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Abstract—Establishing communications in a dynamic spec-
trum access (DSA) network requires the communicating parties to
“rendezvous” before transmitting their data packets. Frequency
hopping (FH) is an effective rendezvous method that does not rely
on a predetermined control channel. Recently, “quorum-based”
FH approaches have been proposed for asynchronous rendezvous
in DSA networks. These approaches are highly vulnerable to
jamming, especially when the attacker is an insider node (i.e., a
compromised node). In this paper, we investigate the problem
of two secondary users (SUs), a transmitter and a receiver,
try to rendezvous in the presence of a third SU acting as
a jammer. The jammer is aware of the underlying (quorum-
based) rendezvous design. First, we consider the case when all
SUs are time-synchronized and are aware of the “rendezvous
channel”. We formulate the problem as a three-player game
between the transmitter, receiver, and jammer. The transmitter
and receiver try to maximize the number of successful rendezvous
slots, while minimizing the number of jammed rendezvous slots.
The jammer has the opposite objective. We show that this game
does not have a pure Nash equilibrium (NE). Accordingly, we
formulate a simplified two-player game between the receiver
and jammer (assuming a uniform strategy by the transmitter),
and derive multiple pure NE strategies. Next, we study the
case when the rendezvous channel is unknown and obtain the
Bayesian NE. Finally, the asynchronous case is addressed by
exploiting the “rotation closure property” of quorum systems.
Our numerical experiments show that uncertainty about the
transmitter’s strategy improves the anti-jamming rendezvous
performance. They also show that the rendezvous performance
improves if the receiver and jammer are time-synchronized, and
also improves if the receiver and jammer have a common guess
about the transmitter’s strategy.

Keywords—Bayesian games, frequency hopping, quorum sys-
tems, rendezvous, three-player games.

I. INTRODUCTION

Motivated by the need for more efficient utilization of
the licensed spectrum, and supported by recent regulatory
policies (e.g., [9]), significant research has been conducted
towards developing cognitive radio (CR) technologies for
dynamic spectrum access (DSA) networks. CR devices utilize
the available spectrum in a dynamic and opportunistic fashion
without interfering with co-located primary users (PUs). The
communicating entities of an opportunistic CR network are
called secondary users (SUs).

Establishing a communication link in a DSA network
requires nodes to rendezvous on a common channel for the
purpose of exchanging critical information, such as transmis-
sion parameters, topology changes, etc. In the absence of

centralized control, the rendezvous process needs to be carried
out in a distributed manner. Many existing MAC protocols for
DSA networks rely on a dedicated global or group control
channel1 for rendezvous (e.g., [8], [14], [19]). Presuming a
common control channel (CCC) surely simplifies the ren-
dezvous process. However, it creates a network bottleneck.
Alternatively, frequency hopping (FH) provides an effective
method for rendezvousing without relying on a predetermined
CCC [12], [17], [22].

Recently, several “quorum-based” FH schemes have been
proposed for asynchronous rendezvous in DSA networks (see,
for example, [1], [3]–[7], [18], [20], [21] and references
therein). Quorums have been previously used in distributed
systems to solve the mutual exclusion problem, the agreement
problem, and the replica control problem [13]. One key advan-
tage of quorum-based FH designs is their robustness to syn-
chronization errors [16]. Specifically, some quorum systems
(e.g., grid, torus, and cyclic quorum systems [15]) enjoy the
“rotation closure property,” whereby any two quorums in such
a quorum system overlap even if they are cyclically rotated
by an arbitrary amount. This property allows these quorum
systems to be used for asynchronous operation.

On the other hand, quorum-based FH schemes are highly
vulnerable to jamming attacks. This is because of the sys-
tematic nature of their design, which makes them exposed to
adversaries. These schemes become more vulnerable when an
attack is launched by an insider SU, e.g., when a trusted SU
has been compromised and its secrets have been partially or
completely revealed to the attacker.

In this paper, we consider an attack model in which the
attacker is aware of the quorum-based FH design used by
various SUs to rendezvous. The goal of the attack is to pre-
vent SUs from rendezvousing, by maximizing the number of
jammed rendezvous instances while minimizing the number of
successful rendezvous instances. Figure 1 shows a transmitter-
receiver link in a DSA network that operates in the presence
of a jammer. All SUs (i.e., transmitter, receiver, and jammer)
operate using a grid-quorum-based FH approach. Each FH
sequence is divided into frames (in our example, the frame
length is nine slots). The slots of a frame are arranged into a
square grid (a 3× 3 grid in our example). Each SU selects a
column and a row from the grid. The slots that correspond to
the selected column and row are assigned a channel called the
rendezvous channel (channel f in Figure 1), and the remaining

1In this paper, we use the terms channel and frequency interchangeably.



Fig. 1: Two nodes try to rendezvous in the presence of a jammer.
All nodes follow a grid-quorum-based FH approach.

slots are assigned a random channel (denoted by r in the
figure). Note that r 6= f . A successful rendezvous instance
refers to a time slot where the transmitter and receiver are
tuned to channel f , while the jammer is tuned to a different
channel. If the transmitter, receiver, and jammer are tuned
to a common channel during the same slot, then this slot is
considered as a jammed rendezvous slot.

