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Abstract—Accurate identification of the signal type in shared-
spectrum networks is critical for efficient resource allocation
and fair coexistence. It can be used for scheduling transmission
opportunities to avoid collisions and improve system throughput,
especially when the environment changes rapidly. In this paper,
we develop deep neural networks (DNNs) to detect coexisting
signal types based on In-phase/Quadrature (I/Q) samples without
decoding them. By using segments of the samples of the received
signal as input, a Convolutional Neural Network (CNN) and a
Recurrent Neural Network (RNN) are combined and trained
using categorical cross-entropy (CE) optimization. Classification
results for coexisting Wi-Fi, LTE LAA, and 5G NR-U signals
in the 5-6 GHz unlicensed band show high accuracy of the
proposed design. We then exploit spectrum analysis of the
I/Q sequences to further improve the classification accuracy.
By applying Short-time Fourier Transform (STFT), additional
information in the frequency domain can be presented as a
spectrogram. Accordingly, we enlarge the input size of the DNN.
To verify the effectiveness of the proposed detection framework,
we conduct over-the-air (OTA) experiments using USRP radios.
The proposed approach can achieve accurate classification in
both simulations and hardware experiments.

Index Terms—Machine learning, signal classification, coexis-
tence, convolutional neural networks, recurrent neural networks,
dynamic spectrum access, software-defined radio.

I. INTRODUCTION

The unprecedented demand for wireless services has

crowded the radio spectrum. Spectrum sharing (SS) pro-

vides a potential remedy for the operation of heterogeneous

wireless systems in congested and contested spectrum en-

vironments [1]. In the opportunistic (hierarchical) form of

SS, unlicensed users can use the common spectrum when

licensed (primary) users are idle [2]. However, it is challenging

to guarantee a given throughput level to secondary systems

without knowing the usage statistics and access behavior [3],

[4]. Furthermore, some SS scenarios involve heterogeneous

systems that cannot coordinate with one another [5], [6]. In

these scenarios, operators and end users need to sense the

shared medium and identify the active signals without having

to decode them.

Fast and accurate identification of the different types of

coexisting signals has always been an important aspect of

interleaving spectrum sharing. Common spectrum sensing

techniques are likelihood or feature-based [7], [8], e.g., cyclo-

stationarity. In these techniques, signal detection is performed

under certain assumptions of the underlying waveforms, e.g.,

their modulation and coding scheme, protocol behavior, proba-

bility distributions, etc., which strongly depend on the decoded

signal. In addition to relying on specific model-based as-

sumptions, conventional sensing approaches often assume that

spectrum dynamics are slowly varying. To address the above

limitations, we propose a machine learning (ML) framework

for signal sensing and classification in coexistence scenarios

with fast-varying spectrum dynamics.

Deep learning has been successfully applied to various

classification and recognition problems [9]–[11]. It can support

high-dimensional inputs, sizeable neural network models, and

adjustable parameters. In addition to traditional speech and

image recognition, deep neural networks (DNNs) have also

been applied to RF signal classification problems [12]–[15].

However, most of these works attempt to classify the data

according to their modulation schemes, or they assume the

signal type to be highly related to such schemes. This approach

does not compute the dynamics of a typical wireless protocol,

where the same signal type may have several modulation

and coding schemes. Moreover, existing efforts presume the

received signal is only corrupted with noise but does not

consider the possibility of mixed (superposed) signals, as in a

concurrent transmission scenario over an unlicensed band. As

a result, it is not possible to achieve satisfactory classification

performance in these scenarios.

To investigate the application of DNNs in signal classi-

fication of coexisting waveforms, we focus on Wi-Fi, LTE

LAA, and 5G NR unlicensed (NR-U), as an example of SS

over an unlicensed band. We design a convolutional neural

network (CNN) and a recurrent neural network (RNN) to

detect the underlying wireless signal based on the received

I/Q samples. CNN captures the sample features through the

convolution calculations, while the RNN can capture the se-

quence dependency structure when the previous layer’s outputs

are flattened. Fig. 1 describes a receive chain with a signal (or

protocol) classifier. After receiving an RF signal, the signal

is filtered and down-converted into IF. By applying an ADC,

the waveform is then converted to the digital domain. The

designed protocol classifier can distinguish the signal type for

the user after the DSP block processes the signal.

