Thwarting Control-Channel Jamming Attacks from Inside Jammers

Sisi Liu, Student Member, IEEE, Loukas Lazos, Member, IEEE, and Marwan Krunz, Fellow, IEEE
Department of Electrical and Computer Engineering
University of Arizona, Tucson, AZ 85721
E-mail:\{sisimm, llazos, krunz\}@ece.arizona.edu

Appendix 1

Proposition 1: For two random and independently generated sequences m_{j} and m_{ℓ}, defined over an alphabet $\mathcal{A}=\{1, \ldots, K\}$, the expected Hamming distance $\mathrm{E}\left[d\left(m_{j}\right.\right.$,$\left.\left.m_{\ell}\right)\right]$ as a function of the sequence length X is given by

$$
\begin{equation*}
\mathrm{E}\left[d\left(s_{j}, s_{\ell}\right)\right]=\frac{K-1}{K} X \tag{1}
\end{equation*}
$$

Proof: The proof is a direct consequence of the randomness and independence assumptions. Based on the sequence generation process outlined in Section 4.1, $\operatorname{Pr}\left[m_{j}(i)=k\right]=$ $\frac{1}{K}, \forall i$. Since the two sequences m_{j} and m_{ℓ} are assumed to be independent and random, they differ at slot i with probability

$$
\begin{equation*}
\operatorname{Pr}\left[m_{j}(i) \neq m_{\ell}(i)\right]=\frac{K-1}{K} \tag{2}
\end{equation*}
$$

The expected Hamming distance between two sequences of length X is equal to the expected number of successes in X such Bernoulli trials, i.e., $E\left[d\left(m_{j}, m_{\ell}\right)\right]=\frac{K-1}{K} X$.

Appendix 2

Proposition 2: Consider two random and independently generated sequences m_{j} and m_{ℓ} that are defined over an alphabet $\mathcal{A}=\{1, \ldots, K\}$. Suppose that the sequences are adjusted to m_{j}^{\prime} and m_{ℓ}^{\prime}, respectively, according to the process outlined in Section 4.2. The expected Hamming distance $E\left[d\left(m_{j}^{\prime}, m_{\ell}^{\prime}\right)\right]$ as a function of the length X of the sequences is

$$
\begin{align*}
\mathrm{E}\left[d\left(m_{j}^{\prime}, m_{\ell}^{\prime}\right)\right]= & \left(1-\left(K(i)-y_{K}\right) \cdot\left(\frac{x_{K}}{K}\right)^{2}\right. \\
& \left.-y_{K} \cdot\left(\frac{x_{K}+1}{K}\right)^{2}\right) \cdot X \tag{3}
\end{align*}
$$

where $x_{K} \triangleq\left\lfloor\frac{K}{K(i)}\right\rfloor$ and $y_{K} \triangleq[K(\bmod K(i))]$.
Proof: According to Step 2 in Section 4.2, the hopping sequences are modified by a modulo $K(i)$ operation. The number of indexes of the original sequence that map to the same index in the modified sequence depends on the quotient of the division of K by $K(i)$, given by $x_{K}=\left\lfloor\frac{K}{K(i)}\right\rfloor$, and the remainder, given by $y_{K}=[K(\bmod K(i))]$. In
particular, for a modified sequence m_{j}^{\prime}, it follows from elementary modulo arithmetic that

$$
\operatorname{Pr}\left[m_{j}^{\prime}(i)=w\right]= \begin{cases}\frac{x_{K}+1}{K}, & \text { if } 1 \leq w \leq y_{k}, y_{k}>0 . \tag{4}\\ \frac{x_{K}}{K}, & \text { if } y_{k}+1 \leq w \leq K(i) .\end{cases}
$$

