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Abstract—Mobile edge computing (MEC) is a promising so-
lution to support emerging delay-sensitive mobile applications.
With MEC servers deployed at the network edge, the computa-
tional tasks generated by these applications can be offloaded to
edge nodes (ENs) and quickly executed there. Meanwhile, with
the projected large number of IoT devices, the communication
and computational resources allocated to each user can be quite
limited, providing low-latency MEC services becomes challeng-
ing. In this paper, we investigate the problem of task partitioning
and user association in an MEC system, aiming to minimize
the average latency of all users. We assume that each task can
be partitioned into multiple independent subtasks that can be
executed on local devices (e.g., vehicles), MEC servers, and/or
cloud servers; each user can be associated with one of the nearby
ENs. We formulate a mixed-integer programming problem to
determine the task partitioning ratios and user association. Such
a problem is solved by decomposing it into two subproblems.
The lower-level subproblem relates to task partitioning under
a given user association, which can be solved optimally. The
higher-level subproblem is user association, where we propose
a dual decomposition-based approach to solve it. Simulation
results show that, compared to benchmark schemes, the proposed
schemes reduce the average latency by approximately 50%.

Index Terms—Mobile edge computing; delay-sensitive IoT
applications; task partitioning; user association.

I. INTRODUCTION

The emergence of mobile Internet of Things (IoT) appli-
cations (e.g., autonomous driving, augmented/virtual reality)
has triggered a growing demand for executing computationally
intensive tasks with stringent delay requirements [1]. Given
the limited processing capability of mobile devices, it is chal-
lenging for users to timely execute these tasks. Mobile edge
computing (MEC) is a promising solution to this challenge.
With MEC servers deployed at the network edge, e.g., near
base stations (BSs), users can offload their computational tasks
to nearby edge servers for fast execution. Benefiting from the
proximity to end-users, low latency can be achieved.

At the same time, tens of billions of mobile devices will
soon be connected to the Internet in the near future [2], many
of which are to be supported by future MEC systems. These
devices will compete for limited computing and communi-
cation resources, increase the workload of edge servers, and
making it less likely that the MEC systems will deliver the
expected low-latency services to all connected users [10]. To
address this challenge, the optimization of task offloading
decision and resource allocation among users served by an
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Fig. 1. System model of a multi-user MEC system with one cloud server and
multiple MEC servers.

MEC server have been explored in the literature (e.g., [10],
[12]). The performance of MEC systems can also be enhanced
via collaboration among multiple MEC servers [9], [15], which
enables computational tasks to be transferred between these
servers for improved load balancing.

Another approach for latency reduction in MEC is task
partitioning. Most existing works on task offloading assume
that the computation of a task begins after the whole task has
been offloaded to the MEC or cloud server. In contrast, if a
task can be partitioned into multiple subtasks and assigned
to the local device, the MEC server, and/or the cloud server
for execution, the workload at each of these entities can be
reduced. Besides, the offloading and computing processes can
be performed concurrently, resulting in lower latency. Obvi-
ously, the task partitioning ratios need to be optimized based
on various system parameters, e.g., computational capabilities
of different devices/servers, channel quality between the user
and edge node (EN)1, traffic load, etc.

Task partitioning has been recently considered, based on
the model of a single EN [13], [14] or a single user [15]. In
an MEC system with multiple ENs serving multiple users (see
Fig. 1), user association is a key design factor, as it determines
the traffic load at each EN and the latency associated with
offloading a task to different ENs. Thus, user association
directly impacts the task partitioning strategy, necessitating a
joint optimization of task partitioning and user association.

1Here, an EN refers to a combination of a BS/AP and an MEC server.
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In this paper, we investigate the problem of optimizing
task partitioning and user association to minimize the average
latency of users in a cellular-network-based MEC system. We
develop efficient schemes to obtain near-optimal solutions to
the problem. The contributions are summarized as follows.
• We formulate the problem of joint optimization of task

partitioning and user association in MEC systems. We
consider the case where the tasks can be decomposed into
multiple independent subtasks2. A mixed-integer linear
programming (MILP) problem is formulated with the
objective of minimizing the average latency of all users.

• We solve the formulated problem by decomposing it
into two subproblems. The lower-level subproblem targets
optimizing the task partitioning ratio under a given user
association, which can be optimally solved. The higher-
level subproblem is user association, for which we de-
velop a dual decomposition-based scheme to obtain a
near-optimal solution.

