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Abstract—Narrow beams in millimeter-wave (mmWave) com-
munication introduce significant beam misalignment challenges.
In this paper, we introduce MAMBA-X, an enhanced version
of the MAMBA beam tracking scheme. Basically, MAMBA
uses a restless multi-armed bandit framework to capture the
dynamics of mmWave links by discounting the relevance of past
observations using a “forgetting factor” (γ1) and increases the
weight of recent observations via a “boost factor” (γ2). Because
the original MAMBA uses fixed values for γ1 and γ2, it cannot
quickly adapt to variations in user mobility. Moreover, if the time
between consecutive beam selection instances is large compared
to channel dynamics, past observations become obsolete. To
tackle these issues, we first use the concept of beam coherence
time to establish a bound on the beam selection intervals.
Secondly, we show that the performance of MAMBA depends
primarily on the value of γ1 which, in turn, depends on UE
mobility. We develop a Long Short-Term Memory (LSTM) model
to dynamically predict and update the optimal value of γ1.
Through extensive simulations at 28 GHz and using publicly
available 5G NR experimental dataset, we evaluate MAMBA-X.
Our results indicate that the total delivered traffic is improved by
up to 46.8% relative to the original MAMBA and 142% compared
to the default beam management scheme in 5G NR.

Index Terms—Millimeter-wave, beam tracking, LSTM, rein-
forcement learning, beam coherence time.

I. INTRODUCTION

With the increasing demand for high data rates, wireless

systems are increasingly shifting to new spectrum frontiers

in the millimeter-wave (mmWave) band. MmWave spectrum

is a key aspect of next-generation wireless systems such as

5G NR and WiGig. One major drawback of transmissions at

mmWave frequencies is that the signal suffers from very high

attenuation compared to sub-6 GHz bands. None-the-less, by

utilizing high-dimensional phased antenna arrays with high

directivity (and gain) it is possible to achieve higher data rates

even in a harsh mmWave channel environment [1].

Although analog beamforming provides high gains, it is

quite difficult to establish and maintain a directional link.

During initial access (IA) or cell discovery, the BS establishes

a communication link with a new UE and updates the links

of already connected ones. However, the IA process incurs

significant overhead [2]. Moreover, due to UE mobility and
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environmental changes, significant beam misalignment can

occur resulting in reduced data rate and communication outage

[3]. Therefore, it is critical to track mobile UEs efficiently so

as to maintain the quality of service of the communication

link.

Several techniques were proposed in the literature to address

this issue [4]–[6]. MAMBA [7] is a restless multi-armed bandit

(MAB) framework for beam tracking in mmWave systems. In

MAMBA, the BS acts as the agent and interacts with each

beam to learn the changes in beam quality over time. MAMBA

utilizes a technique called adaptive Thompson sampling (ATS)

to determine the best beam for transmission/reception based

on past observations of the channel. Moreover, to address the

nonstationarity of the channel, MAMBA uses a “forgetting

factor” (γ1) and a “boost factor” (γ2) to control the impact

of its past observations on the decision of best beam selection.

The performance of MAMBA depends on how well it can

adapt to link/channel variations. In mobile scenarios, link

dynamics are strongly dependent on UE speed and distance

from the base station. Thus, using fixed values for γ1 and

γ2 cannot properly capture the channel variations. Moreover,

if the time between two beam selection instances is large

compared to the rate at which the channel changes, past

observations become obsolete [8]. Therefore, making beam

selection decisions based on such outdated observations will

lead to errors and necessities establishing time limit within

which the beam selection must be performed.

In this paper, we propose an extension of MAMBA, called

MAMBA-X, that addresses the aforementioned problems.

Specifically, our main contributions are as follows:

• We determine an upper bound on the optimal time for

beam selection in MAMBA. This time is derived based

on the beam coherence time, which reflects the impact

of beam misalignment due to UE mobility, and dictates

how frequently the channel should be observed and

the decision to select a new beam. The derived bound

ensures the optimal performance for MAMBA, even in

the extreme scenarios where the mmWave channel is

changing rapidly due to mobility.