Main Contributions–The main contributions of this paper
are as follows:

• We first consider the case when the rendezvous chan-
nel is known to all nodes, including the attacker. We
formulate the time-synchronous rendezvous problem
as a three-player matrix game, played by the ren-
dezvousing transmitter, the receiver, and the jammer.
We show that this game does not have a pure Nash
equilibrium (NE). Accordingly, we formulate a sim-
plified two-player matrix game between the receiver
and the jammer, assuming that the transmitter follows
a uniformly random strategy. In such a formulation,
we assume that only the receiver is aware of the
presence of the jammer, but not the transmitter. We
derive multiple pure NE strategies for this game.

• We then formulate the two-player time-synchronous
rendezvous game when the rendezvous channel is
unknown as a Bayesian game. The Bayesian NE for
this game is derived.

• Using the rotation closure property of grid quorums,
the two-player asynchronous rendezvous problem is
then mapped into the synchronous rendezvous game.

Paper Organization–In Section II, we present the system
and adversarial models. We briefly explain the grid-quorum-
based FH rendezvous design in Section III. In Section IV,
we introduce the three-player game for the synchronous anti-
jamming rendezvous problem with known rendezvous chan-
nel and show the nonexistence of any pure-strategy NE.
The simplified two-player receiver/jammer synchronous game

formulation is provided in Section V. The Bayesian game
formulation for the synchronous rendezvous problem with an
unknown rendezvous channel is explained in Section VI. The
asynchronous rendezvous problem is presented in Section VII.
Numerical results are discussed in Section VIII. In Section IX,
we provide directions for future research, followed by the
concluding remarks in Section X.

II. SYSTEM AND ADVERSARIAL MODELS

A. System Model

We consider an SU link (a transmitter and a receiver) in an
ad hoc DSA network, operating over a set L = {1, 2, . . . , L}
of channels in the presence of an adversary. The transmitter
and receiver can successfully communicate over a channel if
this channel is not jammed. They rendezvous using a quorum-
based FH approach similar to the one in [2]. Without loss
of generality, we assume that FH occurs on a per-slot basis,
with a slot duration of T seconds. A packet can be exchanged
between two nodes if they hop onto the same channel during
the same time slot. As in previous quorum-based FH designs,
in our setup each FH sequence is divided into several time
frames. Each frame corresponds to a block of time-frequency
pairs.

B. Adversarial Model

We consider a time-slotted jammer, with a slot duration
of T seconds. In each time slot, the jammer injects an
interfering signal on one of the channels in L, with the
purpose of preventing the receiver from correctly decoding the
transmitter’s message. The jamming attack is carried out by a
compromised node (i.e., insider attack), so the attacker is aware
of the systematic quorum-based FH approach used by network
nodes to rendezvous. However, the attacker does not know the
specific quorums used by the transmitter and receiver.

In the following section, we review the nested grid-quorum-
based approach proposed in [2]. Then, we explain what salient
features of this approach are exposed to the jammer.

III. NESTED GRID-QUORUM-BASED FH RENDEZVOUS

A. Preliminaries

Before explaining the nested quorum design proposed in
[2], we define some terminology related to quorum systems.

Definition 1: Given a set U = Zn = {0, 1, . . . , n − 1}, a
quorum system Q under U is a collection of non-empty subsets
of U , each called a quorum, such that:

∀G,H ∈ Q : G ∩H 6= ∅. (1)

Throughout the paper, Zn indicates the set of non-negative
integers that are less than n.

Definition 2: Given a non-negative integer i and a quorum
G in a quorum system Q under Zn, we define the operation
rotate(G, i) = {(x + i) mod n, x ∈ G} to denote a cyclic
rotation of quorum G by i times.

Definition 3: A quorum system Q under Zn is said to
satisfy the rotation closure property if:



∀G,H ∈ Q, i ∈ {0, 1, . . . , n−1} : G∩rotate(H, i) 6= ∅. (2)

The rotation closure property is what makes quorum sys-
tems suitable for operating in asynchronous FH settings [16].

As discussed in [15], concerning the “neighbor sensibility”
in mobile ad hoc networks, quorum systems are typically
characterized by two metrics: the smallest quorum overlap
size (SQOS) and the maximum quorum overlap separation
(MQOS). The SQOS of a quorum system Q is defined as
the smallest number of overlapping elements between any two
quorums in Q. The MQOS of a quorum system Q is defined
as the maximum separation between any two overlapping
elements of any two quorums in Q. MQOS is formally defined
as follows:

Definition 4: For a quorum system Q under Zn, MQOS
is given by:

max
i,j∈G∩H
G,H∈Q

{

min
{

(i− j) mod n, (j − i) mod n
}

}

. (3)

For example, if G and H represent the transmitter’s and
receiver’s quorums in Figure 1, then they overlap in slots 2
and 6. In this case, the maximum separation is 4. To obtain
MQOS, this computation will need to be done for all quorum
pairs in Q.

In a quorum-based rendezvous design, the SQOS and
MQOS metrics can also be used to characterize the robustness
of the quorum system to jamming attacks. As mentioned in
[15], the grid quorum system has the smallest MQOS and the
largest SQOS among the quorum systems that were considered
in [15]. In fact, grid quorum systems achieve the smallest
worst-case rendezvous delay in the presence of a jammer.
Note that the rendezvous time is different for different pairs
of quorums, and hence we consider the worst-case delay for
a given quorum system. Accordingly, we formulate the games
in this paper using a grid quorum system. We note here that a
similar approach can be used to analyze other quorum systems.
Next, we formally define the grid quorum system.