• To demonstrate the near-optimality of our solutions, we
derive a lower bound on the average latency.

• We evaluate the performance of the proposed schemes
via simulations. The results show that, compared to
benchmark schemes, the proposed schemes reduce the
average latency by around 50%.

In the remainder of this paper, we first review related
literature in Section II. Then, we introduce the system model
in Section III, followed by the problem formulation given in
Section IV. Algorithmic solutions are presented in Section V.
We present our simulation results and discussion in Section VI.
Finally, the paper is concluded in Section VII.

II. RELATED WORK

Task assignment in MEC systems was investigated in prior
works (e.g., [3]–[7]). The majority of existing works are based
on binary task assignment, where a task can either be offloaded
to an MEC server or executed locally. While most existing
works consider models based on homogeneous tasks, task
assignment for heterogeneous tasks was recently proposed [7].
In contrast to these works, we extend the notion of task
assignment to fully exploit the computational capability of
local devices, MEC servers, and cloud servers by allowing
individual tasks to be partitioned.

Task partitioning has been considered in some recent
works under different partitioning patterns and design ob-
jectives [10]–[15], [17]. The partitioning between the local
device and the cloud server was considered in [10], while
task partitioning between the local device and the MEC server
was considered in [11]–[14]. In [11], joint optimization of
the task partitioning ratio, device transmit power, and device
computational speed was performed to minimize the device’s
energy consumption and task execution latency. In [12], the
task partitioning ratio and communication resources were
optimized to minimize the total energy consumption. In [13]–
[15], the optimal partitioning ratio and resource allocation

2The case of dependent subtasks will be investigated in future work.

were derived with the objective of minimizing the overall
offloading latency. Our paper differs from the above works
in that we consider task partitioning among local device, EN,
and cloud server to fully utilize task partitioning for latency
reduction. Moreover, compared to these works that targeted a
single EN or a single user, we consider a multi-EN-multi-user
setting, which necessitates optimizing user association.

To harness the benefits of utilizing multiple ENs for task
offloading, cooperation among ENs was considered [8], [9],
[15]. Specifically, a user can offload its tasks to multiple
ENs [8], [15], or the ENs can send their workloads to each
other [9]. The optimization of user association in multi-cell
based MEC systems was recently investigated. In [16], [17],
joint optimization of user association and resource allocation
was carried out to minimize the total energy consumption.
In contrast to these works, we aim to minimize the average
latency in delay-sensitive MEC applications.

III. SYSTEM MODEL

A. Problem Setup

We consider a multi-user MEC system consists of one cloud
server and multiple MEC servers that are placed next to or
integrated into the BSs of a wireless cellular network. The
combination of a BS and an MEC server is regarded as an edge
node (EN), which is connected to the cloud server via backhaul
connections. There are J ENs indexed by j ∈ {1, . . . , J} ,
J , which collectively serve K mobile users equipments (UE),
indexed by k ∈ {1, . . . ,K} , K. The user associations are
defined by the following binary variables:

xk,j ,

{
1, if UE k is associated with EN j
0, otherwise,

k ∈ K, j ∈ J . (1)

We consider each UE can be associated with at most one EN.
For UEs associated with EN j, their tasks can be executed
at EN j and/or forwarded by EN j to the cloud server for
execution. We assume that each UE generates one task at a
time. Each task can be partitioned into multiple independent
subtasks, each with its own data. An example of such a task is
object recognition from videos taken by cameras. Each video
clip can be partitioned into multiple segments and processed
at the UE, EN, and cloud server, respectively. Suppose that
xk,j = 1, the ratios of subtasks assigned to UE k, EN j, and
the cloud server are denoted by αk, βk,j , and γk,j , respectively.
Specifically, they are the fractions of input data (e.g., file sizes
of video segments) of the task generated by UE k.3

B. Computational Model

The task generated by any UE k is parameterized by the size
of input data sk (in bits) and the computational complexity zk,

3Because a task cannot be partitioned into arbitrarily small subtasks,
(αk ,βk,j ,γk,j) can only take a finite number of values. For example, if a
task can be partitioned into 10 comparable subtasks, the partitioning ratios
can only be values in the set of {0, 0.1, . . . , 0.9, 1}. In this paper, we first
obtain the optimal (αk ,βk,j ,γk,j) in the continuous domain [0, 1] and then
round them to the closest feasible values.
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defined by the number of CPU cycles required to execute one
bit of the task. Then, the number of CPU cycles required to
complete the whole task is skzk.