• We show through simulations that the performance of

MAMBA is particularly sensitive to the value of the

forgetting factor γ1. Furthermore, we show how the

throughput-optimal value of γ1 depends on UE mobility

(i.e., distance and velocity), relative to the base station.



• We develop a Long Short-Term Memory (LSTM) based

recurrent neural network (RNN) for predicting the opti-

mal value of γ1. The LSTM network is trained offline

using a dataset collected through extensive simulations

and predictions are performed online based on estimated

UE mobility with respect to the BS.

• We conduct simulations and also utilize available 5G

experimental dataset to verify the efficiency of MAMBA-

X in terms of total delivered traffic, average data rate,

instantaneous data rate, and outage duration in outdoor

scenarios. The results indicate that with the proposed

modifications, the total delivered traffic improves by up to

46.8% relative to original MAMBA and 142% compared

to the default beam management scheme proposed for

5G.

II. SYSTEM MODEL

A. MmWave Mobility Scenario at 28 GHz

Without loss of generality, we consider an outdoor scenario

in which a BS is tracking a mobile UE. 1 Two UE mobility

models are considered: random waypoint model (RWM) and

random circular-motion model (RCM). In RWM, the UE

selects a random destination and a random speed. It then

moves to this destination at that speed. It pauses at the first

destination for a fixed period of time before randomly selecting

another destination and speed. RCM is a constrained version

of RWM, where the UE moves along an arc that is centered at

the BS, i.e., the BS-UE distance is fixed. We use RCM to study

the impact of γ1 and γ2 on the of performance MAMBA and

their dependence on distance and velocity. On the other hand,

RWM is used to simulate real UE movement in the mmWave

environment.

Beamforming is applied at both the BS and the UE. Rel-

atively wide beams are used at the UE given its small form-

factor and few antenna elements. Therefore, we consider beam

tracking only from the BS side.

B. Codebook-based Beamforming

Let the BS and UE be equipped with uniform planner

arrays (UPAs). The total number of antenna elements at the

BS and the UE are denoted by ABS and AUE, respectively.

Tx and Rx beamforming vectors (a.k.a beamers) depend on

AUE × ABS the complex channel matrix H between the BS

and UE. Denote the codebooks for the BS beamformer as

M = {m1,m2, · · · ,mMBS
} and for the UE beamformer as

N = {n1,n2, · · · ,nNUE
}, where MBS and NUE are the total

numbers of narrow beams that can be generated at the BS and

the UE, respectively. We assume that after IA, both the BS

and the UE decide on a directional link. Suppose that the BS

uses a Tx beamforming vector mk ∈ C
ABS×1, and the UE

uses an Rx beamforming vector nl ∈ C
AUE×1 (k and l are the

indices of the Tx/Rx beamforming vectors in their respective

1Multiple UEs can be served by the same BS beam. When a UE moves
out of the beam, the BS switches the data flow to the new beam.

codebooks). Let s(t) be the transmitted signal at any time t.
Then the received signal ykl(t) at t can then be expressed as:

ykl(t) = n
H
l Hmks(t) + n

H
l z(t) (1)

where z ∈ C
AUE×1 is a vector representing complex circularly-

symmetric white Gaussian noise. Each (mk,nl) pair achieves

a certain Rx power Pkl(t) at time t, where Pkl(t) = |ykl|2.

The distribution of Pkl(t) is non-stationary, as H varies with

time.

C. MAMBA Beam Tracking Scheme

1) Problem Formulation: MAMBA is modeled as a single-

state Markov decision process, where the BS acts as an agent

interacting with directional beams to learn the changes in beam

qualities over time. Beam quality impacts the best modulation

and coding scheme (MCS) that the beam can support at a given

instance. MAMBA utilizes an RL algorithm, called adaptive

Thompson sampling (ATS), to select the best beam/MCS pair.

This selection is updated periodically at fixed time intervals.