To test the model accuracy, we start with an interleaving

SS scenario, whereby any but only one of the three coexisting

technologies is active at a time, i.e., there is no concurrent

transmissions of different signal types. We adjust the channel



noise as a way to control the SNR. The average classification

accuracy for the interleaving scenario is about 92.1% when

the SNR is greater than 15 dB. Motivated by such results,

we then extend our testing to mixed signals, i.e., concurrent

transmissions are allowed. The classifier can correctly distin-

guish the mixture with an accuracy of around 80% when the

channel is in good conditions. To further improve the accuracy

of the proposed DNN classifier, we incorporate frequency-

domain analysis (FDA) in its input. A short-time Fourier

transform (STFT) technique is applied to segments of the

I/Q samples and used to obtain their spectrogram. Based on

the STFT, the DNN can extract time-frequency features by

employing a sliding Kaiser–Bessel window. Such information

can be combined with the original DNN input (time-domain

I/Q samples), resulting in significant improvement in accuracy.

We validate the performance of the proposed classifier using

hardware experiments on an software-defined radio (SDR)

platform. Over-the-air (OTA) experiments are conducted with

USRP radios. The signals are generated by the Matlab Com-
munication Toolbox and the 5G Toolbox, and then fed into a

USRP transmitter. We set three USRP-2921 radios to transmit

Wi-Fi, LTE, and 5G NR signals, respectively. During transmis-

sion, the signal source can be selected as active or inactive.

Correspondingly, the signals are superposed with selected

types and the channel noise when transmitted. The RF signal

is then captured by the receiver and used for classification.

Our contributions can be summarized as follows:

• We introduce a DNN-based classification algorithm for

coexisting signals in a shared-spectrum environment. By

adjusting the DNN parameters, we generate extensive

datasets for Wi-Fi, LTE, and 5G NR waveforms, and use

them for training and testing our classifiers.

• We integrate FDA into our CNN-LSTM framework to dif-

ferentiate between various signal types. The performance

of the resulting DNN-based classifier is compared with

other methods from various perspectives.

• To improve the classification accuracy, STFT is applied to

provide spectrogram information. The average algorithm

accuracy is improved by around 14% when FDA is

included.

• We verify the proposed classification techniques experi-

mentally using OTA experiments with USRP radios. The

classifier accuracy is shown to be 91% in our experiments

when SNR is greater than 15 dB.

The rest of the paper is organized as follows. Section II

presents related works in deep learning-based signal classifi-

cation. Section III describes the generation of the dataset for

simulations and experiments. In section IV, we introduce the

DNN architecture that we designed for protocol classification.

In Section V, we analyze the performance of the proposed

model. Our OTA experimental results are explained in Sec-

tion VI. Section VII concludes the paper.

II. RELATED WORK

Signal classification is a critical and challenging problem in

SS scenarios. Correct detection allows networks coordinators
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Fig. 1. Signal processing to obtain the I/Q samples for classification.

to mitigate interference between coexisting devices, which can

improve the overall utilization of the network. The authors

in [12] and [13] explored modulation classification problem

using a deep learning (DL) algorithm. They proved that their

approach can achieve more than 90% classification accuracy

when the signal is in a high SNR regime. In [14], the

authors studied the classification of modulation schemes for

a distributed sensor network using deep learning models. A

generative adversarial method was used in [15] to sort the

data in a cognitive radio network. In [16], in-network users,

out-network users, and jammers are distinguished by CNN

to improve the in-network users’ throughput and out-network

users’ success ratio. Unlike these works, our deep learning

model targets signal protocol detection in a spectrum sharing

environment. Compared with modulation schemes, the features

of a protocol can be corrupted more easily and are harder to

distinguish when a mixture of signals are present.

Besides their application in signal classification, neural

networks have also been applied to many other time-series

classification problems (e.g., [17]–[20]). It proves that neural

networks have a higher degree of freedom and can achieve

higher accuracy than some conventional methods. Other au-

thors successfully employed DL methods in various wireless

communications contents to improve the network efficiency

(e.g., minimize congestion, improve throughput, simplify con-

nection setup, etc.) [21]–[24]. In [25], DL was applied to coor-

dinate multipoint downlink transmissions in 5G NR networks.

The authors in [26] proposed a DL-based sharing structure for

LTE and WiFi systems in the unlicensed 5 GHz bands. Their

approach, however, assumes that different signal types are

readily distinguished. In this paper, we provide a framework

to detect the signal type without requiring any decoding even

in a corrupted situation. In addition to traditional DNNs, we

also include the FDA to discriminate between the signal types.