1) Local UE Computing Time: Let c(L)
k be the computa-

tional capability of UE k, measured in CPU cycles per second.
Given αk, the number of CPU cycles required to complete the
subtasks assigned to UE k is αkskzk. Then, the execution time
in seconds at UE k is given by:

t
(L)
comp,k =

αkskzk

c
(L)
k

. (2)

2) MEC Server Computing Time: Let c(E)
j be the compu-

tational capability of EN j. We assume that this capability is
equally allocated to all UEs associated with EN j during each
time slot. For notational simplicity, we denote the traffic load
of EN j by Qj ,

∑K
k=1 xk,j . Given βk,j , the execution time

for the subtasks of UE k at EN j is given by:4

t
(E)
comp,k,j =

βk,jskzk

c
(E)
k,j

=
βk,jskzkQj

c
(E)
j

, k ∈ K, j ∈ J . (3)

3) Cloud Server Computing Time: We assume that the
cloud server provides a fixed computational capability to UE k,
given by c(C)

k , which is based on the plan of service purchased
by UE k. Suppose UE k is associated with EN j, the execution
time at the cloud server is given by:

t
(C)
comp,k,j =

γk,jskzk

c
(C)
k

, k ∈ K, j ∈ J . (4)

C. Communication Model

The cellular network considered in this paper adopts an
orthogonal time-frequency resource allocation, e.g., OFDMA,
as used in LTE and 5G systems. The communication resource
is equally allocated among all UEs associated with an EN to
achieve logarithmic rate maximization [18]. Each EN can mea-
sure the uplink signal-to-interference-plus-noise ratio (SINR)
of UEs associated with it [12]–[14]. Then, the data rate of UE
k when associated with EN j is given by:

Rk,j =
W log (1 + θk,j)

Qj
(5)

where W is the bandwidth of the access channel for each
EN and θk,j is the SINR for the uplink from UE k to EN j.
We assume that UE k can be connected to EN j only when
θk,j is no less than a given threshold θth. Let πk be the set
of ENs that can be employed by UE k for task offloading,
πk = {j |θk,j ≥ θth }. Then, we have:

xk,j = 0,∀j /∈ πk. (6)

We assume that a UE only needs to upload the input data of
its subtasks to the associated EN. The subtasks to be offloaded

4We assume that the computation resource allocated to each task remains
the same within a time slot. When some tasks are completed earlier than
others, the unused computational capacity would not be allocated to other
ongoing tasks. The length of a time slot is set to be a value such that all tasks
can be completed during one time slot.

include the ones to be executed by the EN and the cloud server.
Then, the offloading time from UE k to EN j is given by:

t
(E)
off,k,j =

(βk,j + γk,j)sk
Rk,j

=
(βk,j + γk,j)skQj
W log (1 + θk,j)

. (7)

We consider a wired backhaul link of rate Mj between EN
j and the cloud sever, and the link capacity is equally divided
to transmit the input data of all UEs served by EN j. Then,
the backhaul transmission time is t(B)

off,k,j =
γk,jskQj

Mj
. Thus,

the total time required for offloading the subtasks of UE k to
the cloud server via EN j is given by:

t
(C)
off,k,j = t

(E)
off,k,j + t

(B)
off,k,j . (8)

Due to the small size of output data, the latency for sending
the outcome of a task to a UE is neglected [4], [12].

D. Task Completion Latency

Let t(L)
k , t(E)

k , and t
(C)
k be the total elapsed time until the

subtasks of UE k are completed at the local device, EN j, and
cloud server, respectively, they are calculated by:

t
(L)
k = t

(L)
comp,k,

t
(E)
k,j = t

(E)
off,k,j + t

(E)
comp,k,j ,

t
(C)
k,j = t

(C)
off,k,j + t

(C)
comp,k,j . (9)

As the subtasks are independent of each other, they can be
concurrently executed. Thus, the latency of for completing the
whole task is the latency of latest completed part, given by:

Tk = max

t(L)
k ,

J∑
j=1

xk,jt
(E)
k,j ,

J∑
j=1

xk,jt
(C)
k,j

 . (10)