The choice of this time interval does not take into account the

mobility scenario and is defined arbitrarily (1 ms in [7]).

The MAMBA framework is specified by the tuple 〈A,R〉,
where A , {m1, · · · ,mMBS

} is the set of actions, i.e.,

possible beams at a given time, and R is the set of rewards, i.e.,

achievable rates or MCS indices associated with these actions,

respectively. At time t, an action at ∈ A refers to the selection

of beam, say i, which results in a reward rt ∈ R ∼ Θi,t to

be observed. Here, rt is a random sample drawn from the

selected beam’s reward distribution Θi,t at time t with the

mean of Θi,t, i.e., E[Θi,t] = θi,t being unknown. After IA,

MAMBA selects a policy µ characterized by the actions to be

taken at subsequent times t = 1, 2, .., T so as to maximize the

cumulative reward.

Through IA, the BS has prior belief about the reward distri-

bution associated with each beam. Using Bayesian inference,

BS continuously updates the posterior of mean reward (θ),

given the observed data (u), as follows:

Pr(θ|u) = Pr(u|θ) Pr(θ)/Pr(u). (2)

In MAMBA, the reward distribution is represented

by a K-dimensional categorical random variable, rt =

[r
(0)
t , · · · , r

(K−1)
t ], where K is the number of MCS indices

supported by the system plus one. Here, rt is a vector of all

zeros except one entry of value 1, representing the highest at-

tainable MCS index k, k ∈ {1, · · · ,K−1}. The observed data

rate at time t is given by rtw
T , where w , [w0, w1, · · ·wK−1]

is the value vector whose entries correspond to the transmis-

sion rates associated with the corresponding MCS indices,

with w , 0 if the transmission is unsuccessful. For any given

beam, the BS can communicate with the UE using one of the

K−1 MCS indices. If the BS fails to establish communication

with the UE, w0 = 0 is selected, i.e., rt
(0) = 1. The BS

performs its computation based on the feedback (ACK/NACK)

received from the UE. Specifically, the BS calculates the

received signal strength (RSS) of the ACK/NACK packet and

determines the highest possible MCS index for the reverse



direction. The optimal policy, µ∗ aims at maximizing the

expected throughput:

maximize
µ

T
∑

t=1

θi,tw
T

s.t.

K−1
∑

k=0

θ
(k)
i,t = 1, θ

(k)
i,t ≥ 0, ∀i, t, k. (3)

Because the rewards vector is unknown and non-stationary

in a dynamic mmWave scenario, (3) cannot be solved directly.

Instead an ATS-based RL algorithm is used to learn the

expected rewards and select the optimal policy.

2) Adaptive Thompson Sampling (ATS): As discussed be-

fore, the average reward for each possible beam is modeled

as a categorical random variable. So, MAMBA models the

prior of the expected rewards using a Dirichlet distribution

with parameter αi,t, Dir(αi,t). This is because the Dirichlet

distribution is the conjugate prior of the categorical distribu-

tion. According to (2), the posterior computed at each round

will also follow a Dirichlet distribution. When the prior is

the conjugate distribution of the likelihood, the update rule is

simpler. At time t, action at is taken and reward rt is observed.

To capture the dynamic nature of the directional mmWave

channels under mobility, MAMBA implements a “forgetting

factor”, γ1 that reduces the effect of past observations and

a “boost factor”, γ2 that emphasizes on the most recent

observations. For beam i ∈ A, the updated posterior under

these factors is as follows:

αi,t+1=















γ1αi,t + γ2rt, if at = i

γ1αi,t, if at 6= i and γ1
∥

∥αi,t

∥

∥

1
> 1

1, otherwise.

where, γ1 ∈ (0, 1], γ2 ≥ 1, and ‖.‖1 is the 1-norm of a vector

(maximum absolute value of its elements).

