layer frame
starts with a preamble, which begins with two essential fields,
short training field (STF) and long training field (LTF). Figure
4 shows the legacy preamble where the sampling frequency
is 20 Msps. The STF contains ten identical short training
sequences (STS’s), which represent ten replicas of a particular
periodic signal with period λSTF = 0.8µsec. The STF is
used for coerced FO estimation and frame detection [24].
The LTF consists of two long training sequences (LTS’s),
which represent two cycles of another known periodic signal
with period ∆LTF = 4∆STF , plus a 1.6 µsec cyclic
prefix. The LTF is used for channel estimation and further FO
estimation. The legacy preamble is included in all the 802.11
enhancements. This is for the backward compatibility of the
newer amendments with the legacy versions. For CIT to be
applicable for all 802.11 versions, we will consider the legacy
preamble to develop our algorithm, and refer to the legacy
preamble as the “preamble”, throughout the paper.

B. Collision Identification Technique (CIT)

If the AP receives a signal y that it fails to correctly
decode, it will initiate CIT. The heart of our collision detection
technique is to leverage the fact that the 802.11 packets
start with a known set of samples (i.e., 802.11 preamble).
CIT uses this fact and calculates the cross-correlation of the
known preamble, which is modified to incorporate the FO and
channel PS effects, with the collided signal, and looks for
peaks in this cross-correlation that exceed a detection thresh-
old. Equation 13 shows that FO and PS effects change the
phase of the transmitted symbols, hence the cross-correlation
might not peak where the known preamble overlaps with
the start of a Wi-Fi transmission. We overcome the former
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Fig. 4: Legacy preamble of an 802.11 packet.

challenge by requiring the AP to keep the latest FO and
PS estimations of each successful transmission in the vectors
δf = [δf (1), δf (2), ..., δf (N)] and ϕ = [ϕ(1), ..., ϕ(N)],
respectively, where δf (i) and ϕ(i) are the latest estimated FO
and PS between station Si and the AP, respectively. Upon
receiving a collided signal y, the AP first, modifies the known
preamble by incorporating the effects of FO and PS on the
known preamble, then it computes the cross-correlation with
y. The modified preamble is denoted by Pi and obtained as:

Pi(n) = ejϕ(i)ej2πnδf (i)TsP (n) n = 1, .., L, (14)

where P is the original preamble and L is its length. The
cross-correlation between Pi and y is denoted by Γi and can
be calculated as:
(i) 0 ≤ m ≤ |y|:

Γi(m) = ∣∣∣∑L
n=1 P

∗
i (n)y(n+m)

∣∣∣√∑L
n=1 P

∗
i (n)Pi(n)

√∑L
n=1 y

∗(n+m)y(n+m)
(15)

(ii) m < 0 or m > |y|:

Γi(m) = 0, (16)

where “∗” is the complex conjugate operator. Also we zero-
pad y to gather cross-correlation results for |y| − L < m <
|y|. In Equation 15, the two factors in the denominator are
normalizing the value of Γi for it to be in the range [0, 1]. To
keep track of the highest cross-correlation values over all Γi’s
for each received symbol, m ∈ {0, 1, ..., |y|}), the AP builds
a composite cross-correlation vector Γ as:

Γ(m) = max(Γ1(m), ...,ΓN (m)),m ∈ {0, 1, ..., |y|}. (17)

Then, each m that has a Γ(m) > thc will be assigned to a
station to be identified as a collider. In our analysis of 802.11
packets we have seen that if a station, say Si, is a collider then
Γi will have comparable cross-correlation values for values of
m that are surrounding ηi, i.e., the index of the first received
symbol transmitted by Si. This is due to preamble’s periodic
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Fig. 5: Auto-correlation magnitude value of the 802.11 pream-
ble.

nature. In Figure 5, we show the auto-correlation of the 802.11
preamble while having a sampling rate of 20 Msps. We can see
that several high-value peaks reside in the neighborhood of the
start of the preamble. And from Equation 17, we can see that
only the highest values of cross-correlation will be considered
for each index of Γ. So, to prevent the false detection of
stations as colliders and falsely not detecting colliding stations,
we need to eliminate the surrounding cross-correlation peak
values around highest peak values. We realize the former by
defining a filtering window of size ζ that assigns a value of
zero for cross-correlation values of m’s that are within the ζ
range of the highest cross-correlation values. CIT’s filtering
approach proceeds dynamically by first zeroing out the cross-
correlation values of indices surrounding the index of highest
cross-correlation value, then updating Γj’s, and doing the
former for the second highest peak, and proceeding similarly
for all the remaining cross-correlation values higher than thc.
We are assuming that in a collision, packets sent by different
stations are apart from one another at least by a MAC time slot
TMAC . Therefore, ζ = TMAC

Ts
is a reasonable choice. After

filtering, the AP constructs the composite cross-correlation
vector Γ by the updated Γi’s using Equation 17, once more.
Then each value in Γ that is higher than a detection threshold
thc is assigned to the station with that specific cross-corelation
value at that specific received symbol index. Each station with
an assigned peak value will be considered as a participant
transmitter for the received signal y. After assigning all the
peak values, CIT will construct a vector, ID, that will consist
of the IDs of all the colliding stations during y.