Let \mathcal{M} be the event that two modified sequences m_{j}^{\prime} and m_{ℓ}^{\prime} match at slot i. Based on (4), we have

$$
\begin{align*}
\operatorname{Pr}[\mathcal{M}] & =\sum_{w=1}^{K(i)} \operatorname{Pr}\left[m_{j}^{\prime}(i)=w, m_{\ell}^{\prime}(i)=w\right] \tag{5a}\\
& =\sum_{w=1}^{K(i)} \operatorname{Pr}\left[m_{j}^{\prime}(i)=w\right] \operatorname{Pr}\left[m_{\ell}^{\prime}(i)=w\right] \tag{5b}\\
& =\sum_{w=1}^{y_{k}}\left(\frac{x_{K}+1}{K}\right)^{2}+\sum_{y_{K}+1}^{K(i)}\left(\frac{x_{K}}{K}\right)^{2} \tag{5c}\\
& =y_{K} \cdot\left(\frac{x_{K}+1}{K}\right)^{2}+\left(K\left(t_{1}\right)-y_{K}\right) \cdot\left(\frac{x_{K}}{K}\right)^{2} . \tag{5d}
\end{align*}
$$

Equation (5b) is due to the independence in the generation of the original sequences m_{j} and m_{ℓ}. Equation (5c) is due to the probability distribution in (4) and Equation (5d) follows from the simplification of the sum. Given $\operatorname{Pr}[\mathcal{M}]$, it is easy to see that the expected Hamming distance for two sequences of length X is given by (3).

Appendix 3

Proposition 5: The optimal strategy of an external jammer is to continuously jam the channel that is most frequently visited by cluster nodes.

Proof: Let $c_{j a m}$ denote the subsequence of $m_{j a m}$ corresponding to the locations of control channel slots; i.e., $c_{j a m}=\left\{m_{\text {jam }}(i): i \in v\right\}$ (v denotes the random slot position vector). Let also $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{K}\right\}$ and $\mathcal{Q}=\left\{q_{1}, q_{2}, \ldots, q_{K}\right\}$ denote the probability distribution functions from which values $c(i)$ and $c_{j a m}(i)$ are drawn, respectively. \mathcal{Q} is optimal when the expected Hamming distance $\mathrm{E}\left[d\left(c, c_{j a m}\right)\right]$ is minimized, i.e., the jammer is able to overlap with c in the maximum number of slots. Suppose that $\pi=\{\pi(1), \ldots, \pi(k)\}$ is a permutation of the set of
channels $\{1, \ldots, K\}$ such that $p_{\pi(1)} \geq \ldots \geq p_{\pi(K)}$. That is, the discrete probabilities of $\operatorname{Pr}[c(i)=k]$ are arranged in descending order. The probability that c and $c_{j a m}$ overlap at index i (which corresponds to slot $v(i)$) is

$$
\begin{align*}
\operatorname{Pr}\left[c(i)=c_{j a m}(i)\right] & =\sum_{j=1}^{K} \operatorname{Pr}\left[c(i)=\pi(j), c_{j a m}(i)=\pi(j)\right] \\
& =\sum_{j=1}^{K} p_{\pi(j)} q_{\pi(j)} \tag{6}
\end{align*}
$$

For a sequence of length X, the expected Hamming distance between c and $c_{\text {jam }}$ is $\mathrm{E}\left[d\left(c, c_{\text {jam }}\right)\right]=(1-\operatorname{Pr}[c(i)=$ $\left.\left.c_{j a m}(i)\right]\right) X$ (overlapping in two different slots are independent events). Hence, the expected Hamming distance is minimized when (6) is maximized.
Maximization of (6) can be shown as follows. Consider two distributions $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{K}\right\}$ and $\mathcal{Q}=$ $\left\{q_{1}, q_{2}, \ldots q_{K}\right\}$, and also consider two cases for the distribution $\mathcal{Q}:\left\{q_{\pi(1)}, q_{\pi(2)}, \ldots, q_{\pi(K)}\right\}=\{1,0, \ldots, 0\}$ and $\left\{q_{\pi(1)}^{\prime}\right.$, $\left.q_{\pi(2)}^{\prime}, \ldots q_{\pi(K)}^{\prime}\right\}$ with $q_{\pi(1)}^{\prime}<1$. Let $S=\sum_{j=1}^{K} p_{\pi(j)} q_{\pi(j)}$ and $S^{\prime}=\sum_{j=1}^{K} p_{\pi(j)} q_{\pi(j)}^{\prime}$. Then,