After the distributions are updated, the BS selects the beam

for the next round based on random samples taken from the

current posterior distributions. Specifically, at each time t, the

BS samples from each beam’s updated distribution to obtain

si,t ∼ Dir(αi,t), ∀i ∈ A (where |si,t| = 1, ∀i ∈ A and ∀t ∈
{1, · · · , T}), and selects the action according to Thompson

sampling as follows:

at = argmax
i∈A

si,tw
T . (4)

III. OPTIMIZING BEAM SELECTION TIMES

MAMBA is effective as long as channel characteristics

change relatively slowly. This is because, if the mobility and

beam misalignment are too fast relative to the time between

two beam selection rounds, the algorithm is slow to learn the

dynamic environment, as the available observations become

obsolete. To address this issue we define a bound between

beam selection instances (Ts). Within this bound the channel

must be measured and decision to rerun MAMBA is made.

Consider a scenario in which the UE moves within the

coverage area of the BS, as shown in Fig. 1. At point A, the

Fig. 1. Misalignment caused by UE mobility.

BS runs IA to discover and connect with the UE. The distance

between the BS and UE at A is d. Right after IA, we assume

that the BS and UE beams are perfectly aligned. Suppose

that the UE starts moving at a fixed speed v towards point

B and reaches B after a short duration τ . Due to the motion

of the UE from A to B, beam misalignment may occur and the

signal-to-noise ratio (SNR) of the received signal drops. The

angular change in the AoA of the line-of-sight signal at the

UE between times t and t+ τ is defined as the beam pointing

error and is represented by ∆φ in Fig. 1. From the sine law

of triangle, we get

d

sin(π − (β(t) + ∆φ))
=

vτ

sin(∆φ)
.

Here, β(t) is the angle between the antenna boresight of the

BS and the direction of travel of the UE at time t. For a small

value1 of ∆φ, sin(∆φ) ≈ ∆φ and sin(π − (β(t) + ∆φ)) =
sin(β(t)). Then the beam pointing error ∆φ can be expressed

as:

∆φ =
vτ

d
sin(β(t)). (5)

To determine the beam selection time, we rely on the

concept of beam coherence time, TB [9]. Specifically, we

define TB as the time when the received SNR of the beam

drops below a certain threshold, ξ, from the peak:

TB = inf
t′>0

{t′|
SNR(t+ t′)

SNR(t)
< ξ}. (6)

Suppose that the transmit power and antenna gain of the

UE are fixed, and the noise power does not vary drastically

over the duration TB . Since the received SNR at any time t is

proportional to the antenna gain, G of the BS, we can express

ξ as ξ = G(∆φ)
G(0◦) . Here, G(φ) is the antenna gain at an angle φ

from the boresight. For UPAs, we can express G(φ) as[10]:

G(φ) = Gmax10
− 3

10
( 2φ

φω
)2 , for |φ| 6

φm

2
(7)

where Gmax = G(0◦) is the maximum gain, φω is the HPBW,

and φm is the main lobe beamwidth. For the case ∆φ > φm,

we consider the situation as beam-alignment failure rather than

beam misalignment. From (5), (6) and (7), we can calculate

the value of TB as,

TB =
d

v sin(β(t))

φw

2

√

−10

3
log ξ. (8)

Note that TB is defined for a fixed UE speed and a given

BS-UE distance. In practice, the motion of the UE can vary

1UPAs used in 5G mmWave BS’s often have beam sweeping granularity
below 5

◦ and half-power beamwidth (HPBW) as low as 7
◦ − 10

◦
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Fig. 2. Impact of MAMBA parameters on performance: (a) average data rate vs. γ1 for various distances; (b) average data rate vs. γ1 for various speeds;
(c) γ∗

1
vs. distance; (d) γ∗

1
vs. speed. The circles in (a) and (b) represents γ

∗

1
.

over time, and so TB will also change. If TB is used as the

basis for determining Ts and is initially set to a large value due

to low UE speed, but shortly after that the UE increased its

speed, the beam misalignment will likely occur before the next

beam selection time. To overcome this situation, we can set

Ts equal to the minimum value of TB , i.e.,TBmin
. According

to (8), this minimum value occurs when the UE is moving

at β(t) = 90◦ at the maximum speed vmax supported by the

BS and at a minimum distance dmin from it. We can always

choose beam selection instances to be less than TBmin
, which

will provide more context regarding the channel dynamics.