Definition 5: A grid quorum system arranges the elements
of Zn, n = q2 for some positive integer q, as a q× q array. A
quorum is formed from the elements of one column and one
row of the grid (see Figure 1).

The grid quorum system satisfies the rotation closure prop-
erty [16]. Figure 2 illustrates this property for two quorums G
and H in a grid quorum system under Z16. The two quorums
have at least two intersections (labeled I in Figure 2). The
shifted quorums G′ = rotate(G, 1) and H ′ = rotate(H, 2)
intersect at the two elements labeled as I ′.

B. Nested Grid-quorum-based FH Rendezvous Algorithm
(NGQFH)

To simplify the exposition, we first explain a non-nested
version of the grid-quorum rendezvous algorithm. Time is
divided into frames, each containing m slots (m needs to be
the square of a positive integer). The slots of each frame are

Fig. 2: Rotation closure property in grid quorum systems.

formed as a
√
m × √

m grid, from which the quorums are
derived. For each FH sequence, a grid quorum (a column
and a row) is randomly selected. Given a set of available
channels, one common channel is assigned to all quorum slots
(henceforth, called the rendezvous channel).

In the (more general) nested rendezvous algorithm, every
frame of every FH sequence uses

√
m−1 rendezvous channels

[2]. The number of rendezvous channels is called the nesting
degree. Again, a

√
m ×√

m quorum is selected for each FH
sequence, and the first rendezvous channel is assigned to the
slots that correspond to the selected quorum. This

√
m×√

m
quorum is called the outer-most quorum. The column and row
that correspond to the outer-most quorum are then deleted from
the grid, and another quorum is selected from the remaining
(
√
m− 1)× (

√
m− 1) grid. A second rendezvous channel is

then assigned to this smaller quorum. This procedure continues
for

√
m− 1 iterations.

To explain, we consider an example with m = 9 (hence,
each frame contains

√
m − 1 = 2 rendezvous channels).

Consider one frame of an FH sequence. Sequence construction
proceeds as follows:

1. Construct a grid quorum system Q under Z9. Q has 9
different quorums, each containing 2

√
9− 1 = 5 elements

that comprise one row and one column of the 3× 3 grid.
2. Select the outer-most quorum (denoted by G1) from Q (e.g.,

G1 = {1, 3, 4, 5, 7}, where each element in G1 represents
the index of a time slot in a 9-slot frame).

3. Assign the first rendezvous channel (denoted by f1) to the
slots that correspond to G1.

4. Delete quorum G1 from the original 3× 3 grid and select
the next outer-most quorum (denoted by G2) from the
resulting 2 × 2 grid (e.g., G2 = {2, 6, 8}). Then, assign
another rendezvous channel (denoted by f2) to the slots
that correspond to G2.

5. Assign a random channel (denoted by fx) to each of the
remaining unassigned (non-quorum) slots in the frame.

The above procedure is repeated for all the frames in the
FH sequence. Figure 3 shows the resulting frames for the
transmitter and receiver FH sequences.

The above nested grid-quorum-based algorithm is executed
at the two rendezvousing nodes. This design enables nodes
to potentially rendezvous on multiple channels during each
frame. If the jammer restricts its attack to one channel during
the whole frame, it will not be able to prevent the nodes from
rendezvousing, since they can meet on the remaining

√
m− 2

rendezvous channels. Recall from Section II-B that the jammer
can only jam one channel per time slot. Hence, the jammer



Fig. 3: Example of the nested grid-quorum-based rendezvous algorithm when m = 9. This quorum-based design is symmetric, i.e., the
transmitter sequence can be used by the receiver, and vice versa.

needs to select the appropriate
√
m − 1 nested quorums and

jam accordingly.

Remark 1: If the transmitter and receiver adopt a quorum-
based FH design, then it is in the jammer’s interest to follow
the same design for two reasons. First, using this approach, the
jammer ensures overlapping with the transmitter and receiver
separately, and if he selects the quorum appropriately he can
overlap with both simultaneously (i.e., block the rendezvous
slot). Second, given that the jammer is not synchronized
with the transmitter and receiver, the rotation closure property
ensures that the jammer can overlap with each node, hence
facilitating his jamming effort.

As a first step, we restrict the analysis in this paper to grid
quorums with a nesting degree of one. Our analytical approach
can be extended to higher nesting degrees by formulating our
problem as a matrix game with games as components [10]. In
Section IX, we explain how to extend our analysis to the case
when the nesting degree is greater than one.