To better understand the process of CIT, we provide a
simulation example using MATLAB’s Wireless Waveform
Generator [25]. Consider a WLAN with six stations and one
AP, where S1 and S2 are hidden terminals. S1 starts its
transmission and the AP senses the channel to busy and start
receiving the transmitting signal, during S1’s transmission,
all stations except S2 freeze their backoff counter. After the
AP receives about 2000 samples, with a sampling rate of



20 Msps, S2 starts its transmission, while the AP continues
receiving samples but it will not be able to successfully decode
any packets. So it initiates CIT which starts by calculating
the cross-correlation values for each station and adopting a
filtering of ζ = TMAC

Ts
= 9µs

1
20Msps

= 180. In Figure 6, we
present the magnitude of the cross-correlation values of the
modified preambles with y for 6 stations, where each station
is 5 meters away from the AP. We use itu-r m.2135-1 channel
path loss model with SNR = 10 dB. The center frequency and
bandwidth for both transmission and reception are 2.4 GHz
and 20 MHz, respectively. We randomly select the elements of
the vectors δf and ϕ from the intervals [−125, 125] KHz, and
[0, 2π], respectively. We set ζ = 180 and thc = 0.6. It can be
seen that all Γi’s have peak values at m indices that correspond
to the start of a Wi-Fi transmission. However, the highest
cross-correlation value is for the Γi that is correctly modifying
the transmitted preamble (incorporating the right values for
FS and PS in Equation 14). Looking at Figure 6, Γ1 has the
largest cross-correlation value at m = 0 (Γ1(0) = 0.9483),
hence Γ(0) = Γ1(0). Following the same procedure and
constructing Γ for the remaining m values, it can be seen
that Γ will have only one other value larger than thc, which
is at m = 2000 (Γ(2000) = 0.6695). Γ(2000) is associated
to S2, since Γ2(2000) = Γ(2000) > thc. Since there are
no other Γ(m)’s larger than thc, CIT will terminate with
ID = {S1, S2}, with S1 and S2 having transmission start
indices of m = 0 and m = 2000 during y, respectively. .

IV. EVALUATIONS

A. Colision Identification technique

To obtain the accuracy of CIT, we conduct simulations,
using MATLAB’s WLAN toolbox, for three settings of a
WLAN with N = 3, 6, and 9. In all the settings, stations
S1 and S2 are hidden terminals. We set the center frequency
and bandwidth for transmission of all stations to 2.4 GHz
and 20 MHz, respectively. Our algorithm’s performance is
dependent on thc and ζ. Therefore, we vary thc from 0 to
1 and set ζ = 180. For each thc value, we run 100 different
simulations, with different random seeds, each including 1000
different collision combinations of S1 and S2. We derive the
accuracy as:

Accuracy =
Number of correct detections
Total number of detections

× 100%, (18)

where a correct detection translates into correct identification
of all colliders in y. We randomly select the PS values of
all stations to be in the range [0, 2π]. Also the FO values
of all stations is randomly selected from [−125, 125] kHz
for each simulation run, which is the acceptable FO for
2.4 GHz center frequency [1]. It is important to note that
as the FO values of stations get closer to each other the
possibility of a miss-detection increases. To fully illustrate the
effect of the former, we include a new parameter ∆ into our
evaluations, which effects the random selection of FO values.
The value of ∆ indicates that for any element of δf , e.g.

δf (i), the only element of δf residing in the frequency range
[δf (i)− ∆

100δf (i), δf (i) +
∆
100δf (i)] is δf (i).

In Figures 7(a), 7(b), and 7(c), we show CIT’s accuracy vs.
thc for N = 3, 6, and 9, respectively. It can be seen that
for thc = 0.5, CIT can achieve 96%, 94%, 88% collision
identification accuracy for when we have N = 3, 6, and 9,
respectively.