III. DATA GENERATION

The waveforms of the LTE-LAA, Wi-Fi, and 5G NR signals

are generated using the Matlab Communication Toolbox and

the 5G Toolbox, which specifies a set of signal features,

including the baseband I and Q values, channel bandwidth,

modulation and coding scheme (MCS), subcarrier spacing,

and allocated resource blocks. By knowing these features,

we simulated sample waveforms of the three technologies

under different parameter settings supported by the standards,

as described in Table I. Of the various possible features,

we consider the baseband I/Q samples at the receiver (with

added noise) as input to the classifier. I/Q samples can be



easily obtained before decoding the signal, and they provide

a rich representation of the actual waveform. Specifically, key

parameters such as the MCS and the channel state information

(CSI) are readily captured in the I/Q samples. The receiver

architecture considered in this paper is shown in Fig. 1.

The received RF signal is down-converted and digitized to

obtain the raw I/Q sample set. The DSP block in Fig. 1

is used to further obtain the frequency-domain information

from I/Q samples. Specifically, we employ short-time Fourier

transform into the sequence analysis. By applying a sliding

window, these samples are divided into multiple sequences,

each consisting of 512 I/Q pairs. These sequences are used as

the datasets to train and test various classifiers. Approximately,

100,000 of such segments were used, split into 80% for

training and 20% for testing.

To demonstrate the viability of DL in classifying coexisting

waveforms, we test the classification accuracy in both simula-

tions and experiments. During the simulation, different types

of signals are mixed under the same additive white Gaussian

noise (AWGN) channel. For the hardware experiments, the

baseband signals are up-converted before being transmitted

over the air, so that the channel reflects the real noise of an

indoor environment. We connect three USRP radios to the

waveform generator, which allows us to transmit the three

types of waveforms simultaneously. To distinguish all possible

labels under different environments, we collect both indepen-

dent and mixed (concurrent transmission) data. At the receiver,

the waveforms are filtered and down-converted to I/Q samples

that are then fed into the classifier. There are three types of

independent signals, three types of double-mixtures, and one

type of triple-mixture. For the multi-waveform scenario with

concurrent transmissions, each component is transmitted with

the same channel gain and the same SNR, so that they account

for a roughly equal portion of the received signal. In summary,

there are seven types of signals that need to be classified.

IV. NEURAL NETWORK ARCHITECTURE

In this section, we consider a combination of a CNN

and an LSTM network to design our classifier, as shown in

Fig. 2. The input is the segmented I/Q sequences, as described

before. STFT is applied to each segment to obtain the power

distribution of frequencies. Such frequency-domain data is

passed to the convolutional layer along with the original I/Q

value to allow the CNN capture certain features. After that,

the output is fed to the pooling layer. Notice that information

exchange between the convolutional layer and the pooling

layer may take place several times in the structure. Such

iterative process is also used in the dense layer. The output

from the convolution and the pooling is then flattened to low

dimensional data representation. This helps in extracting the

time-series dependencies of the I/Q sequences in the bridged

recurrent layers (LSTM layers). Eventually, the dense layers

and a softmax layer are used to calculate the probability of

each label and assign the most likely one to the given input.

CNNs are widely employed in visual imagery analysis due

to the convenience in calculating the convolution for high-

TABLE I
PARAMETER OPTIONS FOR WAVEFORM GENERATOR.

Protocol Parameter Possible Values

LTE

Reference
Channel

R.1, R.2, R.3, R.4, R.5, R.6, R.7,
R.8, R.9, R.10, R.11, R.12, R.13,
R.14, R.25, R.26, R.27, R.28, R.31-
3A, R.31-4, R.43, R.44, R.45, R.45-
1, R.48, R.50, R.51, R.6-27RB, R.12-
9RB, R.11-45RB

Number of
Subframes

6, 8, 10

Modulation
Schemes

QPSK, 16QAM, 64QAM

Transmission
Bandwidth
[RB]

1, 6, 15, 25, 27, 39, 50, 75, 100

Duplex
Mode

FDD, TDD

5G

Frequency
Range

450 MHz-6 GHz, 24.25 GHz-52.6 GHz

Subcarrier
Spacing
(kHz)

15,30,60

Modulation
Schemes

QPSK, 64QAM, 256QAM

Channel
Bandwidth
(MHz)

5, 10, 15, 20, 25, 30, 40, 50

Duplex
Mode

FDD, TDD

Wi-Fi

Channel
Coding

BCC, LDPC

Modulation
Schemes

BPSK, QPSK, 16QAM, 64QAM,
256QAM

Guard
Interval

Short, Long

Channel
Bandwidth
(MHz)

20, 40, 80, 160

dimensional input. By contrast, RNNs are used more often to

solve time-series forecasting problems. The LSTM network

(one type of RNNs) combines the different weights of its

input sequences and calculates the prediction value by some

optimization function in a recurrent way. Therefore, the out-

come of the recurrent neural network captures the dependency

and correlations of the sequence. To take advantage of both

networks, we introduce a customized neural network that

allows recurrent layers to be connected to convolutional layers.