IV. THREE-PLAYER SYNCHRONOUS RENDEZVOUS GAME

ON A KNOWN RENDEZVOUS CHANNEL

The anti-jamming rendezvous problem can be stated as
follows. Two SUs, a transmitter and a receiver, are trying to
rendezvous while a third SU, a jammer, tries to prevent them
from rendezvousing. The jammer knows that the transmitter
and receiver follow a nested grid-quorum-based FH approach
with a frame length of m. Moreover, he knows the rendezvous
channel. However, the jammer does not know which quorums
are selected by the transmitter and receiver. If the jammer
randomly selects a quorum to follow, it will overlap with either
the transmitter or the receiver, but not necessarily with both.
The number of different transmitter-receiver quorum selections
is given by:

Km =





√
m−2
∏

i=0

(
√
m− i)2





2

. (4)

We use game theory to capture the interactions between

the transmitter (T ), receiver (R), and jammer (J). A game is
characterized by a set of players, a set of actions (strategies)
for each player, and a payoff (utility) function for each player.
The actions (strategies) that can be taken by each of the three
players are the m different

√
m×√

m grid quorums. We use
sT , sR, and sJ to denote the strategies of T , R, and J , respec-
tively. All players have the same strategy space, denoted by S,
which consists of all quorums (pure strategies). Furthermore,

let sT
def
= (sT,r, sT,c), sR

def
= (sR,r, sR,c), and sJ

def
= (sJ,r, sJ,c),

where sT,r, sR,r, sJ,r ∈ Sr = {1, 2, . . . ,√m} represent the
row indices of the T , R, and J grid quorums, respectively,
and sT,c, sR,c, sJ,c ∈ Sc = {1, 2, . . . ,√m} represent their
column indices, respectively. The utility functions for T , R,
and J are denoted by uT , uR, and uJ , respectively. We let
uT = uR = −uJ , and define uT as follows:

uT (sT , sR, sJ ) = # of unjammed rendezvous slots per frame

− # of jammed rendezvous slots per frame.
(5)

Remark 2: Another possible utility function for T would
be the number of successful (unjammed) rendezvous slots, i.e.,
without discounting the number of jammed rendezvous slots.
Under this utility, the game has a pure-strategy NE, given by
sT = sR = sJ . However, this NE is inefficient, as it leads to
uT = uR = 0, i.e., T and R do not successfully rendezvous
in any slot. Furthermore, this utility does not account for the
energy loss at T during the unsuccessful rendezvous slots.
Our preliminary investigation of the three-player game under
this utility shows that even though there are multiple NEs, the
players do not always converge to any of them. Specifically,
if they repeatedly play a best-response strategy and follow a
parallel update procedure, they may or may not converge to a
NE, depending on their initial strategies.

Since the frame length m is typically small and the strategy
space is discrete, we can model the above problem as a
matrix game. Figure 4 depicts the matrix game for the case
of m = 4, assuming all players are synchronized. Each cell
in Figure 4 includes the utility values uR, uJ , and uT at the
given strategies. As shown in the figure, the game does not



Fig. 4: Three-player matrix game for the 2× 2 grid-quorum system (m = 4).

have any pure-strategy NE.

The transmitter utility for the 2× 2 grid-quorum game can
be written as:

uT (sT , sR, sJ ) =



























−3, if sT = sR = sJ
−2, if sR = sJ 6= sT

or sT = sJ 6= sR
−1, if sT = sR 6= sJ
0, otherwise.

(6)

In general, the transmitter utility for the
√
m×√

m grid-
quorum game is given by (7).

Lemma 1: In the above three-player game, if a strategy
profile (sT , sR, sJ) satisfies the following two conditions:

uR(sT , sR, sJ) ≥ uR(sT , s
′
R, sJ), ∀s′R ∈ S, s′R 6= sR (8)

uJ(sT , sR, sJ ) ≥ uJ(sT , sR, s
′
J ), ∀s′J ∈ S, s′J 6= sJ (9)

then there exists a transmitter strategy s∗T , such that
uT (s

∗
T , sR, sJ) > uT (sT , sR, sJ ).

Proof: From (7), it can be shown that a strategy pro-
file (sT , sR, sJ ) satisfies (8) and (9) if and only if sJ,r =
sT,r, sJ,c = sT,c, sR,r 6= sT,r, and sR,c 6= sT,c. In this
case, uT = −2. If T deviates from its strategy, then the
resulting strategy profile will be one of the following (in here,
A 6= B 6= C means A 6= B and B 6= C):

1. sR,r 6= sT,r 6= sJ,r and sR,c 6= sT,c 6= sJ,c
2. sR,r = sT,r 6= sJ,r and sR,c 6= sT,c 6= sJ,c
3. sR,r 6= sT,r 6= sJ,r and sR,c = sT,c 6= sJ,c
4. sR,r = sT,r 6= sJ,r and sR,c = sJ,c 6= sT,c

5. sR,r = sJ,r 6= sT,r and sR,c = sT,c 6= sJ,c
6. sR,r = sT,r 6= sJ,r and sR,c = sT,c 6= sJ,c
7. sR,r = sJ,r 6= sT,r and sR,c 6= sT,c 6= sJ,c
8. sR,r 6= sT,r 6= sJ,r and sR,c = sJ,c 6= sT,c.

uT for case 1 is 2, for cases 2 to 5 is
√
m− 2, for case 6

is 2
√
m − 5, and for cases 7 and 8 is 0. So, in all the above

eight cases, uT > −2, and the lemma holds.

Theorem 1: The three-player synchronous rendezvous
game does not have a pure-strategy NE.

Proof: If there is a NE for the three-player rendezvous
game, then it will be one of the strategy profiles defined by (8)
and (9). However, from Lemma 1, none of the strategy profiles
defined by (8) and (9) constitutes a NE. Therefore, there is no
pure-strategy NE for the above three-player game.

