Cluster-based Control Channel Allocation in Opportunistic Cognitive Radio Networks

Sisi Liu, Student Member, IEEE, Loukas Lazos, Member, IEEE, and Marwan Krunz, Fellow, IEEE
Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721
E-mail:\{sisimm, llazos, krunz\}@ece.arizona.edu

Appendix 1

Lemma 1: Let a vertex $x \in \mathcal{A}$ of a bipartite graph $\mathcal{G}(\mathcal{A} \cup \mathcal{B}, \mathcal{E})$ be connected to all vertices in the set \mathcal{B}. Then, x belongs to the maximum-edge biclique $Q^{*}\left(X^{*}, Y^{*}\right)$.

Proof: We prove Lemma 1 by contradiction. Let $x \in \mathcal{A}$ be a vertex of a bipartite graph $\mathcal{G}(\mathcal{A} \cup \mathcal{B}, \mathcal{E})$ such that there exists an edge $(x, y), \forall y \in \mathcal{B}$. Let $Q^{*}\left(X^{*}, Y^{*}\right)$ be the maximum edge biclique, and assume that $x \notin X^{*}$. By adding x to the graph Q^{*}, we obtain graph $Q^{\prime}\left(X^{*} \bigcup x, Y^{*}\right)$, which is still a biclique since x is connected to every vertex in \mathcal{B}, and hence, every vertex in Y^{*}. The number of edges of the biclique Q^{\prime} is $\left(\left|X^{*}\right|+1\right) \times\left|Y^{*}\right|>$ $\left|X^{*}\right| \times\left|Y^{*}\right|$. This contradicts our initial assumption that Q^{*} is a maximum-edge biclique. The same result can be shown for any vertex $y \in \mathcal{B}$ that is connected to all vertices in \mathcal{A}.

Appendix 2

Lemma 2: Any $x \in A_{i}$ with $C_{i} \subseteq C_{x}$ will be included in the biclique $Q_{i}^{*}\left(X_{i}^{*}, Y_{i}^{*}\right)$ computed by Algorithm 1.

Proof: Let $x \in \mathcal{A}_{i}$ be a vertex of a bipartite graph $\mathcal{G}_{i}\left(\mathcal{A}_{i} \cup\right.$ $\left.\mathcal{B}_{i}, \mathcal{E}_{i}\right)$. Suppose that there exists an edge $(x, y) \forall y \in \mathcal{B}_{i}$. Assume that the maximum edge biclique $Q_{i}^{*}\left(X_{i}^{*}, Y_{i}^{*}\right)$ is computed during the j th iteration of Algorithm 1. Then any CR added to X_{i} in the previous iterations will be part of Q_{i}^{*}. Hence, it is sufficient to show that x will be added to X_{i}^{*} before or during the j th iteration. If $Y_{i}^{*}=C_{i}$ then $x \in X_{i}^{*}$, since the addition of x increases the number of edges of Q_{i}^{*} by $\left|C_{i}\right|$. If $Y_{i}^{*} \subset C_{i}$, there exists some $x^{\prime} \in X_{i}^{*}$ such that $C_{x^{\prime}} \bigcap C_{i} \subset C_{i}$. Since on initialization $Y_{i}=C_{i}$ and $C_{x} \bigcap C_{i}=C_{i}$ according to line 4 of Algorithm $1, x$ will be added to X_{i}^{*} before x^{\prime}. Hence, Q_{i}^{*} must contain x.

Appendix 3

Lemma 3: If $\mathrm{CR}_{i} \in X_{j}^{2}$ and $\mathrm{CR}_{j} \in X_{i}^{2}$, then $Q_{i}^{2}=Q_{j}^{2}$.
Proof: After step $1, \mathrm{CR}_{i}$ and CR_{j} will have received the updates of their neighbors. Suppose that CR_{i} selects $Q_{i}^{2}=Q_{k}^{1}$, where CR_{k} is a neighbor of CR_{i}, or is CR_{i} itself. Given that $\mathrm{CR}_{j} \in X_{i}^{2}$, then $\mathrm{CR}_{j} \in X_{k}^{1}$, and hence, CR_{j} is a neighbor of CR_{k}. Following a similar argument, we can show that for the decision $Q_{j}^{2}=Q_{m}^{1}$ to be made, the selected Q_{j}^{2} must be constructed by a node $\mathrm{CR}_{m} \in \mathrm{NB}_{i}$, given that $\mathrm{CR}_{i} \in X_{j}^{2}$. Because CR_{k} and CR_{m} are neighbors of both CR_{i} and CR_{j},
CR_{i} and CR_{j} must have received both Q_{k}^{1} and Q_{m}^{1} in step 1, before updating their own bicliques. Due to the imposed total ordering, CR_{i} concludes that $Q_{m}^{1}<Q_{k}^{1}$, and CR_{j} concludes that $Q_{k}^{1}<Q_{m}^{1}$. This is true only if $k=m$.

