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Abstract— We consider the problem of minimizing network’s
transmit power for given transmission rate demands of all links in
a multi-input multi-output (MIMO) ad hoc network. The problem
is nonconvex, hence, challenging to be solved, even in a centralized
manner. To derive a distributed solution, we reformulate the
problem as a noncooperative game. We then propose a network
interference function (NIF) that captures the total interference
incurred at unintended receivers by all transmitters. The proposed
NIF sets the light for designing transmitter-dependent pricing
policies for the above game. A price-based iterative water-filling
algorithm (PIWF) is proposed to find MIMO precoding matrices,
which determines both beam directions and transmission power
allocation among antennas (or data streams) at each transmitter.
Simulations show that PIWF is more power-efficient than all
existing MIMO precoding methods. Additionally, NIF under
PIWF is also the least. Simulations also show the fast convergence
of PIWF.

I. INTRODUCTION

In this work, we focus on the power efficiency of multi-
input multi-out (MIMO) mobile ad hoc network (MANETs).
Specifically, we design transmitters’ precoding matrices so as
to minimize the total network power under constraints on the
transmission rates of all scheduled links. A precoding matrix
determines both the power allocation among antennas and
antennas’ radiation beam directions of a transmitter. Hence, our
work not only addresses the power allocation but also optimizes
beamformers for MIMO transmitters.

In the literature, there have been a vast body of works on
MIMO precoding-matrix design, categorized into beamforming
and generalized eigencoding. In beamforming e.g., [1] [2],
there is only one data stream to be sent, hence all precoding
matrices reduce to vectors (matrices of rank one). In generalized
eigencoding, there is no constraint on the rank of the precoding
matrices [3], i.e., several data streams can be sent simultane-
ously. Inspired by the introduction of the spatial multiplexing
technique into existing networks (e.g., IEEE 802.11n allows
up to four concurrent multiplexed streams), generalized eigen-
coding has recently attracted great attention. We emphasize that
despite of the numerous MIMO precoding-matrix designs (e.g.,
[2] [4] [5] [6] and therein references), only few of them aim at
minimizing network power consumption.

The authors of [1] and [3] respectively minimized the net-
work power for the cases of beamforming and generalized
eigencoding, where MIMO nodes are implicitly assumed to
transmit and receive simultaneously on the same frequency
band (full-duplex transceivers). The algorithms in [1] and [3]
greatly outperform the greedy algorithm in [5] [7] in terms of
power efficiency. These algorithms are also practically attractive
as their inputs are two noise-plus-interference covariance ma-
trices of the transmitter and the receiver, which can be obtained
locally. However, in the case of half-duplex devices, we found
that these algorithms do not always converge. Moreover, for
convergent cases, they are surprisingly less power-efficient
than the greedy algorithm. In [8], the power minimization
problem was addressed for half-duplex MIMO nodes with
beamforming technique. The channel in [8] is not reciprocal,
hence transmit beamformers are selected from a finite set
of codewords (codebook) to ease feedback requirement. The
problem of power allocation and beamforming were treated in
a sequential order. In contrast to previous works, we develop a

power-efficient generalized eigencoding method for half-duplex
MIMO transceivers with reciprocal channels.

The joint optimization of power allocation for various data
streams and beam patterns of MIMO nodes in MANETs is espe-
cially challenging, even in a centralized manner (due to the non-
concavity of the objective function). To develop a distributed
algorithm, we formulate the problem as a noncooperative game
and propose a network interference function (NIF) that sets the
light to design efficient transmitter-dependent pricing policies
for the game.

Game theory has proved itself as a powerful tool for network
resource allocation problems where each node/link acts as a
player and maximizes its utility/payoff (e.g., transmission rate)
by choosing its strategic response from its action space (e.g.,
transmit power, radiation pattern). In MIMO MANETs, each
node independently selects its transmit strategy by adjusting the
precoding matrix [5] [7] (we refer to this case as the greedy
method). The per-user utility function is concave, resulting in
a water-filling solution that converges to a Nash Equilibrium
(NE) under some mild conditions. This NE is often not Pareto
optimal [9], and may be inefficient with respect to the total
network utility. This is due to the selfishness of the individual
players, who attempt to maximizes their own payoffs. It is well-
known that by introducing a tax/pricing policy, the the social
welfare is often improved [10].