Remark 3: Note that we do not consider mixed NE strate-
gies in our rendezvous game. Selecting quorums according
to a mixed strategy makes the rotation closure property (see
Definition 3) of grid quorum systems inapplicable. In order to
apply the rotation closure property, the outer-most quorum of
the FH sequence (see Figure 3) needs to be the same in all
successive frames. Recall that the rotation closure property
is what makes quorum systems suitable for operating in
asynchronous FH settings.

V. TWO-PLAYER SYNCHRONOUS RENDEZVOUS GAME ON

A KNOWN RENDEZVOUS CHANNEL

As shown in Theorem 1, the three-player rendezvous game
does not have a NE. In this section, we formulate a simplified
two-player matrix game between R and J , assuming that T
follows a uniformly random strategy. In this formulation, we
assume that only R is aware of the presence of the jammer, but
not T . Each T strategy results in a different two-player game,
that have multiple pure NE strategies, as will be shown in
this section. Since T selects any strategy in S with probability
1/|S| (where |S| is the cardinality of S), R and J uniformly
randomize between the NE strategies that correspond to the
different T strategies. First, we will study this game for the
special cases of 2× 2 and 3× 3 grid quorums. Then, we will
consider the general case of

√
m×√

m grid quorum.

A. The 2× 2 Grid-quorum Game

Each grid in Figure 4 corresponds to a two-player game
between R and J for a fixed sT . Since m = 4, T has four



uT (sT , sR, sJ)

=























































































1− 2
√
m, if sT = sR = sJ

−
√
m, if sT,r = sR,r = sJ,r and sR,c = sJ,c 6= sT,c, or sR,r = sJ,r 6= sT,r and sT,c = sR,c = sJ,c

or sT,r = sR,r = sJ,r and sT,c = sJ,c 6= sR,c, or sT,r = sJ,r 6= sR,r and sT,c = sR,c = sJ,c

or sT,r = sR,r = sJ,r and sR,c 6= sT,c 6= sJ,c, or sR,r 6= sT,r 6= sJ,r and sT,c = sR,c = sJ,c

−2, if sT,r = sJ,r 6= sR,r and sT,c = sJ,c 6= sR,c, or sR,r = sJ,r 6= sT,r and sR,c = sJ,c 6= sT,c

−1, if sT,r = sR,r = sJ,r and sR,c = sT,c 6= sJ,c, or sR,r = sT,r 6= sJ,r and sT,c = sR,c = sJ,c

2, if sR,r 6= sT,r 6= sJ,r and sR,c 6= sT,c 6= sJ,c√
m− 2, if sR,r = sT,r 6= sJ,r and sR,c 6= sT,c 6= sJ,c, or sR,r 6= sT,r 6= sJ,r and sR,c = sT,c 6= sJ,c

or sR,r = sT,r 6= sJ,r and sR,c 6= sT,c = sJ,c, or sR,r 6= sT,r = sJ,r and sR,c = sT,c 6= sJ,c

or sR,r = sT,r 6= sJ,r and sR,c = sJ,c 6= sT,c, or sR,r = sJ,r 6= sT,r and sR,c = sT,c 6= sJ,c

2
√
m− 5, if sR,r = sT,r 6= sJ,r and sR,c = sT,c 6= sJ,c

0, otherwise.

(7)

strategies, and hence the four grids. Each game has three pure
NE strategies. The utility function of this game is given by (6).
For a given sT , any pair of R/J strategies (sR, sJ) constitutes
a NE if and only if sJ = sT 6= sR. All NEs result in uT = −2.

B. The 3× 3 Grid-quorum Game

Similar to the 2×2 grid-quorum game, the 3×3 game has
multiple NEs. In particular, for each fixed sT , the game has
four NEs. The utility function of this game is given by (10).
For a given sT , any pair of R (sR,r, sR,c) and J (sJ,r, sJ,c)
strategies constitutes a NE if and only if sJ,r = sT,r 6= sR,r

and sJ,c = sT,c 6= sR,c. All NEs result in uT = −2.

C. The
√
m×√

m Grid-quorum Game

Theorem 2: For any sT = (sT,r, sT,c), the
√
m × √

m
R/J grid-quorum game has at least (

√
m − 1)2 NEs, all of

them result in uT = −2. These NEs are given by:

sJ,r = sT,r, sJ,c = sT,c (11)

sR,r 6= sT,r, sR,c 6= sT,c. (12)

Proof: Assume that sJ,r = sT,r and sJ,c = sT,c. Then,
we want to show that if R deviates from the strategy given
by (12), its utility uR will be ≤ −2. R deviates from the
strategy in (12) if it follows one of the following strategies:

1. sT,r = sR,r = sJ,r and sT,c = sR,c = sJ,c
2. sT,r = sR,r = sJ,r and sT,c = sJ,c 6= sR,c

3. sT,r = sJ,r 6= sR,r and sT,c = sR,c = sJ,c.

From (7), in case 1, uR = 1− 2
√
m < −2. In cases 2 and

3, uR = −√
m ≤ −2.