IV. PROBLEM FORMULATION

In this paper, we aim to minimize the average latency of
UEs. Let α, β, γ, and x denote the vector [αk]k∈K, the
matrix [βk,j ]k∈K,j∈J , the matrix [γk,j ]k∈K,j∈J , and the matrix
[xk,j ]k∈K,j∈J , respectively. The problem formulated as:

P1 : min
{α,β,γ,x}

∑K
k=1Tk (11)

s.t.: αk +
∑J
j=1βk,j +

∑J
j=1γk,j = 1, k ∈ K, (12)∑J

j=1xk,j ≤ 1, k ∈ K, (13)∑K
k=1xk,j ≤ Sj , j ∈ J , (14)

βk,j , γk,j ≤ xk,j , k ∈ K, j ∈ J , (15)
0 ≤ αk, βk,j , γk,j ≤ 1, k ∈ K, j ∈ J , (16)
xk,j ∈ {0, 1} , k ∈ K, j ∈ J , (17)
xk,j = 0, k ∈ K, ∀j /∈ πk. (18)

In problem P1, constraints in (12) come directly from the
definitions of α, β, and γ; constraints in (13) indicate that
each UE can be associated with at most one EN; constraints
in (14) enforce the upper bound on the number of UEs that
can be served by EN j, given by Sj (e.g., Sj is the number
of channels); constraints in (15) are due to the fact that a UE
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Fig. 2. Illustration for optimal task partitioning.

can assign a certain ratio of its task to EN j only when it is
associated with EN j; and constraints in (18) result from the
SINR constraint as described in (6).

V. SOLUTION ALGORITHMS

We decompose P1 into two levels of subproblems. The
lower-level subproblem determines the optimal task partition-
ing ratios with a given user association. The higher-level
subproblem determines the user association given that the
optimal task partitioning is applied, which is solved by a dual
decomposition-based approach.

A. Optimal Task Partition with Given User Association

As discussed, the latency of a task equals to the latency of
subtasks that are completed at the latest among UE, EN, and
cloud server. Since αk+

∑J
j=1 xk,jβk,j +

∑J
j=1 xk,jγk,j = 1,

a decrease of one ratio would cause an increase of at least
one of the other ratios. Thus, the optimal task partitioning
is achieved when the subtasks executed at the UE, the EN,
and cloud server are completed at the same time, as shown in
Fig. 2. Then, we have the following equations:

t
(L)
k =

∑J

j=1
xk,jt

(E)
k,j =

∑J

j=1
xk,jt

(C)
k,j . (19)

Let α∗k, [β∗k,j ]j∈J , and [γ∗k,j ]j∈J be the optimal task parti-
tioning ratios of UE k. Applying the expressions given in (9)
to (19), we have:

α∗kskzk

c
(L)
k

=

(
J∑
j=1

β∗k,j+
J∑
j=1

γ∗k,j

)
skQj

W log (1 + θk,j)
+

J∑
j=1

β∗k,jskzkQj

c
(E)
j

=

(
J∑
j=1

β∗k,j+
J∑
j=1

γ∗k,j)skQj

W log (1 + θk,j)
+

J∑
j=1

γ∗k,jskQj

Mj
+

J∑
j=1

γ∗k,jskzk

c
(C)
k

(20)

Combine (20) with the equation α∗k +
∑J
j=1 β

∗
k,j +∑J

j=1 γ
∗
k,j = 1, the solutions of α∗k,

∑J
j=1 β

∗
k,j , and∑J

j=1 γ
∗
k,j can be obtained. Finally, based on [xk,j ]j∈J , the

optimal αk, [βk,j ]j∈J , and [γk,j ]j∈J are obtained.

B. Dual Decomposition-Based User Association

Let Γk,j be the latency of UE k when associated with EN
j under optimal task partitioning, which can be obtained by

solving the equations given in (20). Note that it is also possible
that UE k is not associated with any EN, i.e.,

∑J
j=1 xk,j = 0.

For this case, the latency of UE k is its local computing time
skzk
c
(L)
k

. Combining the two cases, the latency of UE k under the
optimal task partitioning T ∗k is given by:

T ∗k =

J∑
j=1

xk,jΓk,j +

1−
J∑
j=1

xk,j

 skzk

c
(L)
k

. (21)

Then, the objective function of the user association problem
is given by:

K∑
k=1

T ∗k =

K∑
k=1

skzk

c
(L)
k

+

K∑
k=1

J∑
j=1

xk,j

(
Γk,j −

skzk

c
(L)
k

)
. (22)

Let ∆k,j ,
skzk
c
(L)
k

−Γk,j , it can be interpreted as the achievable
latency reduction of UE k when it is associated with EN
j, compared to executing the task by itself. From (22), we
can see that minimizing sum latency

∑K
k=1 T

∗
k is equivalent

to maximizing the sum latency reduction
∑K
k=1

∑J
j=1 ∆k,j .