In the context of network resource allocation, price often
refers to the interference a transmitting node induces on others.
We model the total network interference as the sum of traces of
noise-plus-interference covariance matrices at all receivers. The
price function for each transmitter is then set as the interference
this transmitter brings to all unintended receivers. Using this
price function, we propose a price-based iterative water-filling
(PIWF) algorithm that minimizes not only the required trans-
mit power but also the network interference. PIWF algorithm
conserves more than 53% and 47% total transmission power,
compared with the power-efficient precoding method in [3] (for
convergent cases) and the greedy method in [5] [8], respectively.
Our new definition of network interference allows the price
function at a node is calculated locally by taking advantage of
the symmetry in the channel gain. This supports the instant
incorporation of PIWF to existing MIMO networks without
incurring additional signaling overhead.

In Section II, we present the network model, problem for-
mulation, and the PIWF algorithm. We analyze the properties
of this algorithm in Section III. Numerical results are presented
in Section IV. Finally, concluding remarks are provided in
Section V.

II. PROBLEM FORMULATION

Consider a MIMO MANET, consisting of K transmitter-
receiver pairs. For a given transmitter u, let d(u) denote the
corresponding receiver. We assume that each node has a half-
duplex radio then can not transmit and receive at the same
time. S is the set of all transmitters. Each node (transmitter or
receiver) is equipped with M antennas. The channel gain matrix
Hd(u),u for link (u, d(u)) is under flat, Rayleigh fading, i.e.,
the elements of Hd(u),u are complex Gaussian random variables

of zero mean and unit variance. Let (.)H denote the Hermitian



transpose, tr(.) the trace of a matrix, and det(.) the determinant.
The received signal is given by vector yd(u) at d(u):

yd(u) = Hd(u),uT̃uxu +
∑

i∈S\{u}

Hd(u),iT̃ixi +N
(1)

where xu is the vector of information symbols from node u, N
is the complex Gaussian noise vector with identity covariance

matrix I , and T̃u is the transmit precoding matrix at transmitter
u.

The Shannon channel rate from transmitter u to its receiver
d(u) is given by:

Rd(u),u = log det(I + T̃H
u HH

d(u),uC
−1
d(u)Hd(u),uT̃u) (2)

where Cd(u) is the noise-plus-interference covariance matrix at
d(u), given by:

Cd(u) = I +
∑

i∈S\{u}

Hd(u),iT̃iT̃
H
i HH

d(u),i.

As in [5], from the network’s perspective, we want to minimize
the total energy while maintaining a given transmission rate
requirement for each link. Formally, the optimization problem
can be stated as follows:

minimize
T̃
u

∑

u∈S

tr(T̃uT̃
H
u )

s.t. Rd(u),u ≥ cu, ∀ u ∈ S
(3)

where cu is the rate demand for link (u, d(u)).
In general, the above problem is not convex. In [3], instead of

solving (3), the authors defined a new objective function, called
the Total Interference Function (TIF). Minimizing TIF may
lead to a local optimal solution of (3) (shown via simulations).
However, TIF is not applicable to our setup where each user
has only one half-duplex transceiver.

To address the problem in (3), we first formulate it as a
noncooperative game. Using game theory notations, we define
the utility function at transmitter u given its choice of the

precoding matrix T̃u as: Uu(T̃u, T̃−u) = −tr(T̃uT̃
H
u ), where

T̃−u denotes the set of precoding matrices of all transmitters
except u. Given the action space (defined below) and other

transmitters’ choices of their precoding matrices T̃−u, the
transmitter u maximizes its utility as follows:

maximize
T̃
u

Uu(T̃u, T̃−u)

s.t. Rd(u),u ≥ cu.
(4)

The constraints in (4) define the action space of the
player/transmitter u. It is easy to verify the convexity of this
per-user optimization problem (e.g., finding the Hessian of the
objective and constraints by taking derivative with respect to the

matrix T̃u). If all transmitters independently solve problem (4)
(referred to as the greedy case), after some iterations, they all
converge to a NE from which all players have no incentive to
deviate. To push the NE closer to the Pareto curve, we introduce
a pricing policy that makes players/tranmsitters more socially
responsible. The utility function with price becomes:

U
′

u(T̃u, T̃−u) , Uu(T̃u, T̃−u)− Fu(T̃u)

where Fu(T̃u) is the pricing function.
Deriving an optimal pricing policy (i.e., leading to the glob-

ally optimal point of the centralized problem (3)) for a game
is often difficult. Hence, the pricing functions in the literature
are often heuristic in nature. In order to derive a more efficient
pricing policy, one may force the solution resulted from all
distributed per-user optimization problems in (4) to converge to
a local optimal solution of the network-wide problem (3). This
can be realized by using the KKT conditions [11] to equate the
stationary points of (4) to the stationary points of (3) (examples

of the application of this approach can be found in [12] for
cognitive radio networks and [13] for MIMO MANETs). To
ease the complexity of this procedure, the pricing functions
are often in linear forms [14]. However, in our case, following
this procedure leads to a pricing function that is dependent on
global information and the Lagrangian multipliers (µi) of (3).
Specifically, similar to [13], we can set the pricing function

to tr(T̃uAuT̃
H
u ), where Au is interpreted as the pricing-factor

matrix at the transmitter u. After deriving the KKT conditions
for (4) and (3), Au is then computed as follows (the details of
the mathematical manipulations are omitted):

Au = µuH
H
d(u),u(Cd(u) + T̃H

u HH
d(u),uHd(u),uT̃u)

−1Hd(u),u

+
∑

i∈S\{u}

µiH
H
d(i),u(C

−1
d(i)−(Cd(i)+T̃H

i HH
d(i),iHd(i),iT̃i)

−1)Hd(i),u.

It can be seen that Au is a function of not only the La-
grangian’s multipliers µi of (3) but also all precoding matrices
of other transmitters. Hence, we have to find other ways to
derive the pricing function.

The idea of characterizing and minimizing the total network
interference of MIMO MANETs was first introduced in [1]
for the case of beamforming and then extended to generalized
eigencoding in [3]. Network interference models in [1] and
[3] are generalized forms of the total squared correlation
function in CDMA systems [15]. As mentioned earlier, these
models, implicitly developed for full-duplex devices, lead to
unstable and power-inefficient precoders for half-duplex MIMO
transceivers.

We propose to quantify the network interference by the trace
of all interference-plus-noise covariance matrices at all receivers
(referred to as Network Interference Function-NIF):

NIF , tr{
∑

u∈{S}

Cd(u)}

= tr{KI +
∑

d(i)

∑

u∈S\{i}

Hd(i),uT̃uT̃
H
u HH

d(i),u}

= Ktr(I) +
∑

d(i)

∑

u∈S\{i}

tr{T̃H
u HH

d(i),uHd(i),uT̃u}

= Ktr(I) +
∑

u∈S

tr{T̃H
u [

∑

d(i) 6=d(u)

HH
d(i),uHd(i),u]T̃u}.

(5)

From (5), we observe that if each transmitter tries to mini-
mize the interference from itself to all unintended receivers, the
trace of matrix NIF is then minimized. Intuitively, the transmit-
ter can realize that by selecting its appropriate precoding matrix
such that the antenna’s radiation beams are kept away as much
as possible from unintended receivers. Hence, we propose a
pricing function for transmitter u of the following form:

Fu(T̃u) = tr{T̃H
u [

∑

d(i) 6=d(u)

HH
d(i),uHd(i),u]T̃u}. (6)

The per-user optimization problem (4) at transmitter u be-
comes:

minimize
T̃
u

tr{T̃H
u [I +

∑

d(i) 6=d(u)

HH
d(i),uHd(i),u]T̃u}

s.t. log det(I + T̃H
u HH

d(u),uC
−1
d(u)Hd(u),uT̃u) ≥ cu.

(7)

Note that to obtain its pricing function, a transmitter needs
to know the channel matrix from itself to other receivers in
its neighborhood. This information can be obtained easily by
overhearing signalling packets at the MAC layer. For example,
in the IEEE 802.11n scheme, by capturing the CTS message
(containing a training sequence) from an unintended receiver,
a transmitter can estimate the channel gains between itself and
the receiver, assuming the channel-gain reciprocity (the channel
matrix from u to d(i) is equal to the transpose of the channel
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matrix from d(i) to u, i.e., Hd(i),u = HT
d(i),u). The mechanism

above does not incur additional cost to existing MIMO systems
as training sequences are often used to estimate the channel
between any pair of transmitter and receiver. Even in the case of
fast fading (which results in difficulties to estimate the channel
matrices), one may adapt the pricing function to take advantage
of only the channel statistics. This is left for a future work.