This would reinforce time-series analysis in the CNN and can

help capturing the dependency between samples. To train such

a combined network, we collect I/Q samples with SNR from

−10 dB to 20 dB with a step increment of 2 dB following

the setting described before. At each SNR value, there are

roughly 10000 samples from each signal type, where each

sample includes the I/Q values of 512 data points x.

A. Convolutional Neural Network

A CNN typically consists of fully connected layers,

pooling layers, convolutional layers, and a softmax layer.

It can be trained by associating the input samples st
and their the corresponding label yt, t = 1, ..., T , from

M labels. The labeled dataset can be defined as: D =
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Fig. 2. Overview of the proposed classifier.

{(s1, y1), (s2, y2), ..., (sT , yT )}. Let yt be the tth sample’s

label, with yt ∈ L = {l1, l2, ..., lM}, where lr stands for the

rth label. Under such a definition, we can train the hypothesis

H(st) = yt, which predicts the label yt of st that matches the

actual one yt.
For a sample s in a two-dimensional matrix, the convolu-

tional layer V is extracted by the convolutional kernel:

V(λ)(μ) = b(λ)(μ) +

D∑
d=0

H∑
h=0

K(d)(h)s(λ+ d)(μ+ h) (1)

where D and H are the width and height of the convolutional

kernel, K is the filter kernel, and b is the bias. To avoid gradient

vanishing, we also employ the scaled exponential linear unit

(SELU) as an activation function in the convolutional layers:

SELU(u) = λ

{
p if u > 0

αeu − α if u ≤ 0
(2)

where u is the output of the convolutional layer; α and λ are

constant values in the SELU setting.

After the feature is captured in the convolutional layer, it is

then connected to the pooling layer. The pooling layer helps

reduce computing costs by decreasing the dimensionality of

the data. It also prevents over-fitting by providing an abstracted

form of the representation. The results of the max-pooling

are flattened and passed to the LSTM layer. We will discuss

the detail of the LSTM layers in the followed section. After

that, the output of the recurrent layer is passed through the

dense layers. The dense layers and the softmax layer are fully

connected. The softmax layer has 7 neurons, i.e., the output

has 7 elements. This is because the types of signals that are

being classified in this paper are: Wi-Fi, LTE, 5G, Wi-Fi+LTE,

Wi-Fi+5G, LTE+5G, and Wi-Fi+LTE+5G. The probability

Plm of classifying an input as label lm, m = 1, ...,M , is

normalized to provide label prediction from the softmax layer:

Plm =
eŷm∑M
r=1 e

ŷr

(3)

where ŷ is the output of dense layer. We let P =
[pl1 , pl2 , ..., plM ]. Our neural network can make a prediction

of the given input data x by the hypothesis H under parameter

setting θ: y = H(θ, x).

To measure the difference between an estimated label y and

the real label y, cross-entropy is introduced, which allows the

neural network to capture this error. In our case, the cross-

entropy function is used as the loss function during training:

L(θ) = −
∑
r

Brlog(yr) (4)

where {Br}mr=1 are binary variables; Br = 1 if the label r
is correct among m categories and yr is the corresponding

probability of the correction. The CNN minimizes the loss

function during the training by calculating the gradient of θ
at each step j. Then, θ gets updated with the corresponding

learning rate η as follows:

θj = θj−1 − η�θL(θ). (5)

B. Recurrent Neural Network

A typical LSTM network consists of multiple LSTM cells.