Now, assume that sR,r 6= sT,r and sR,c 6= sT,c. Then, we
want to show that if J deviates from the strategy given by (11),
the resulted utility uJ will be ≤ 2. J deviates from the strategy
in (11) if it follows one of the following strategies:

1. sR,r = sJ,r 6= sT,r and sR,c = sJ,c 6= sT,c

2. sR,r 6= sT,r 6= sJ,r and sR,c 6= sT,c 6= sJ,c
3. sR,r 6= sT,r = sJ,r and sR,c = sJ,c 6= sT,c

4. sR,r 6= sT,r = sJ,r and sR,c 6= sT,c 6= sJ,c

5. sR,r = sJ,r 6= sT,r and sR,c 6= sT,c = sJ,c
6. sR,r = sJ,r 6= sT,r and sR,c 6= sT,c 6= sJ,c
7. sR,r 6= sT,r 6= sJ,r and sR,c 6= sT,c = sJ,c
8. sR,r 6= sT,r 6= sJ,r and sR,c = sJ,c 6= sT,c.

From (7), uJ equals 2 for case 1, -2 for case 2, and 0 for
cases 3 to 8. Hence, the pure strategies in (12) are pure NE
strategies.

Proposition 1: The (
√
m−1)2 NEs in Theorem 2 are the

only NEs for the
√
m×√

m grid-quorum game, when m ≥ 9.
When m = 4, the 2× 2 game has additional NEs, given by:

sT,r = sR,r = sJ,r and sJ,c = sT,c 6= sR,c (13)

sJ,r = sT,r 6= sR,r and sT,c = sR,c = sJ,c. (14)

Proof: For the first part of the proposition, consider all
strategies other than the NE strategies given by Theorem 2.
We have eighteen strategies in (7), in addition to the strategies
that result in uT = 0, which are the following six strategies:

1. sR,r 6= sT,r = sJ,r and sR,c = sJ,c 6= sT,c

2. sR,r 6= sT,r = sJ,r and sR,c 6= sT,c 6= sJ,c
3. sR,r = sJ,r 6= sT,r and sR,c 6= sT,c = sJ,c
4. sR,r = sJ,r 6= sT,r and sR,c 6= sT,c 6= sJ,c
5. sR,r 6= sT,r 6= sJ,r and sR,c 6= sT,c = sJ,c
6. sR,r 6= sT,r 6= sJ,r and sR,c = sJ,c 6= sT,c.

It can be shown that none of the 18 + 6 = 24 strategies
is a NE. For the second part of the proposition, following the
same procedure in the proof of Theorem 2, it can be shown
that the strategies in (13) and (14) are indeed NEs.

Remark 4: Note that even though there are multiple pure
NE strategies for a given sT , the NE strategy of the jammer is
unique. Furthermore, the utilities of the players do not depend
on the NE strategy played by the receiver.

VI. TWO-PLAYER SYNCHRONOUS RENDEZVOUS GAME

WITH UNKNOWN RENDEZVOUS CHANNEL

In this section, we study the synchronous rendezvous game
when the rendezvous channel is unknown to the players. We
formulate this game as a Bayesian game. A Bayesian game is



uT (sT , sR, sJ) =



















































−5, if sT = sR = sJ

−3, if sT,r = sR,r = sJ,r and sR,c 6= sT,c, or sR,r 6= sT,r and sT,c = sR,c = sJ,c

−2, if sT,r = sJ,r 6= sR,r and sT,c = sJ,c 6= sR,c, or sR,r = sJ,r 6= sT,r and sR,c = sJ,c 6= sT,c

−1, if sT,r = sR,r = sJ,r and sT,c = sR,c 6= sJ,c, or sT,r = sR,r 6= sJ,r and sT,c = sR,c = sJ,c

1, if sR,r = sT,r 6= sJ,r and sR,c 6= sT,c, or sR,c = sT,c 6= sJ,c and sR,r 6= sT,r

or sT,r = sR,r 6= sJ,r and sT,c = sR,c 6= sJ,c

2, if sR,r 6= sT,r 6= sJ,r and sR,c 6= sT,c 6= sJ,c

0, otherwise.

(10)

characterized by a set of players, a set of pure strategies for
each player, a set of types for each player, a payoff for each
player, and a joint probability distribution over the types of the
players [11]. Let hT , hR, hJ ∈ L denote the channels selected
by T , R, and J , respectively. R is considered to have two
types: hR = hT and hR 6= hT . Similarly, J is of two types:
hJ = hT and hJ 6= hT . In Bayesian games, a pure strategy of
a player is a map prescribing an action for each type of that
player. The utility of player i ∈ {T,R, J} is given by:

ui(sT , sR, sJ , hT , hR, hJ) =






ui(sT , sR, sJ ), if hT = hR = hJ

ui(sT , sR), if hT = hR 6= hJ

0, otherwise (i.e., hT 6= hR)

(15)

where uT (sT , sR, sJ) = uR(sT , sR, sJ) = −uJ(sT , sR, sJ)
is given by (7), and uT (sT , sR) = uR(sT , sR) = −uJ (sT , sR)
is given by:

uT (sT , sR)

=















2
√
m− 1, if sT = sR√
m, if sT,r = sR,r and sT,c 6= sR,c

or sT,r 6= sR,r and sT,c = sR,c

2, if sT,r 6= sR,r and sT,c 6= sR,c.