The game in (7) can be solved iteratively by the following
price-based iterative water-filling (PIWF) algorithm:

1) Initialization: Each transmitter u randomly selects its

transmit precoding T̃
(intial)
u matrix and begins transmit-

ting.
2) Loop Until Convergence: At the nth step, each transmitter

u first updates its pricing function Fu(T̃u) as in (6) by
estimating the channel matrix Hd(i),u from itself to other
receivers within its range. The noise-plus-interference
covariance matrix Cd(u) at receiver d(u) is estimated
locally and is fed back to its transmitter u. Subsequently,

transmitter u updates its new precoding matrix T̃
(n)
u

as the generalized eigen matrix of the matrix [I +
∑

d(i) 6=d(u)

HH
d(i),uHd(i),u] and matrix HH

d(u),uC
−1
d(u)Hd(u),u

(equation (8)). The new power allocation follows the
water-filling algorithm derived in equation (10). Even-

tually, u transmits using its newly updated T̃
(n)
u .

The iteration in the loop can be of Jacobi or Gauss-Seidel
types. Using Jacobi iteration type, at the nth step, Cd(u) is

updated with T̃−u from the previous iteration of all other
transmitters. Under the Gauss-Seidel update method, the noise-
plus-covariance matrix Cd(u) at the receiver d(u) is computed

based on the latest T̃−u matrices from other transmitters (thus,
some precoding matrices are from the previous iteration and
some from the current iteration).

III. ANALYSIS OF THE PIWF ALGORITHM

In this section, we prove the existence of a NE for the PIWF
algorithm. The convergence of this algorithm is established
under the Gauss-Seidel update method. We begin by showing
how to obtain the best response for each player by solving (7).

Theorem 1: The best response, i.e., the optimal precoding

matrix T̃u at node u for problem (7), is the generalized eigen
matrix of the matrix [I +

∑

d(i) 6=d(u)

HH
d(i),uHd(i),u] and matrix

HH
d(u),uC

−1
d(u)Hd(u),u.

Proof: The proof uses Hadamard’s inequality as in [3] [13] and
is omitted due to space limit. �

Theorem 1 states a class of matrices that the solution T̃u
of (7) must belong to. This class tells the directions that a
transmitter u should point its radiation beams to. The next
step is to find the optimal power allocation. Let Pu denote the
power allocation matrix of all streams sent from u to d(u) with
Pu(k, k) be the power allocated on data stream k (k is from

1 to M ). To ensure that T̃u belongs to the class of matrices
specified by theorem 1, let:

T̃u = TuP
1/2
u (8)

where P
1/2
u is the square root of matrix Pu and Tu is a unit-

norm matrix, obtained by normalizing columns of the general-
ized eigen matrix of matrices [I +

∑

d(i) 6=d(u)

HH
d(i),uHd(i),u] and

HH
d(u),uC

−1
d(u)Hd(u),u.

Since Tu is also a generalized eigen matrix of [I +
∑

d(i) 6=d(u)

HH
d(i),uHd(i),u] and matrix HH

d(u),uC
−1
d(u)Hd(u),u, Tu

diagonalizes matrix [I +
∑

d(i) 6=d(u)

HH
d(i),uHd(i),u] and matrix

HH
d(u),uC

−1
d(u)Hd(u),u:

T̃H
u [I +

∑

d(i) 6=d(u)

HH
d(i),uHd(i),u]T̃u = P 1/2

u D(1)
u P 1/2

u

T̃H
u HH

d(u),uC
−1
d(u)Hd(u),uT̃u = P 1/2

u D(2)
u P 1/2

u

where D1
u and D

(2)
u are diagonal matrices with nonnegative

entries D
(1)
u (k, k) and D

(2)
u (k, k) along their diagonals, respec-

tively. Problem (7) becomes:

minimize
Pu(k,k)

∑M
k=1 Pu(k, k)D

(1)
u (k, k)

s.t.

M
∑

k=1

log(1 + Pu(k, k)D
(2)
u (k, k)) ≥ cu.

(9)

The solution to (9) is obtained by a using water-filling algorithm
(interested readers are referred to [3] for more details), as
follows:

Pu(k, k) = max
{

0,

[

wu

D
(1)
u (k, k)

−
1

D
(2)
u (k, k)

]

}

(10)

where wu is the warter-level on m parallel data streams, given
by:

wu = exp









cu −
m
∑

k=1

[log(D
(2)
u (k, k))− log(D

(1)
u (k, k))]

m









.

Note that, from (10), the effect of the pricing function in

(6) is now implicitly embedded in the eigenvalues D
(1)
u (k, k)

(k = 1 . . .M ). When the price on sub-channel k is high (large

D
(1)
u (k, k)), less power is allocated for it, and viceversa.
Theorem 2: There exists at least one NE for the non-

cooperative game in (7).
Proof: We need to show that:

1) The action space of each player is convex and compact.