We explain the steps taken to calculate different parameter

values of one LSTM cell. At each time step j, we define

xj as the system input and δj as the output of the LSTM

cell. The cell output at the previous time step, δj−1, is then

combined with the current system input xj to form the input of

the current cell. The state of the cell is Cj , which records the

system memory and gets updated at each time step. To control

information flow between cells, several gates are applied,

including an input gate (ij), an output gate (oj), and a forget

gate (fj). Each gate generates an output between 0 and 1,

where the value of the output is calculated by a sigmoid (σ)

function. An output of 0 indicates that the input of the gate is

totally blocked, while an output of 1 indicates all information

of the input is kept in the cell. The input, output, and forget

gates are calculated as follows:

ij = σ(Wixj + Uiδj−1 + bi)

oj = σ(Woxj + Uoδj−1 + bo)

fj = σ(Wfxj + Ufδj−1 + bf )

(6)



where Wi, Wo, and Wf are weights assigned to the three gates;

Ui, Uo, and Uf are the corresponding recurrent weights; and

bi, bo, and bf are the bias values of the three gates.

Similar to the gate function, we combine the current inputs

and previous cell state Cj−1 to update the cell state. The

difference is that instead of a sigmoid, the inputs will be

processed by a hyperbolic tangent function that generates a

value output between −1 and 1:

C̃j = tanh(Wcxj + Ucδj−1 + bc) (7)

after the update, C̃j is multiplied by the output of the input

gate, which is then used as the first component to update the

cell state. Another component for updating the cell state is the

state of the previous cell, which is processed by the forget

gate. This component determines determines how past data is

to be utilized. With the two components, the cell state at time

j is updated as follows:

Cj = fjCj−1 + ijC̃j . (8)

The output of the cell δj , which will be used at time j + 1,

is calculated by the multiplication of the output gate and the

tanh function of the current cell state:

δj = oj tanh(Cj). (9)

C. Frequency-domain Analysis

Because Wi-Fi, LTE, and 5G-NR transmissions show sub-

stantial similarity in time-domain, we augment our classifi-

cation approach with the spectrogram, which allows these

waveforms to be more distinguishable, as shown in Fig. 3. In

such a spectrogram, a ’frequency’ refers to the relative occur-

rence of components with specific power density. Frequency-

domain analysis is commonly employed in image processing

and wireless communications. It can be used to compensate for

overlooked hidden information in neural networks when the

input consists of a time-series of I/Q samples. FDA-based clas-

sification places more emphasis on the spectral characteristics

of periodic patterns that are hard to capture by time-domain

analysis. ANNs have the flexibility to accommodate different

types of inputs, including spectrogram information. According,

we apply Fourier transform to the data before feeding it along

with the I/Q samples into the neural network.

Our FDA is applied to the baseband signal. Specifically, a

short-time Fourier Transform (STFT) is applied to each I/Q

sequence:

X(τ, ω) =

∫ ∞

−∞
x(k)w(k − τ)e−iωkdk (10)

where x(k) is the time-domain signal to be transformed

and w(τ) is the Kaisar-Bessel window function. X(τ, ω) is

essentially the Fourier transform of x(k)w(k− τ), which is a

complex function representing the phase and magnitude of the

signal over time and frequency. The Kaisar-Bessel window is

used to extract the time-frequency features:

w(o) =
I0(β

√
1− ( o−O/2

O/2 )2)

I0(β)
(11)
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(a) Spectrogram for 5G NR signal,
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(b) spectrogram for Wi-Fi signal.

Fig. 3. Example of frequency-domain analysis for 5G NR and Wi-Fi signals.

where I0 is the zeroth-order Bessel function of the first kind,

O is the window length, and β is the shape factor, which

can be determined by a side-lobe attenuation α. STFT is

used to determine the sinusoidal frequency and phase content

of local sections of a signal as it changes over time. It

uses short sequence segments to analyze the spectrogram so

that it matches well with our neural network training, which

also divides a long signal sequence into several equal-length

training samples. The original network is extended to include

frequency information as another set of features. Unlike image

classification, in time-domain I/Q samples classification, time-

series features play an essential role in determining the clas-

sifier’s performance. The amplitude fluctuation, phase change,

and signal dependency pattern are hidden in the I/Q sequences,

which cannot be replaced by the spectrogram.