Then, the user association problem can be formulated as:

P2 : max
{x}

∑K
k=1

∑J
j=1xk,j∆k,j (23)

s.t.:
∑J
j=1xk,j ≤ 1, k ∈ K, j ∈ J , (24)∑K
k=1xk,j ≤ Sj , j ∈ J , (25)

xk,j ∈ {0, 1} , k ∈ K, j ∈ J , (26)
xk,j = 0, k ∈ K, ∀j /∈ πk. (27)

Problem P2 is an integer programming problem that is NP-
hard. To derive an effective solution algorithm, we relax the
integer constraint by allowing all xk,j to take values in [0, 1].
Although the relaxed problem, P2-Relexted, is non-convex,
we apply a dual decomposition approach to obtain the solution
and show that a near-optimal solution can be achieved.

A key design objective for user association is to achieve load
balancing between ENs. Thus, we set Q , {Q1, . . . , QJ} to
be auxiliary variables and add constraints

∑K
k=1 xk,j = Qj ,

j ∈ J . Then, we have the following problem:

P3 : max
{x}

∑K
k=1

∑J
j=1xk,j∆k,j (28)

s.t.: (24), (25) and (27)∑K
k=1xk,j = Qj , j ∈ J , (29)

xk,j ∈ [0, 1], k ∈ K, j ∈ J . (30)

We apply a partial relaxation on the constraint
∑K
k=1 xk,j =

Qj . The corresponding Lagrangian function is given by:

L (x,λ) =

K∑
k=1

J∑
j=1

xk,j∆k,j +

J∑
j=1

λj

(
K∑
k=1

xk,j −Qj

)
.

(31)

Then, the dual problem of P3 is given by:

P3-Dual: min
{λ}

g(λ) (32)
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where λ is the Lagrangian multiplier for the constraint (29),
and g(λ) is given by:

g(λ) = max
{x}
L (x,λ) . (33)

The problems given in (32) and (33) are solved iteratively by
UEs and ENs until convergence is achieved.

The problem described in (33) can be decomposed into K
subproblems that are solved by each UE. At iteration t, UE k
solves its subproblem by selecting the EN j∗[t] that satisfies:

j∗[t] = arg max
j∈πk

{
∆k,j(Q

[t]
j )− λ[t]

j

}
. (34)

After the selection, each UE sends a notice to the selected
EN. Receiving the notifications from UEs, each EN j updates
xj = [x1,j , . . . , xK,j ] with the following rule:

x
[t]
k,j =

{
1, j = j∗[t]

0, otherwise,
(35)

On the other hand, the problem described in (32) can be
decomposed into J subproblems that are solved by each EN
separately. For each EN j, it updates λ[t]

j by:

λ
[t+1]
j = λ

[t]
j − ρ

[t]
j η

[t]
j (36)

where η[t]
j is the gradient of λ[t]

j , given by:

η
[t]
j = Q

[t]
j −

K∑
k=1

x
[t]
k,j (37)

and ρ[t]
j is the step size, given by:

ρ
[t]
j =

g(λ[t])− g(λ∗)∥∥η[t]
∥∥2 . (38)

After the update of λ[t]
j , EN j updates Q[t]

j with the following:

Q
[t+1]
j = min{

∑K

k=1
x

[t]
k,j , Sj}. (39)

Finally, EN j broadcasts the updated values of λ[t]
j and Q

[t]
j

to nearby UEs. The UEs then initiate the next iteration of EN
selection. The procedure of the dual decomposition-based user
association algorithm is summarized in Algorithm 1.

1) Performance Bound: To show that near-optimal solution
can be achieved, we derive a lower bound on the latency
performance. First, we exhaustively search all possible vectors
Q. For each Q, we relax the feasibility constraints (26) and
(27) in P3 and solve the following linear programming (LP):

P4 : max
{x}

∑K
k=1

∑J
j=1xk,j∆k,j (40)

s.t.: (24), (25), (29) and (30).