2) The utility function U
′

u(T̃u, T̃−u) is concave.

To prove the first requirement, we impose a technical con-
straint on the total power consumption of the transmitter u,

meaning that tr(T̃H
u T̃u) ≤ Pmax. This assumption is rea-

sonable as MANET nodes’ power is always limited. This
assumption also implicitly eliminates rate demands that are
infeasible/unattenable as a results of interference-limited com-
munications. As shown previously, given the matrices [I +

∑

d(i) 6=d(u)

HH
d(i),uHd(i),u] and HH

d(u),uC
−1
d(u)Hd(u),u, the action

space of the transmitter u reduces to finding the power allo-
cation vector Pu. Now, the constraint on the total power of a
node becomes

∑

k Pu(k, k) ≤ Pmax. This is a linear constraint,
hence is convex. The other constraint is [cu − log det(I +
T̃H
u HH

d(u),uC
−1
d(u)Hd(u),uT̃u)] ≤ 0 is also a convex function of

T̃u while fixing T̃−u. Therefore, the feasible region of (7) or the
action space of the game is the intersection of convex regions,
thus convex. Its compactness is due to the constraint on the
total power consumption.

To check the concavity of the objective function

U
′

u(T̃u, T̃−u), we prove that −U
′

u(T̃u, T̃−u) is convex by

showing that the Hessian of −U
′

u(T̃u, T̃−u) is positive-definite,
as follows:

H ,
∂2U

′

u(T̃u, T̃−u)

∂T̃ 2
u

= I +
∑

d(i) 6=d(u)

HH
d(i),uHd(i),u � 0.

(11)
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where B � 0 means that matrix B is positive-definite. Hence,
the game in (7) is a concave game which always admits a fixed
point. �

The existence of the NE does not mean that PIWF converges.
Fortunately, if we use the Gauss-Seidel iteration method, we can
claim the convergence of the PIWF algorithm to a NE.

Theorem 3: The PIWF algorithm that solves the problem
(7) at each user converges to a NE.
Proof: Let’s define a Lyapunov-type function of all precoding
matrices as follows:

L ,
∑

u∈S

−U
′

u(T̃u, T̃−u)

=
∑

u∈S

tr{T̃H
u [I +

∑

d(i) 6=d(u)

HH
d(i),uHd(i),u]T̃u}.

(12)

At the nth iteration step :

L(n) =
∑

u∈S

tr{T̃ (n)H
u [I +

∑

d(i) 6=d(u)

HH
d(i),uHd(i),u]T̃

(n)
u }

(13)

where T̃
(n)
u is the precoding matrix of the transmitter u at the

nth iteration. We have the following observations:
Observation 1: For each transmitter u ∈ S, L(n) is a convex

function of T̃
(n)
u .

This observation is due to the fact that the Hessian of L(n)

with respect to T̃
(n)
u is that of −U

′

u(T̃
(n)
u , T̃

(n−1)
−u ), previously

shown to be positive-definite. Hence:

L(n−1) ≥ L(n) + tr{[
∂L

∂T̃u

|
T̃u=T̃

(n)
u

]H(T̃ (n−1)
u − T̃ (n)

u )}

≥ L(n) + tr{[
∂L

∂T̃u

|
T̃u=T̃

(n)
u

]H T̃ (n−1)
u }

− tr{[
∂L

∂T̃u

|
T̃u=T̃

(n)
u

]H T̃ (n)
u }.

(14)

Observation 2:

− U
′

u(T̃
(n)
u , T̃

(n−1)
−u )

= tr{T̃ (n)H
u [I +

∑

d(i) 6=d(u)

HH
d(i),uHd(i),u]T̃

(n)
u }

= tr{([I +
∑

d(i) 6=d(u)

Hd(i),uH
H
d(i),u]T̃

(n)
u )H T̃ (n)

u }

= tr{[
∂L

∂T̃u

|
T̃u=T̃

(n)
u

]H T̃ (n)
u }.

Moreover, using the Gauss-Seidel iteration method, we have:

T̃ (n)
u = argmax

T̃
u

(

U
′

u(T̃u, T̃
(n−1)
−u )

)

= argmin
T̃
u

(

−U
′

u(T̃u, T̃
(n−1)
−u )

)

Hence:

tr{[
∂L

∂T̃u

|
T̃u=T̃

(n)
u

]H T̃ (n)
u } ≤ tr{[

∂L

∂T̃u

|
T̃u=T̃

(n)
u

]H T̃ (n−1)
u }.