V. PERFORMANCE EVALUATION

A. Benchmark Algorithm

We compare our classification algorithm with several tra-

ditional machine learning (ML) algorithms and also with

individual CNN and LSTM classifiers. For the traditional ML

algorithms, we consider the support vector machine (SVM)

and random forests (RF). The traditional SVM is successfully

applied in class separation by determining the decision bound-

ary while maximizing the margin between classes. Because the

classes in our signal classification problem are not linearly

separable, we employ a soft margin in the SVM model to

further improve its accuracy. By introducing slack variables ξ,

the objective function can include multiplications of the soft

margin. After applying a Lagrangian relaxation, we transform

the above constrained problem into an unconstrained one. Fur-

thermore, the objective function of the resulting unconstrained

problem becomes a quadratic function. The optimal weight

matrix is obtained during the training by solving the derivative

of each mathematical operation in the objective function at

every epoch. After such a procedure, the trained SVM is

then tested. For RF methods, we evaluate the performance

for different numbers of constituent trees. We compare our

proposed methods with these ML methods to show the merits

of our approach. Because the proposed approach includes both

CNN and RNN architectures, the performance of independent

CNN and RNN is also studied. Basically, the independent
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Fig. 4. Signal classification accuracy vs. SNR over an AWGN channel.

CNN model architecture is described as in section IV-A but

without any LSTM layer. The independent RNN is the LSTM

network defined in section IV-B, where the output is passed to

the dense layers to generate the predicted label for the input

data.

B. Classification based on I/Q Samples

In our simulations, we assume the signal is transmitted over

an additive white Gaussian noise (AWGN) channel. In general,

analytic feature extractors perform well under this assumption.

Before introducing STFT, we first take the input as time-

domain I/Q pairs. Data generation was described in Section III.

During the testing phase, the received SNR was increased in

steps of 2 dB. As can be observed in Fig. 4, the nonlinear-

SVM has the worst accuracy when the SNR is less than 10

dB. The accuracy is less than 70% for such an algorithm. The

accuracy for random forests increases sharply when the SNR

goes from 0 to 10 dB. The performance is improved when the

number of trees increases from 10 to 20, but seems to saturate

for a larger number of trees. Accuracy can be optimized when

the number of trees is around 20. The LSTM-based classifier

does not perform well when the SNR is below 6 dB; however,

its accuracy increases rapidly at higher SNR values. CNN

can achieve similar accuracy to LSTM when SNR is higher

than 14 dB. Furthermore, CNN performs even better than

other algorithms under low SNRs. Our proposed architecture,

which incorporates an LSTM layer into the CNN architecture,

can further improve the classification performance. It achieves

higher accuracy than CNN and LSTM; meanwhile, it behaves

better in almost all SNR conditions.

The confusion matrix for the proposed combined neural

network is depicted in Fig. 5. As shown in Fig. 5(a), the correct

rate for single LTE, Wi-Fi, and 5G NR is more than 63%,

while the accuracy for the mixed signal is around 50%. Similar

results happen in Fig. 5(b) and Fig. 5(c), where the classifier

can achieve higher classification accuracy for independent

signals. The reason is that the independent signal features are

more noticeable compared with the signal mixed with other

types. When signals are under a coexisting environment, the

waveforms are corrupted with each other. Such corruption

makes the amplitude and phase of the received I/Q samples

deviate from the predetermined pattern. After the noise is

introduced, it becomes even more difficult to distinguish these

signals. Another observation is that the proposed approach

can avoid the misdetection of highly similar types so that

each type’s misclassification is distributed evenly. By contrast,

the classifiers like SVM and RF are harder to separate the

categories when some types have higher closeness. Therefore,

the false-positive rate would be much higher between LTE

and 5G NR, for the closeness of them is greater than that of

Wi-Fi. In our proposed algorithm, the false prediction doesn’t

concentrate on specific types, which means the combined

neural network can distinguish the classes even though they

are extremely comparable. Finally, from the plot, we can find

that the classifier accuracy increases fast between 4 dB and 8

dB but slows down between 8 dB and 12 dB. This is because

the influence the noise makes is almost negligible with very

high SNR, and the signals have less improvement in purity

when SNR is greater than 10 dB. As a result, the performance

of the classifier becomes more steady in such an SNR range.

C. Impact of Frequency-domain Analysis

We then add the FDA into the I/Q samples, as introduced

in Section IV-C. To be specific, STFT is applied to I/Q

sequences, and the results are reflected as the spectrogram.

Such frequency strength is also fed into the neural network

along with the original I/Q pairs to train the model. The FDA is

only based on the I/Q samples, so there is no extra information

required for the input data. We then compare the performance

of neural networks at 20 dB and summarize the results in

Fig. 6. The classification accuracy is improved for all learning

algorithms, proving that the FDA provides more information

that regular machine learning algorithms can not obtain from

the time-series input. The improvement is less evident for

the RF algorithm, which means the influence of frequency

strength may weaken under the trees. In fact, the RF algorithm

makes a decision based on all the trees’ predictions. However,

spectrogram information can not guarantee to improve the

performance of all of them. Thus, the effect is averaged among

trees, which weakens the advance. For CNN, LSTM, and

their combination, the accuracy is enhanced by approximately

15%. The proposed algorithm can achieve 93% accuracy after

including spectrogram analysis.