$$
\begin{aligned}
S^{\prime}-S & =\sum_{j=1}^{K} p_{\pi(j)} q_{\pi(j)}^{\prime}-\sum_{j=1}^{K} p_{\pi(j)} q_{\pi(j)} \\
& =\sum_{j=1}^{K} p_{\pi(j)} q_{\pi(j)}^{\prime}-p_{\pi(1)} \cdot q_{\pi(1)} \\
& \leq \sum_{j=1}^{K} p_{\pi(1)} q_{\pi(j)}^{\prime}-p_{\pi(1)} \\
& =p_{\pi(1)} \sum_{j=1}^{K} q_{j}^{\prime}-p_{\pi(1)} \\
& =0
\end{aligned}
$$

Hence, $\sum_{j=1}^{K} p_{\pi(j)} q_{\pi(j)}$ is maximized when the distribution $\left\{q_{\pi(1)}, q_{\pi(2)}, \ldots q_{\pi(K)}\right\}=\{1,0, \ldots, 0\}$.

Appendix 4

Proposition 6: In static spectrum networks, the expected evasion delay $\mathrm{E}[D]$ for re-establishing the control channel when no node has been compromised is

$$
\begin{equation*}
\mathrm{E}[D]=\frac{K}{K-1} \cdot \frac{L+M}{M} . \tag{7}
\end{equation*}
$$

Proof: $\mathrm{E}[D]$ is equal to the expected number of required slots \mathcal{N} before the control-channel slot occurs for the first time, times the number of tries \mathcal{R} needed to evade jamming. Thus,

$$
\begin{equation*}
\mathrm{E}[D]=\mathrm{E}[\mathcal{R N}]=\mathrm{E}[\mathcal{R}] \mathrm{E}[\mathcal{N}] . \tag{8}
\end{equation*}
$$

Note that \mathcal{R} and \mathcal{N} are independent random variables. The probability of evading jamming for random hopping sequences, assuming an optimal jamming strategy, is equal to $\frac{K-1}{K}$. Thus, $\mathrm{E}[\mathcal{R}]=\frac{K}{K-1}$. By construction, slot i is a
control-channel slot with probability $\frac{M}{L+M}$. Therefore, the first re-occurrence of the control channel follows a geometric distribution with parameter $\frac{M}{L+M}$, and $\mathrm{E}[\mathcal{N}]=\frac{L+M}{M}$. Substituting $\mathrm{E}[\mathcal{R}]$ and $\mathrm{E}[\mathcal{N}]$ into (8) completes the proof.

Appendix 5

Proposition 7: The expected delay until the new CH assigns new hopping sequences to $n-1$ cluster nodes (excluding the compromised CH) is

$$
\begin{equation*}
\mathrm{E}\left[D_{2}\right]=\frac{K^{2}}{K-1}(n-1) X_{c} . \tag{9}
\end{equation*}
$$

Proof: Once the CH is considered compromised, all cluster nodes hop according to self-generated random sequences. Let $m_{C H}$ denote the hopping sequence of the new CH . The CH succeeds in communicating with node n_{j} at slot i if $m_{C H}(i)=m_{j}(i)$ and $m_{C H}(i) \neq m_{\text {jam }}(i)$. Given that the sequences m_{j} and $m_{C H}$ are random,

$$
\begin{equation*}
\operatorname{Pr}\left[m_{j}=m_{C H}, m_{j} \neq m_{j a m}\right]=\frac{1}{K} \frac{K-1}{K}=\frac{K-1}{K^{2}} . \tag{10}
\end{equation*}
$$

The number of slots until the first success is geometrically distributed with mean of $\frac{K^{2}}{K-1}$. The CH has to repeat the same process for all $n-1$ cluster nodes (the compromised CH is excluded from the hopping sequence update process). Assuming that X_{c} time slots are needed for the assignment of the new sequence, the expected delay $E\left[D_{2}\right]$ until all cluster nodes have received a new hopping sequence is equal to $\frac{K^{2}}{K-1}(n-1) X_{c}$.