(16)

The expected utilities of R of types hR = hT and hR 6= hT

are given by:

E[uR(sT , sR, sJ , hR = hT )]

= Pr {hJ = hT |hR = hT }uR(sT , sR, sJ)

+ Pr {hJ 6= hT |hR = hT }uR(sT , sR)

(17)

E[uR(sT , sR, sJ , hR 6= hT )] = 0. (18)

The expected utilities of J of types hJ = hT and hJ 6= hT

are given by:

E[uJ(sT , sR, sJ , hJ = hT )]

= Pr {hR = hT |hJ = hT }uJ(sT , sR, sJ)
(19)

E[uJ (sT , sR, sJ , hJ 6= hT )]

= Pr {hR = hT |hJ 6= hT }uJ (sT , sR).
(20)

Next, we derive the Bayesian NE.

Theorem 3: Let p
def
= Pr {hJ = hT |hR = hT }, then the

Bayesian NE of the synchronous rendezvous game with un-
known rendezvous channel is given by:

sR





















= sT , if p < 0.5

6= sT , if p > 0.5

Does not matter, if p = 0.5

, if hR = hT

Does not matter, if hR 6= hT

(21)

sJ

{

= sT , if hJ = hT

Does not matter, if hJ 6= hT

(22)

where sR 6= sT means that sR,r 6= sT,r and sR,c 6= sT,c.

Proof: First, note that sJ = sT is a dominant jammer
strategy, i.e.,

uJ(sT , sR,sJ = sT , hT , hR, hJ ) ≥ uJ(sT , sR, s
′
J , hT , hR, hJ )

∀s′J ∈ S, s′J 6= sJ , ∀hT , hR, hJ ∈ L.

Now, if the jammer follows the strategy given by (22),
then E[uR(sT , sR, sJ , hR = hT )] = (1 − 2p)uT (sT , sR).
From (16), we have 2 ≤ uT (sT , sR) ≤ 2

√
m − 1. Therefore,

if p < 0.5, the maximum expected utility of the receiver is
(1− 2p)(2

√
m− 1) which occurs when sR = sT . If p > 0.5,

the maximum expected utility of the receiver is 2(1 − 2p)
which occurs when sR 6= sT . If p = 0.5 or hR 6= hT , then the
expected utility of the receiver is 0 irrespective of sR. Figure 5
depicts the E[uR] at NE vs. p when hR = hT .

VII. ASYNCHRONOUS RENDEZVOUS

In the previous sections, we studied the rendezvous prob-
lem assuming all players are synchronized. However, it is
difficult to ensure that all players are synchronized (i.e., start
hopping at the same time). This is the motivation behind using
the grid quorum system, which enjoys the rotation closure
property.

Because the two-player R/J game is played assuming a
fixed sT , we consider the starting time of T as the reference
point for R and J . Let θR denote the drift between R and
T clocks, and θJ denote the drift between J and T clocks.
Without loss of generality, θR and θJ are assumed to be
≤ m. θR and θJ are continuous variables, but they will be
approximated as discrete integer variables, as explained next.
We assume that one-half of a slot is enough to convey one



Fig. 6: The equivalent synchronous game between R and J for a given θR and θJ .
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Fig. 5: Expected utility of the receiver at NE when hR = hT as a
function of p.

message between T and R, and that each rendezvous slot is
used to convey only one message. Therefore, if T and R
rendezvoused on less than half the duration of a give slot
(i.e., < T/2 seconds), then this is the same as if they did
not rendezvous on that slot. Similarly, if they met on a slot
for more than half of its duration, then this is the same as if
they met on the whole slot. Hence, if the fractional part of
θR (similarly, θJ ) is < 0.5, it is discarded. If it is > 0.5, it
is discarded after incrementing the integer part by one. So,
θR and θJ are considered as discrete variables taking values
0, 1, 2, . . . ,m.

We will modify the strategy space of R and J in the
asynchronous rendezvous case as follows. The strategy of
the player (R or J) consists of a column, and a sequence
of

√
m consecutive elements that do not necessarily form a

row. Let s
(a)
R and s

(a)
J denote R and J strategies, respectively.

Then, s
(a)
R

def
= (s

(a)
R,r, s

(a)
R,c) and s

(a)
J

def
= (s

(a)
J,r, s

(a)
J,c). s

(a)
R,c, s

(a)
J,c ∈

S
(a)
c = {1, 2, . . . ,√m} and s

(a)
R,r, s

(a)
J,r ∈ S

(a)
r , which is defined

as follows:

S(a)
r =

{

(

n1, . . . , n√
m

)

:

ni ∈ {0, 1, . . . ,m− 1}, ∀i ∈ {1, . . . ,√m}
ni − ni−1 = 1, ∀i ∈ {2, . . . ,√m}

}

.

(23)

Let us denote ui(sT , sR, sJ ), i ∈ {T,R, J} by
ui(GT , GR, GJ) when the selected quorums by T , R, and J
are GT , GR, and GJ , respectively. Then, for any values of θR
and θJ , the asynchronous rendezvous problem is transformed
into a synchronous rendezvous game as shown in Figure 6.
From Figure 6, we have:

ui(sT , sR, sJ , θR, θJ) = ui(GT , GR, GJ , θR, θJ)

= ui(GT , rotate(GR, θR), rotate(GJ , θJ)), ∀i ∈ {T,R, J} .
(24)

Therefore, for a given θi, i ∈ {R, J}, player i derives its
NE strategy for the synchronous game (represented by si,r
and si,c), as given by Theorem 2. Then, from Figure 6, the

asynchronous strategy represented by s
(a)
i,r = (n1, . . . , n√

m)

and s
(a)
i,c is computed as follows:

nj =
√
m× (si,r − 1) + (j − 1)− θi, j = 1, . . . ,

√
m (25)

s
(a)
i,c =

{

si,c − θi, if si,c > θi√
m+ (si,c − θi), if si,c ≤ θi.