Appendix 4

Lemma 4: Suppose that for three nodes $\mathrm{CR}_{i}, \mathrm{CR}_{j}$, and CR_{k}, we have $\mathrm{CR}_{k} \in X_{i}^{2}$ and $\mathrm{CR}_{k} \in X_{j}^{2}$ with $Q_{i}^{2}=Q_{j}^{2}$. Then if $\mathrm{CR}_{i} \notin X_{k}^{2}$, it must also hold that $\mathrm{CR}_{j} \notin X_{k}^{2}$.

Proof: Lemma 4 can be proved by contradiction. Assume that $\mathrm{CR}_{j} \in X_{k}^{2}$. Because $\mathrm{CR}_{j} \in X_{k}^{2}$ and $\mathrm{CR}_{k} \in X_{j}^{2}$, then $Q_{j}^{2}=$ Q_{k}^{2} by Lemma 3. However, by assumption we also have $Q_{i}^{2}=Q_{j}^{2}$, and hence $Q_{i}^{2}=Q_{k}^{2}$. Since $\mathrm{CR}_{k} \in X_{i}^{2}$ and $Q_{i}^{2}=Q_{k}^{2}$, this also means that $\mathrm{CR}_{i} \in X_{k}^{2}$, which leads to a contradiction. Hence, $\mathrm{CR}_{j} \notin X_{k}^{2}$.

APPENDIX 5

Theorem 1: For any $\mathrm{CR}_{j} \in X_{i}^{3}, Q_{i}^{3}=Q_{j}^{3}$.
Proof: Q_{i}^{3} is a pruned version of Q_{i}^{2}, i.e., $X_{i}^{3} \subseteq X_{i}^{2}$. Therefore, any $\mathrm{CR}_{j} \in X_{i}^{3}$ must also be a member of X_{i}^{2}. Also for any $\mathrm{CR}_{j} \in X_{i}^{3}$, we have $\mathrm{CR}_{i} \in X_{j}^{2}$, since otherwise, CR_{j} would have been removed from X_{i}^{3}. Using Lemma 3, it follows that $Q_{i}^{2}=Q_{j}^{2}$. Now consider any $\mathrm{CR}_{k} \in X_{i}^{2}$ that is removed from X_{i}^{2} in step 3, i.e., $\mathrm{CR}_{k} \notin X_{i}^{3}$. This happens only if $\mathrm{CR}_{i} \notin X_{k}^{2}$, which also means (by Lemma 2) that $\mathrm{CR}_{j} \notin X_{k}^{2}$, and CR_{k} will also be removed from X_{j}^{2} in step 3. Hence, every CR that is removed from X_{i}^{2} will also be removed from X_{j}^{2}, making $X_{i}^{3}=X_{j}^{3}$. For two bicliques with the same membership, it follows that $Y_{i}^{3}=Y_{j}^{3}$, and hence $Q_{i}^{3}=Q_{j}^{3}$.

APPENDIX 6

Lemma 5: In every cluster produced by SOC, at least one CR is one-hop away from all other CRs of that cluster.

Proof: Consider a cluster that is represented by the biclique $Q_{i}^{3}\left(X_{i}^{3}, Y_{i}^{3}\right)$. According to Theorem 1, all $\mathrm{CR}_{j} \in X_{i}^{3}$ converge to the same cluster membership in step 3 . For any CR_{i} and $\mathrm{CR}_{j} \in X_{i}^{3}$, it holds that $\mathrm{CR}_{i} \in X_{j}^{2}$ and $\mathrm{CR}_{j} \in X_{i}^{2}$. Otherwise, CR_{i} would have removed CR_{j} from X_{i}^{2} in step 2, and similarly CR_{j} would have removed CR_{i} from X_{j}^{2}. According to Lemma

3, if $\mathrm{CR}_{i} \in X_{j}^{2}$ and $\mathrm{CR}_{j} \in X_{i}^{2}$, it holds that $Q_{i}^{2}=Q_{j}^{2}$. This means that all members of a cluster formed after step 3 must have computed the same biclique in step 2 . However, the biclique Q_{i}^{2} of any CR in step 2 is the best biclique Q_{j}^{1} with $\mathrm{CR}_{j} \in \mathrm{NB}_{i}$ or $j=i$. Hence, the only way that all CRs of a cluster would choose Q_{j}^{1} as the best biclique in step 2 is if CR_{j} is a neighbor to all. Therefore, at least one CR is one hop away from all CRs of the cluster.