(15)
From (14) and (15), we get:

L(n−1) ≥ L(n).

In other words, L is a non-increasing function. Intuitively, at
each iteration, transmitters solve the per-user optimization (7)
to minimize their required transmit power and interference.
Hence, L, which represents the total power and interference
from all transmitters in the network at the next iteration, must
be a non-increasing function. L is simply bounded from below
by zero. Thus, PIWF algorithm must converge. The converged
point must be a NE, otherwise one user can still unilaterally

improves its return U
′

i (T̃i, T̃−i) (that violates the convexity of
the individual problem (7)). �

IV. NUMERICAL RESULTS

In this section, the performance of the PIWF algorithm is
evaluated via simulations using MATLAB. Specifically, we
compare the transmission power and network interference of
PIWF with two representative methods in the literature. The
first method was developed similarly to that in [5] [7], where
no pricing function was used and the precoding matrices were
obtained from problem (4) by using an iterative water-filling
algorithm (thus, we name this method as IWF). Note that the
performance of IWF should be superior to that of [8] as IWF
jointly solves the power allocation and beamforming problems
while [8] addressed these problems sequentially. The second
method is from [3], in which nodes were assumed to be full-
duplex (hence, we refer to this method as FD) and the precoding
matrices were found to satisfy the data rate requirement in the
both forward and backward directions. From a game theory’s
point of view, the precoding matrices in [3] are obtained by
introducing a pricing-function that depends on the covariance
matrix of interference at the transmitter.
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The simulated MIMO MANET consists of K pairs of
transmitters and receivers, uniformly distributed within an area
of 1000 meter x 1000 meter. Each node uses an antenna array
of 4 elements to transmit or receive. The free-space attenuation
factor is 4 and the received power at a reference distance of
100 meters reduces 10dB compared to the transmit power. The
data rate requirement for every link is set to 1bps/Hz. The
maximum spreading of arrival angle of signal at a receiver is
π/6. To account for the randomness, for each plotted point, we
generate 50 different network topologies and take the averaged
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Fig. 1. Snapshots of an 8-link network and its antennas’ radiation patterns under FD (a), IWF (b), PIWF (c) algorithms.
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Fig. 5. Network interference under PIWF, IWF, and FD algorithms v.s. the
number of links.

results. As algorithms in [3] does not always converge, its
results are recorded for only convergent cases.

First, consider an 8-link network. A snapshot of its topology
and antenna patterns under FD, IWF, PIWF algorithms are
shown in Figure IV. As seen, transmitters under the PIWF
algorithm tend to steer their beams away from nearby receivers.
Figure 2 compares network’s total power consumption of the
three precoding methods. As we can see, PIWF conserves
about 47% and 53% power, compared with IWF and FD,
respectively. With half-duplex transceivers, it is worth noting
that IWF is slightly more power efficient than FD (though
under the full-duplexity assumption, it has been known that
FD greatly outperforms IWF [3]). We also observe that PIWF
converges after about 4 iterations, faster than FD and IWF
(which converges after about 7 iterations). The fast convergence
of PIWF facilitates its distributed protocol implementation.

The Lyapunov-type function L, defined in (12), is plotted in
Figure 3. As can be seen, L is a non-increasing function.

Figure 4 depicts the total transmission power of the three al-
gorithm versus the number of links in the network. As expected,
PIWF requires less power than both IWF and FD. For all
three precoding methods, when the number of links increases,
transmitters have to spend more power to combat higher multi-
user interference. Consequently, network interference NIF also
increases with the number of network’s links, as shown in
Figure 5. Figure 5 also shows that NIF under PIWF algorithm
is the least among three algorithms.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a distributed algorithm to design
the precoding matrices for MIMO MANETs with half-duplex
transceivers using generalized eigencoding. The objective of
the algorithm, called PIWF, is to minimize the total network
power while satisfying the transmission rate requirements of all
links. The key idea in the PIWF algorithm is the introduction
of a network interference function, then transmitter-dependent
pricing functions. We prove the existence of a NE and the
convergence of the algorithm to the NE. Simulation results

show that the algorithm significantly conserves total power
consumption in the network, compared with existing methods,
e.g., those in [5] [8] [3] [7]. Our algorithm can be implemented
distributively without incurring additional signalling overhead.
Our future work will focus on extending the algorithm to the
case when only partial channel information is available.
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