Since each element in Q has Sj possible values, the total
number of LPs to be solved is

∏J
j=1 Sj . Among the

∏J
j=1 Sj

LPs, we find the one with the largest value of objective
function

∑K
k=1

∑J
j=1 xk,j∆k,j . Then, the largest value of∑K

k=1

∑J
j=1 xk,j∆k,j is an upper bound for the sum latency

Algorithm 1: Dual Decomposition-Based User Asso-
ciation Algorithm

1 Initialize Q and λ;
2 do
3 for k = 1 : K do
4 UE k selects the optimal EN according to (34) and

informs the selected EN;
5 end
6 for j = 1 : J do
7 EN j updates xj according to (35);
8 Updates η[t] according to (37);
9 Updates λj according to (36);

10 Updates Qj according to (39);
11 end
12 t++
13 while (x does not converge);

reduction. Subtracting this value from the sum of UE local

computing time
K∑
k=1

skzk
c
(L)
k

, the outcome is a lower bound for

the sum latency of all UEs (i.e., performance lower bound).

VI. SIMULATION RESULTS

We evaluate the performance of the proposed scheme with
simulations. We consider a 500 m × 500 m area with 10
ENs and a varying number of users randomly located in the
area. The channel model includes a distance-dependent path
loss 140.7 + 36.7log10d in dB and Rayleigh fading, where
d is the distance in meters. The UE transmission power is
20 dBm and the noise density is −174 dBm/Hz. The uplink
bandwidth is 10 MHz. The data rate of each backhaul link
is uniformly distributed in [20, 80] Mbps. Unless otherwise
stated, the default number of users is 100, the default size and
complexity of the tasks are sk = 200 KB and zk = 1000 CPU
cycles/bit, respectively. The computational capabilities of UE,
EN, and the cloud server are 1 GHz, 50 GHz, and 100 GHz,
respectively. Each task can be partitioned into 50 subtasks,
hence the resolution for task partitioning ratios is 0.02.

The proposed scheme is compared with several benchmark
schemes. The first one is edge-only scheme, where all subtasks
are executed at the EN; the second one is cloud-only scheme,
where all subtasks are executed at the cloud server. For a fair
comparison, the dual decomposition-based user association is
applied in these two schemes. The third scheme is a heuristic
user association scheme (termed heuristic-UA), in which each
UE is associated with the EN with the maximum SINR, and
the optimal task partitioning is applied.

The average latency versus the number of users is shown
in Figs. 3(a). We can see that the average latency reduces
as the traffic load increases. When the traffic load is low,
the edge-only scheme outperforms the cloud-only scheme,
showing the advantage of edge computing. When the traffic
load is high, the cloud-only scheme outperforms the edge-
only scheme, since more users share the resources of ENs.
The proposed scheme and heuristic-UA scheme outperform
the previous two schemes, as the tasks are properly partitioned
and assigned among UE, ENs, and cloud servers. The proposed
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Fig. 3. Simulation results. (a) average latency vs. number of users, (b) average latency vs. input data size, (c) optimal partitioning ratios vs. number of users.

scheme outperforms the heuristic-UA scheme, since the set of
UEs associated with each EN is optimized and a good load
balancing among ENs is achieved. The performance of the
proposed scheme is close to the lower bound, showing that
the near-optimal user association can be achieved.

The average latency versus task input data size is presented
in Fig. 3(b), where similar trends among different schemes are
observed. When the data size is small, the latency reduction
achieved by the proposed schemes is small, since the UE is
able to execute the tasks in a timely manner. As the input data
size increases, a higher latency reduction can be achieved.

The average optimal partitioning ratios versus the numbers
of users is plotted in Fig. 3(c). As the number of users in-
creases, the ratios assigned to the local device and cloud server
increase, while the ratio assigned to the edge server decreases.
This is because both the offloading time and computing time
at the EN are higher when the traffic load increases, while the
computing times at UE and cloud server are not impacted by
the traffic load. To minimize the total latency, the workload
assigned to the edge server should be reduced.

VII. CONCLUSIONS

In this paper, we considered the joint optimization of task
partitioning and user association in MEC systems. Such a
problem is formulated as a mixed-integer programming prob-
lem. We solved the formulated problem by decomposing it
into two levels of subproblems and developing an efficient
solution for each subproblem. Simulation results show that
the proposed scheme lowers the average latency by about 50%
compared to several benchmark schemes.
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