B. CWmin Estimation

Our simulation evaluations are based on a C++-based
discrete-event simulator called CSIM [26]. CSIM includes
functions and classes for generating and synchronizing
process-oriented events. We implement the DCF as detailed
in 802.11 ac standard, including all timing requirements. An
indoor scenario is considered, where a number of Wi-Fi
devices are uniformly distributed in a square area of length 80
meters. In this section we present CWmin estimation (CWE)
accuracy results for WLAN’s where N = 3, 6, and 9. In all
our simulation settings, the CWmin value of all stations are
randomly selected from {2, 3, ..., 16}. We conduct 93, 70, and
51 simulation setups for N = 3, 6, and 9, respectively, which
results into 279, 420, and 459 total estimations in total. In
Figures 8(a) and 8(b) , we show the accuracy performance of
CWE vs. the monitoring period (i.e., T ) for when we have
a collision detection accuracy of 100% and for when we use
CIT, respectively. It can be seen that by using CIT with T = 60
sec we can achieve 100%, 98.81%, and 96.3% CWE accuracy,
for when we have N = 3, 6, and 9, respectively.

V. RELATED WORKS

In [16], Rong et al.’s misbehavior detection scheme is based
on the sequential hypothesis testing. Instead of monitoring
the backoff values selected by stations they first developed
analytical models for packet inter-arrival time distribution
from each station in the network, where multiple cheating
stations coexist. Using the characteristics of this probability
distribution, they developed an algorithm to detect cheating
stations based on the throughput degradations observed at nor-
mal stations. However, they only considered saturated traffic
and they assumed that all stations are implementing RTS/CTS
exchange. To detect misbehavior in 802.11 WLAN’s, Tang et
al. [17] assumed that the number of aggressors in the WLAN is
known and they derived Markov chains for different settings
of aggressors and well-behaved stations, then they analyzed
the successful transmission rate of the tagged station to see
whether it will reach beyond the rate of a standard station’s
to be considered as an aggressor. The authors assumed that
stations are saturated with traffic. Also, they only assumed
one aggressor and considered stations to be in each others
sensing ranges, hence eliminating the chance of collisions and
hidden terminals. The authors in [6], proposed mechanisms
to detect and penalize aggressors that choose a low CWmin.
The detection is applied on multiple observations of backoff
values and then compared to a supposed average backoff value
to determine whether it is less than the supposed value, if so,
then the station is considered as an aggressor. Each station



Fig. 6: The cross-correlation of the modified preambles with the collided signal, y for (a)S1, (b)S2, (c) S3, (d) S4, (e) S5, and
(f) S6.
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Fig. 7: Accuracy of CIT vs. the collision detection threshold
(i.e., thc) for (a) N = 3, (b) N = 6, and (c) N = 9.

is observed by all its one hop neighbors and all stations are
considered to have backlogged traffic. The authors claimed that
the hidden terminal problem is solved by taking the majority
vote for deciding whether a station is aggressive. For the AP
to detect stations with low CWmin values, Raya et al. [18] pro-
posed that the AP should first gather backoff value traces from
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Fig. 8: CWE accuracy vs. the monitoring period, T , for N = 3,
6, and 9, when (a) the collision detection accuracy is 100%
and (b) we use CIT for collision detection.

each station and then compare the average value of selected
backoff values with a nominal average backoff value which is
used by a standard compliant station, if the measured average
value of the backoff value is less than the nominal average
value, then the stations will be considered as aggressors. The
authors assumed backlogged traffic for all stations and did not
take collisions into account. Machine learning has also found
its way in various wireless communication applications [19],
[27], [28]. In [19], the authors tackle the aggressive behavior
of stations in the WLAN by equipping the standard stations
with a machine learning module, specifically random forests,
to adapt their CWmin to get their fair share of channel airtime.
Their framework only enhances the performance of stations
that utilize their module, thus the performance of standard-
compliant stations that do not use their adaptation algorithm
might decrease. Also, for collision detection, the work closest



to ours is [22], which we introduced in section III. Zhao
et al [29] have also developed an algorithm to resolve RTS
collisions, by analyzing the payload of the RTS as a vector and
obtaining its distribution, and reformulating the RTS resolution
as a sparse-recovery problem.

VI. CONCLUSIONS

In this work, we showed the unfairness that will be created
when aggressive stations with low CWmin exist in the WLAN.
We proposed a novel solution for the AP to detect aggressors
in the WLAN by estimating their CWmin’s, i.e., CWE. Using
CWE, the AP needed to monitor the backoff values of its
stations for CWmin estimation, which required the AP to keep
track of the idle time each station spent backing off. The
former also needed the AP to be able identify colliding stations
in an 802.11 uplink collision, which we tried to resolve by
introducing our collision detection and identification technique
(CIT). Overall, our collision detection algorithm obtains accu-
racies of 96%, 94%, and 88%, our CWmin-estimation algorithm
has estimation accuracies of 100%, 98.81%, and 96.3%, when
we have 3, 6, and 9 stations in the WLAN, respectively.
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