Cluster-based Control Channel Allocation in Opportunistic Cognitive Radio Networks

Sisi Liu, Student Member, IEEE, Loukas Lazos, Member, IEEE, and Marwan Krunz, Fellow, IEEE Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721 E-mail:{sisimm, llazos, krunz}@ece.arizona.edu

APPENDIX 1

Lemma 1: Let a vertex $x \in A$ of a bipartite graph $\mathcal{G}(A \cup \mathcal{B}, \mathcal{E})$ be connected to all vertices in the set \mathcal{B} . Then, x belongs to the maximum-edge biclique $Q^*(X^*, Y^*)$.

Proof: We prove Lemma 1 by contradiction. Let $x \in A$ be a vertex of a bipartite graph $\mathcal{G}(A \cup \mathcal{B}, \mathcal{E})$ such that there exists an edge (x, y), $\forall y \in \mathcal{B}$. Let $Q^*(X^*, Y^*)$ be the maximum edge biclique, and assume that $x \notin X^*$. By adding x to the graph Q^* , we obtain graph $Q'(X^* \bigcup x, Y^*)$, which is still a biclique since xis connected to every vertex in \mathcal{B} , and hence, every vertex in Y^* . The number of edges of the biclique Q' is $(|X^*| + 1) \times |Y^*| >$ $|X^*| \times |Y^*|$. This contradicts our initial assumption that Q^* is a maximum-edge biclique. The same result can be shown for any vertex $y \in \mathcal{B}$ that is connected to all vertices in \mathcal{A} .

APPENDIX 2

Lemma 2: Any $x \in A_i$ with $C_i \subseteq C_x$ will be included in the biclique $Q_i^*(X_i^*, Y_i^*)$ computed by Algorithm 1.

Proof: Let $x \in A_i$ be a vertex of a bipartite graph $\mathcal{G}_i(A_i \cup B_i, \mathcal{E}_i)$. Suppose that there exists an edge $(x, y) \ \forall y \in B_i$. Assume that the maximum edge biclique $Q_i^*(X_i^*, Y_i^*)$ is computed during the *j*th iteration of Algorithm 1. Then any CR added to X_i in the previous iterations will be part of Q_i^* . Hence, it is sufficient to show that *x* will be added to X_i^* before or during the *j*th iteration. If $Y_i^* = C_i$ then $x \in X_i^*$, since the addition of *x* increases the number of edges of Q_i^* by $|C_i|$. If $Y_i^* \subset C_i$, there exists some $x' \in X_i^*$ such that $C_{x'} \cap C_i \subset C_i$. Since on initialization $Y_i = C_i$ and $C_x \cap C_i = C_i$ according to line 4 of Algorithm 1, *x* will be added to X_i^* before x'. Hence, Q_i^* must contain *x*.

APPENDIX 3

Lemma 3: If $CR_i \in X_i^2$ and $CR_j \in X_i^2$, then $Q_i^2 = Q_i^2$.

Proof: After step 1, CR_i and CR_j will have received the updates of their neighbors. Suppose that CR_i selects $Q_i^2 = Q_k^1$, where CR_k is a neighbor of CR_i , or is CR_i itself. Given that $CR_j \in X_i^2$, then $CR_j \in X_k^1$, and hence, CR_j is a neighbor of CR_k . Following a similar argument, we can show that for the decision $Q_j^2 = Q_m^1$ to be made, the selected Q_j^2 must be constructed by a node $CR_m \in NB_i$, given that $CR_i \in X_j^2$. Because CR_k and CR_m are neighbors of both CR_i and CR_j ,

 CR_i and CR_j must have received both Q_k^1 and Q_m^1 in step 1, before updating their own bicliques. Due to the imposed total ordering, CR_i concludes that $Q_m^1 < Q_k^1$, and CR_j concludes that $Q_k^1 < Q_m^1$. This is true only if k = m.

APPENDIX 4

Lemma 4: Suppose that for three nodes CR_i , CR_j , and CR_k , we have $CR_k \in X_i^2$ and $CR_k \in X_j^2$ with $Q_i^2 = Q_j^2$. Then if $CR_i \notin X_k^2$, it must also hold that $CR_j \notin X_k^2$.

Proof: Lemma 4 can be proved by contradiction. Assume that $CR_j \in X_k^2$. Because $CR_j \in X_k^2$ and $CR_k \in X_j^2$, then $Q_j^2 = Q_k^2$ by Lemma 3. However, by assumption we also have $Q_i^2 = Q_j^2$, and hence $Q_i^2 = Q_k^2$. Since $CR_k \in X_i^2$ and $Q_i^2 = Q_k^2$, this also means that $CR_i \in X_k^2$, which leads to a contradiction. Hence, $CR_j \notin X_k^2$.

APPENDIX 5

Theorem 1: For any $CR_j \in X_i^3$, $Q_i^3 = Q_j^3$.

Proof: Q_i^3 is a pruned version of Q_i^2 , i.e., $X_i^3 \subseteq X_i^2$. Therefore, any $CR_j \in X_i^3$ must also be a member of X_i^2 . Also for any $CR_j \in X_i^3$, we have $CR_i \in X_j^2$, since otherwise, CR_j would have been removed from X_i^3 . Using Lemma 3, it follows that $Q_i^2 = Q_j^2$. Now consider any $CR_k \in X_i^2$ that is removed from X_i^2 in step 3, i.e., $CR_k \notin X_i^3$. This happens only if $CR_i \notin X_k^2$, which also means (by Lemma 2) that $CR_j \notin X_k^2$, and CR_k will also be removed from X_j^2 in step 3. Hence, every CR that is removed from X_i^2 will also be removed from X_j^2 , making $X_i^3 = X_j^3$. For two bicliques with the same membership, it follows that $Y_i^3 = Y_j^3$, and hence $Q_i^3 = Q_j^3$.

APPENDIX 6

Lemma 5: In every cluster produced by SOC, at least one CR is one-hop away from all other CRs of that cluster.

Proof: Consider a cluster that is represented by the biclique $Q_i^3(X_i^3, Y_i^3)$. According to Theorem 1, all $CR_j \in X_i^3$ converge to the same cluster membership in step 3. For any CR_i and $CR_j \in X_i^3$, it holds that $CR_i \in X_j^2$ and $CR_j \in X_i^2$. Otherwise, CR_i would have removed CR_j from X_i^2 in step 2, and similarly CR_j would have removed CR_i from X_j^2 . According to Lemma

3, if $CR_i \in X_j^2$ and $CR_j \in X_i^2$, it holds that $Q_i^2 = Q_j^2$. This means that all members of a cluster formed after step 3 must have computed the same biclique in step 2. However, the biclique Q_i^2 of any CR in step 2 is the best biclique Q_j^1 with $CR_j \in NB_i$ or j = i. Hence, the only way that all CRs of a cluster would choose Q_j^1 as the best biclique in step 2 is if CR_j is a neighbor to all. Therefore, at least one CR is one hop away from all CRs of the cluster.