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APPENDIX 1
Lemma 1: Let a vertex x ∈ A of a bipartite graph G(A∪B, E)

be connected to all vertices in the set B. Then, x belongs to the
maximum-edge biclique Q∗(X∗, Y ∗).

Proof: We prove Lemma 1 by contradiction. Let x ∈ A be
a vertex of a bipartite graph G(A ∪ B, E) such that there exists
an edge (x, y), ∀y ∈ B. Let Q∗(X∗, Y ∗) be the maximum edge
biclique, and assume that x /∈ X∗. By adding x to the graph Q∗,
we obtain graph Q′(X∗

⋃
x, Y ∗), which is still a biclique since x

is connected to every vertex in B, and hence, every vertex in Y ∗.
The number of edges of the biclique Q′ is (|X∗|+ 1)× |Y ∗| >
|X∗| × |Y ∗|. This contradicts our initial assumption that Q∗ is a
maximum-edge biclique. The same result can be shown for any
vertex y ∈ B that is connected to all vertices in A.

APPENDIX 2
Lemma 2: Any x ∈ Ai with Ci ⊆ Cx will be included in the

biclique Q∗i (X
∗
i , Y

∗
i ) computed by Algorithm 1.

Proof: Let x ∈ Ai be a vertex of a bipartite graph Gi(Ai ∪
Bi, Ei). Suppose that there exists an edge (x, y) ∀y ∈ Bi. Assume
that the maximum edge biclique Q∗i (X

∗
i , Y

∗
i ) is computed during

the jth iteration of Algorithm 1. Then any CR added to Xi in the
previous iterations will be part of Q∗i . Hence, it is sufficient to
show that x will be added to X∗i before or during the jth iteration.
If Y ∗i = Ci then x ∈ X∗i , since the addition of x increases the
number of edges of Q∗i by |Ci|. If Y ∗i ⊂ Ci, there exists some
x′ ∈ X∗i such that Cx′

⋂
Ci ⊂ Ci. Since on initialization Yi = Ci

and Cx

⋂
Ci = Ci according to line 4 of Algorithm 1, x will be

added to X∗i before x′. Hence, Q∗i must contain x.

APPENDIX 3
Lemma 3: If CRi ∈ X2

j and CRj ∈ X2
i , then Q2

i = Q2
j .

Proof: After step 1, CRi and CRj will have received the
updates of their neighbors. Suppose that CRi selects Q2

i = Q1
k,

where CRk is a neighbor of CRi, or is CRi itself. Given that
CRj ∈ X2

i , then CRj ∈ X1
k , and hence, CRj is a neighbor

of CRk. Following a similar argument, we can show that for
the decision Q2

j = Q1
m to be made, the selected Q2

j must be
constructed by a node CRm ∈ NBi, given that CRi ∈ X2

j .
Because CRk and CRm are neighbors of both CRi and CRj ,

CRi and CRj must have received both Q1
k and Q1

m in step 1,
before updating their own bicliques. Due to the imposed total
ordering, CRi concludes that Q1

m < Q1
k, and CRj concludes that

Q1
k < Q1

m. This is true only if k = m.

APPENDIX 4
Lemma 4: Suppose that for three nodes CRi, CRj , and CRk,

we have CRk ∈ X2
i and CRk ∈ X2

j with Q2
i = Q2

j . Then if
CRi /∈ X2

k , it must also hold that CRj /∈ X2
k .

Proof: Lemma 4 can be proved by contradiction. Assume
that CRj ∈ X2

k . Because CRj ∈ X2
k and CRk ∈ X2

j , then Q2
j =

Q2
k by Lemma 3. However, by assumption we also have Q2

i = Q2
j ,

and hence Q2
i = Q2

k. Since CRk ∈ X2
i and Q2

i = Q2
k, this also

means that CRi ∈ X2
k , which leads to a contradiction. Hence,

CRj /∈ X2
k .

APPENDIX 5
Theorem 1: For any CRj ∈ X3

i , Q
3
i = Q3

j .

Proof: Q3
i is a pruned version of Q2

i , i.e., X3
i ⊆ X2

i .
Therefore, any CRj ∈ X3

i must also be a member of X2
i . Also for

any CRj ∈ X3
i , we have CRi ∈ X2

j , since otherwise, CRj would
have been removed from X3

i . Using Lemma 3, it follows that
Q2

i = Q2
j . Now consider any CRk ∈ X2

i that is removed from X2
i

in step 3, i.e., CRk /∈ X3
i . This happens only if CRi /∈ X2

k , which
also means (by Lemma 2) that CRj /∈ X2

k , and CRk will also be
removed from X2

j in step 3. Hence, every CR that is removed
from X2

i will also be removed from X2
j , making X3

i = X3
j .

For two bicliques with the same membership, it follows that
Y 3
i = Y 3

j , and hence Q3
i = Q3

j .

APPENDIX 6
Lemma 5: In every cluster produced by SOC, at least one CR

is one-hop away from all other CRs of that cluster.

Proof: Consider a cluster that is represented by the biclique
Q3

i (X
3
i , Y

3
i ). According to Theorem 1, all CRj ∈ X3

i converge
to the same cluster membership in step 3. For any CRi and
CRj ∈ X3

i , it holds that CRi ∈ X2
j and CRj ∈ X2

i . Otherwise,
CRi would have removed CRj from X2

i in step 2, and similarly
CRj would have removed CRi from X2

j . According to Lemma



3, if CRi ∈ X2
j and CRj ∈ X2

i , it holds that Q2
i = Q2

j . This
means that all members of a cluster formed after step 3 must have
computed the same biclique in step 2. However, the biclique Q2

i

of any CR in step 2 is the best biclique Q1
j with CRj ∈ NBi

or j = i. Hence, the only way that all CRs of a cluster would
choose Q1

j as the best biclique in step 2 is if CRj is a neighbor
to all. Therefore, at least one CR is one hop away from all CRs
of the cluster.
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