1) STFT Resolution: STFT resolution quantitatively relates

to the mainlobe width of the transform of the window. To

analyze the influence of resolution, we capture a period of

a received LTE signal with 10 sub-carriers and use it as

an example for our following analysis. The computed power

spectrum of the input shown in Fig. 7(a) visualizes the fraction

of time that a particular frequency component is present in

a signal. When time resolution Tres increased from 200 ms

to 700 ms, both the power density and strength decrease in

all frequencies. Tres controls the duration of the segments

used to compute the short-time power spectra that form the

spectrogram so that it decides the precision of signal energy



a 4 dB b 8 dB c 12 dB

Fig. 5. Confusion matrices for superimposed signals without FDA.
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Fig. 7. Spectrogram under different STFT resolutions and spectral leakages.

distribution in the frequency space. Tres directly relates to the

number of samples, which means if the system has a higher

sample rate, the duration can be reduced. In our case, the signal

power becomes less dominant with lower Tres. However,

such fuzzy figures enlarge the spectrogram difference between

different types of signals. As a result, the higher Tres can

not guarantee better classifier performance. During the test,

we find the proposed classifier can achieve the best accuracy

when the Tres is around 600 ms. The results are as described

in Table II.

2) Spectral Leakage: Spectral leakage occurs when a non-

integer number of periods of a signal is sent to the STFT. One

reason for such leakage is that the spectrum is the convolution

between frequency function and sample sequences, which

inevitably creates new frequency components. These compo-

nents are directly affected by the spectral windowing function;

thus, they are considered as results of spectral leakage. To con-

trol the spectral leakage, we introduce the leakage coefficient,

which is a real numeric scalar between 0 and 1. It restraints the

Kaiser window sidelobe attenuation, that is also relative to the

mainlobe width. When adjusting such coefficients, the resolu-

tion frequency Fres changes correspondingly. When leakage

is 1, Fres is 0.06006 cycles/minute, while, when leakage

is 0.65, Fres becomes 0.12993 cycles/minute. As depicted

in Fig. 7(b), the power spectrum records more changes in

frequency when leakage is 1. Such details expand the diversity

between signal types; however, these changes also include

more noise for the classifier. As a result, leakage doesn’t

have the monotonous classification accuracy. By comparing

different leakage settings as depicted in Table II, the proposed

classifier performs better when leakage is between 0.6 and 0.8

during the simulation.

TABLE II
ACCURACY OVER TIME RESOLUTION AND SPECTRAL LEAKAGE.

Time Resolution (ms) Accuracy Spectral Leakage Accuracy

100 89.3% 0.1 83.5%
200 90.2% 0.2 87.2%
300 90.8% 0.3 89.4%
400 91.3% 0.4 90.8%
500 92.1% 0.5 91.3%
600 93.4% 0.6 92.2%
700 93.0% 0.7 93.7%
800 92.6% 0.8 92.1%
900 91.7% 0.9 90.9%

1000 91.3% 1 88.6%

D. Impact of RNN Layer

The LSTM layer is one typical type of RNN layer, and

we propose to investigate an integrated CNN-LSTM design

that takes advantage of both CNNs and LSTM networks.

CNN employs convolution layers to extract multidimensional

data features and achieve accurate classification, but it cannot

capture the dependency pattern in the data. In contrast, an

LSTM network captures such dependency by recurring the

previous cell states in the hidden layers. After we introduce
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Fig. 8. Confusion matrices for superimposed signals with FDA.
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Fig. 9. Achievable accuracy and required epochs under different segment
length.

such layers into the CNN, the performance improves as plotted

in the confusion matrix. The overall accuracy improves from

when LSTM layers are connected to convolutional layers. In

Fig. 8, the LSTM network can achieve similar accuracy with

CNN. However, it misclassifies between LTE+ Wi-Fi and Wi-

Fi-5G NR heavily. By combining CNN with LSTM, such

misclassification is eliminated. The average accuracy is further

improved to 92%.

E. Segment Length

The length of input sequences also influences the perfor-

mance of the neural network. Fig. 9(a) describes the achievable

accuracy trends with the range of segments. As we can see,

the accuracy is only around 20% when the segment period is

short, and it increases fast with the input duration until 400.