But in such a case, MAMBA needs to run more frequently

resulting in increased communication overhead between the

BS and UE which will reduce the overall system efficiency.

IV. PREDICTING THE OPTIMAL γ1

To observe the impact of γ1 and γ2 on MAMBA perfor-

mance, and generate dataset for training the LSTM network,

we rely on computer simulations. In the simulation setup, a

BS is placed at the center and the UE moves according to

RCM. To model the communication link between the BS and

UE, we set the number of antennas at the BS to ABS = 16 and

at the UE to AUE = 2, and Tx power to PTx = 30 dBm. To

generate large-scale effects, we run our simulations in the 28

GHz band using the model described in [11]. For small-scale

effects, we randomly place 3 scatters on the ellipsoid between

the BS and UE. The Rx beam at UE is kept the same, and BS

does azimuth beam tracking with a scanning resolution of 5◦.

Beam scanning range is from ±30◦ degree from the broadside.

The BS-UE separation is varied between 10 m to 200 m and

the UE speed is varied between 1 m/s to 35 m/s, respectively.

We run the simulation for different values of γ1 and γ2, and

ξ = 0.5 (3dB change) and average the results over 500 runs.

A. Dependence of MAMBA on γ1 and γ2

Fig. 2(a) depicts the average data rate when the UE moves at

a fixed speed of 10 m/s and the BS-UE distance are 50 m and

150 m respectively. Similarly, Fig. 2(b) shows the impact of

various UE speeds (10 m/s and 35 m/s) on the data rate when

the BS-UE distance is fixed to 50 m. From the two figures, it

is evident that the average data rate varies significantly with

γ1 and less with γ2. After a certain value of γ2, the effect

of γ2 is more or less the same. Moreover, the throughput-

optimal value of γ1 (γ∗
1 ) depends on BS-UE distance and UE

speed. For a fixed speed, if the UE is closer to the BS, a small

displacement will cause a large angular deviation. As a result,

the BS is more likely to switch between beams. On the other

hand, if the UE is far away from the BS, it can be served by

the same beam for a longer period of time. The same intuition

is applicable to when the UE is at a fixed distance from the

BS but is moving with variable speeds. Based on this fact, we

perform simulations to observe the effect of UE mobility on

γ∗
1 for a fixed beamwidth which is evident from Fig. 2(c) and

Fig. 2(d).

B. LSTM-based Prediction of the Optimal γ1

From Section IV-A, we observed that γ∗
1 depends on UE

mobility. We use LSTM-based RNN to model this dependency.

Let t1, t2, . . . , be the time instances at which MAMBA-X is

executed. At any of these instances, say tn, let the input vector

be denoted by X(tn) = X(dtn , vtn , tn), corresponding to the

vector containing the distance, dtn and speed, vtn of the UE

at tn. Let γ∗
1 (tn) denote the value of γ∗

1 at any arbitrary time

tn. The prediction of γ∗
1 (tn) can be formulated as:

γ∗
1 (tn) = F(X(tn)) (9)

where F(.) defines the mapping from the input X(tn) to the

output γ∗
1 (tn), which needs to be learned.

LSTM network is a special kind of RNN that is capable of

learning long-term dependencies through a number of hidden

variables [12]. A typical LSTM cell architecture is shown in

Fig 3. Basically, an LSTM cell has three gate structures: forget

gate (f (tn)), input gate (i(tn)) and output gate (o(tn)). These

gates are composed of a sigmoid (σ) layer along with a point-

wise multiplication operation structure. Each gate outputs a

number between 0 and 1, where 0 indicates that the gate is

totally blocked and 1 indicates that all information of the input

is kept in the cell. The operations performed by the LSTM cell

on the inputs (X(tn), h(tn−1)) are as follows:

f (tn) = σ
(

W (fX)X(tn) + V (fh)h(tn−1) + b(f)
)

i(tn) = σ
(

W (iX)X(tn) + V ihh(tn−1) + b(i)
)