The growth then slows down after that point. This is because

more features that are hidden in the sequence can be captured

when the segment is more extended, and the signal types are

more distinguishable when the difference of the sequences is

expanded due to its length. However, the performance is not

ensured to be enhanced, for that too many features included

can incur the over-fitting problem. It is reflected in Fig.9(a)

that the accuracy stops rapid raising and even reduces after

the length is greater than 600.

Fig. 9(b) depicts the epochs required to achieve expected

accuracy when the length of segments changes. When the

segment period is short, the proposed network’s performance

fluctuates considerably and takes more epochs to be steady.

It’s due to the insufficient input sequence duration and the

TX USRP 2921 USRP 2944 R
RX

Fig. 10. Experiment setup used for performance evaluation.

low expected accuracy. With the length growing, the epochs

reduced to around 20 when sequence duration is 200, which

means the network can obtain a stable prediction condition

with such length. Then the epochs increase because the neural

network needs more training when the input is more extensive.

VI. EXPERIMENT

A. USRP Settings

We further evaluate the proposed classification model on a

testbed consisting of three NI USRP-2921s and one NI USRP-

2944R. Our indoor experiment setup is shown in Fig. 10,

where the distance between the transmitter and receiver is

roughly 2 meters, and each of them is equipped with 8

dBi antennas operating at the frequency of 5 GHz. The

transmitters are synchronized by OctoClock CDA-2990 if

transmitting different types of signals simultaneously. There

are 500 Mbytes worth of experimental traces for 7 different

classes of signals that are collected, namely Wi-Fi, LTE,

5G, Wi-Fi+LTE, Wi-Fi+5G, LTE+5G, and Wi-Fi+LTE+5G.

In all these experiments, signals are transmited at the center

frequency of 5 GHz with a bandwidth of 20 MHz. The receiver

has a gain of 30 dB and a sampling rate of 20 Msps centered

at the 5 GHz center frequency, with collecting time equals

to 250 ms. The Wi-Fi waveform is transmitted by generating

baseband samples of 802.11 ac (VHT) with BPSK modulation
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Fig. 11. Average accuracy vs. channel gain.

and 1/2 rate with a PSDU length of 1024 bytes, and it

consists of 26080 samples. The LTE waveform is generated by

downlink RMC with the reference channel of R.9, which has a

64 QAM modulation and is of size 250000. We also generate

5G waveforms using 5G DL FRC with QPSK modulation, a

rate of 1/3 with a subcarrier spacing of 15 kHz, and a size

of 250000. As a result, we gather I/Q samples for different

transmission gains ranging from 0−30 dB and later use them

for our DL processes.

B. Evaluation of The Proposed Integrated Approach

As depicted in Fig. 11, the achievable accuracy increases

fast with channel gain until 15 dB. Then, it slows down

and converges to a steady-state. We assume the noise power

is at the same level when we control receiver gains. Thus,

by adjusting the amplifier which controls the gain, the SNR

changes accordingly. Similar to the previous simulation, the

performance is hard to improve when the SNR reaches the

bound. It’s probable because the features have already been

fully obtained, and the noise effects are neglectable after such

a point. To compare the influence of the FDA, a basic CNN is

used to predict the signal type. The proposed FDA approach

can enhance the accuracy by more than 10%. It is due to the

FDA that translated expand the I/Q samples from the time-

domain to the frequency-domain, which includes more features

into the inputs of the classifier and amplifies the difference

between signal types. We also analyze the effect of the LSTM

layer, and we find it can raise the accuracy by around 10%
when channel gain is greater than 20 dB compared with the

non-LSTM model. Besides, such RNN layers can improve the

performance under all channel gains in our experiment.

VII. CONCLUSION

In this work, we develop deep neural networks to detect

coexisting signal types by I/Q samples without having to

decode them. With segmented sample sequences, the CNN

is combined with the LSTM network and then trained. The

classification result shows competitive accuracies by neural

networks when the received signal is a mixture of signals

transmissions of different wireless technologies. We then apply

STFT on I/Q sequences to further improve the classification

accuracy. Neural networks show considerable improvement

after including the spectrogram information. Moreover, to

verify that the proposed detection framework is viable in

a real environment, an OTA experiment is then conducted

with USRP sets. The results show that the proposed deep

neural architecture can achieve accurate classification in both

simulations and experiments.
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