˜C(tn) = tanh
(

W (cX)X(tn) + V (ch)h(tn−1) + b(o)
)

C(tn) = f (tn)C(tn−1) + i(tn)C̃(tn)

o(tn) = σ
(

W (oX)X(tn) + V (oh)h(tn−1) + b(o)
)



Fig. 3. LSTM cell architecture.

h(tn) = o(tn) tanh(C(tn)).

Here, W (fX), W (iX), and W (oX) are the weights of the

forget, input, and output gates, respectively. Also, b(f), b(i),
and b(o) are the biases that corresponds to these gates. Finally,

V (fh), V (ih), and V (oh) are their corresponding recurrent

weights.

In this paper, we construct the LSTM network with 5 LSTM

layers each with 32 hidden units and a dense output layer with

tanh activation function. Moreover, use an adam optimizer and

select root mean squared error (RMSE) as the loss function.

We train the LSTM network offline by the data collected using

RCM, while the predictions are performed online using RWM.

The training is completed when RMSE reaches the minimum

value. The predicted value of γ∗
1 using our LSTM network

during testing phase is shown in Fig. 4(a). The consistency

between the actual and predicted value of γ∗
1 at each time slot

tn is clearly observed from the figure. The developed LSTM

network achieves an RMSE value of 0.082 and 0.116 during

training and testing phase respectively. We incorporate all the

above modifications in our MAMBA-X framework.

V. PERFORMANCE EVALUATION

The goal of beam tracking is to extend the period between

two IA cycles as much as possible by reducing the number

of outages, and increasing the overall throughput. To evaluate

the performance of the MAMBA-X framework, we perform

extensive simulations and run our algorithm on publicly avail-

able 5G NR experimental dataset.

A. Simulation Results

For simulation, the parameters used for both MAMBA and

MAMBA-X are similar to the one described in Section IV.

However, in this case, we use RWM rather than RCM to

characterize UE mobility. For MAMBA, we let the fixed value

of γ1 and γ2 to be 0.2 and 20 respectively as defined in

[7], and we set (i) Ts to vary based on TB as calculated

using (8) (let us denote it by MAMBA(var)), (ii) Ts = TBmin

(15 ms according to simulation parameters and denote it as

MAMBA(15ms)), and (iii) Ts < TBmin
(let Ts = 1 ms and

denote it as MAMBA(1ms)), respectively. On the other hand,

for MAMBA-X we let γ1 vary based on the UE mobility and

set γ2 to a large value such as 500, and Ts = TBmin
= 15 ms.

The slot duration equals to the corresponding Ts.

Fig. 4(b), depicts the total delivered traffic achieved by the

BS-UE link when running MAMBA-X and compares it with

the dynamic oracle, the static oracle, and various settings of

MAMBA respectively. Here, the dynamic oracle represents the

situation when the best beam is always selected. The static or-

acle represents the beam management scheme proposed in the

5G standard [13]. As seen from the figure, MAMBA-X out-

performs the static oracle, MAMBA(15ms), and MAMBA(var)

scheme and performs reasonably close to the dynamic oracle.

Though MAMBA(1ms) has better throughput than MAMBA-

X, it runs more frequently increasing overall overhead. The

total delivered traffic achieved by MAMBA-X is 18.8% higher

than that of the MAMBA(15ms) and 172.5% higher than the

static oracle.

We compute the CDF of the link outage duration for the

beam tracking frameworks and demonstrate the results in

Fig. 4(c). Outage occurs when either the wrong beam is

selected or the selected MCS index is not supported. The figure

shows for how long the frameworks stay in outage after it loses

communication. We see that with probability exceeding 0.8 the

outage will be approximately 2 slots for MAMBA-X, where as,

that for MAMBA(1ms), MAMBA(15ms) and MAMBA(var) is

more than 7 slots. This indicates that MAMBA-X can quickly

realign the beam in case of link outage which demonstrates

its robustness. Moreover, there will be fewer IA cycles in

MAMBA-X compared to MAMBA, thus extending the time

between consecutive IA cycle.

Fig. 4(d) depicts the total outage probability for the

beam tracking frameworks. From the figure, we observe

that MAMBA-X has the least amount of outages com-

pared to the other schemes. The outage probability decreases

by almost 21% and 6% compared to MAMBA(15ms) and

MAMBA(1ms), respectively.

B. Experimental Results

To verify the effectiveness of MAMBA-X in real world

scenario, we rely on Lumos5G dataset [14] - a publicly

available dataset from the University of Minnesota (UMN),

USA. The dataset consists of traces that were collected around

the U.S. Bank Stadium in Minneapolis downtown area which

is a 1300 meter loop. It consists of information such as UE

locations, speeds, 5G BS tower IDs, 5G synchronization signal

(SS) measurements such as SS-RSRP, SS-RSRQ, throughput

etc. that were sampled and logged every second. The UE

speeds reported in the dataset varied from 0 m/s to 14 m/s.

From the dataset, we select the BS with “tower id” 16

because of the large number of traces and calculate the BS-UE

distance from the provided UE and BS locations. Moreover,

we calculate the SS-RSSI from the SS-RSRP and SS-RSRQ

for a bandwidth of 400MHz, and number of resource blocks

equal to 275. Since no information regarding the characteris-

tics of the antenna array or beamwidth was reported, we divide

the provided UE locations with a resolution of 6◦ such that

at any given time the UE is within the coverage of at max

two beams. This represents an extreme case where the beam

is either very narrow or the UE is moving very close to the

highest speed supported by the system. Taking all these into

consideration we run various beam tracking algorithm using

the dataset. Here, Ts is set equal to the sampling time, i.e., 1

second.
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Fig. 4. (a) Predicted values of γ∗

1
using LSTM at different time slots; Performance of various beam tracking algorithms. Simulation results: (b) total delivered

traffic over time (c) CDF of link outage duration; (d) link outage probability; Experimental results: (e) total delivered traffic over time (f) CDF of link outage
duration; (g) link outage probability; (h) instantaneous data rate.

Fig. 4(e) depict the total delivered traffic for different beam

tracking algorithms. We observe that MAMBA-X performs

better and the total delivered traffic increases by up to 46.8%
and 142% compared to MAMBA and static oracle respectively.

Moreover, from Fig. 4(f) we observe that the link outage

duration for MAMBA-X is less than 5 time slots whereas

that of MAMBA is less than 11 time slots for 80% of

the time. Next, we compare the outage probability of both

MAMBA and MAMBA-X in Fig. 4(g). As it can be seen from

the figure, MAMBA-X has an outage probability of 56.7%
which is 18.2% less than that of MAMBA (74.9%). Finally,

Fig. 4(h) depicts the instantaneous data rate achieved by the

MAMBA-X and MAMBA schemes. It is evident from the

figure that MAMBA-X can quickly adopt to channel variations

in mobility scenario and maintains the BS-UE link for a longer

period of time.

VI. CONCLUSION

In this paper, we proposed MAMBA-X, an extension to

MAMBA, a MAB-based beam tracking framework. Because

MAMBA depends on past observations to predict the next

beam/MCS pair to use for communication, we derived an

upper bound for beam selection time. Moreover, we showed

that the performance of MAMBA depends primarily on γ1
and developed an LSTM-based RNN model to incorporate in

MAMBA-X framework which dynamically predicted the value

of γ1. We ran MAMBA-X on both experimental and simulated

dataset and observed that the total delivered traffic increased

by up to 46.8% compared to the original MAMBA and by

142% compared to the beam tracking scheme proposed in 5G.

Our future work will focus on extensive experimental evalua-

tion of MAMBA-X scheme in different mmWave scenarios.
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