(26)

Remark 5: R and J do not know their relative clock drifts
with respect to the clock of T . Moreover, they do not know
sT . Therefore, each player does the following: (i) uniformly
randomize between the different NE strategies that correspond
to the different relative clock drifts of the player, and (ii)
uniformly randomize between the different NE strategies that
correspond to the different T strategies.

Remark 6: As stated before, we assume that θR and θJ
are at most one frame length. Accordingly, R and J are
required to keep using their selected quorums (strategies) for
only two successive frames, after which they can select another
quorum. This condition is required to ensure the overlapping
with the quorum of T , according to the rotation closure
property.
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VIII. NUMERICAL RESULTS

In this section, we study our formulated games numerically
under different values of the system parameters. We implement
our games in MATLAB. The 95% confidence intervals are
indicated in the figures.

A. Synchronous Rendezvous

In this section, we simulate the synchronous rendezvous
game between R and J , assuming a uniformly random strategy
for T . Figure 7 plots the expected utilities of R and J vs. m.
It also shows the utilities of R and J at the NE.

Observation 1: R benefits from being, along with J , un-
aware of sT . Furthermore, the benefits of R increase with m.

As shown in Figure 7, the utility of R when sT is unknown
is always better than his NE utility when sT is known. On
the other hand, being unaware of sT always harms J . As m
increases, the randomness about sT increases (recall that the
strategy space of T is of dimension m), and the expected utility
of R increases while the expected utility of J decreases.

Observation 2: The utility of R improves if both R and
J have the same guess about sT .

Figure 8 depicts the expected utilities of R and J when
both have a common guess about sT . By comparing the
expected utility of R in Figure 7 with that in Figure 8, it
is clear that the utility of R improves if both R and J have
the same guess about sT .

B. Asynchronous Rendezvous

In this section, we consider the asynchronous rendezvous
case.

Observation 3: The number of successful rendezvous slots
is maximized when θR = θJ .

Figure 9 plots the number of successful rendezvous slots
vs. θR for different values of θJ . As shown in the figure,
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Fig. 8: Effect of m on the expected utilities of T , R, and J (R and
J have a common guess about sT ).

the number of successful rendezvous slots is maximized when
θR = θJ (i.e., when R and J are synchronized). Note form
Figure 9 also that the number of successful rendezvous slots
is locally maximized at θR = 0,

√
m, 2

√
m, . . . ,m, i.e., when

T is ahead of R by an integer number of full rows (each row
in the grid quorum system consists of

√
m slots). When a

quorum is cyclically rotated by i
√
m slots for an integer i, the

resulted quorum has the same column as the initial one but a
different row. Because of this, the number of rendezvous slots
is maximized when θR is an integer multiple of

√
m.

Figure 10 shows the number of successful rendezvous slots
vs. θR for different values of θJ , when R and J have a common
guess about sT . Again, the figure shows that the utility of R
improves if both R and J have the same guess about sT .

IX. FUTURE RESEARCH: NESTED GRID-QUORUM

RENDEZVOUS GAME

In this section, we provide a direction for extending the
game-theoretic framework developed in this paper to the case
when SUs use multiple rendezvous channels per frame (i.e.,
when the nesting degree is greater than one). This case is much
more challenging than the non-nested case (i.e., the case when
the nesting degree is equal to one) due to the following reason.
In the non-nested case, all players (T , R, and J) play on a
common grid quorum system, i.e., all players have the same
strategy space. In the nested case, according to the NGQFH
algorithm in Section III-B, the players will play

√
m − 1

games (when the frame length is m, and hence the nesting
degree is

√
m − 1). The first game is played to select the

outer-most quorum (a
√
m × √

m quorum), and all players
have the same strategy space (which consists of m strategies,
as in the non-nested case). After playing the first game and
selecting the outer-most quorums, the second game is played
to select the next outer-most quorum. Since the selected outer-
most quorums by the players in the first game are, in general,
different, the strategy spaces (determined by the resulted sub-
grids after removing the selected outer-most quorums) of the
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Fig. 9: Expected number of successful rendezvous slots vs. θR for different values of θJ (m = 9).
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Fig. 10: Expected number of successful rendezvous slots vs. θR for different values of θJ . R and J have a common guess about sT (m = 9).

players in the second game are, in general, different. The
same applies to the subsequent games (third, fourth, etc.). To
illustrate further, consider the example in Figure 3. In this
example, m = 9, and hence the nesting degree is

√
9− 1 = 2.

Therefore, the players will play two games. The first game
will be played on the common 3 × 3 grid, and the second
game will be played on the two remaining 2 × 2 grids after
removing the selected 3 × 3 quorums in the first game. So,
the strategy spaces of the players in the second game are, in
general, different.

To study the rendezvous game for the nested case, we
propose formulating it as a matrix game with games as
components [10]. In such type of matrix games, the outcome
of a particular choice of pure strategies of the players may
be that the players need to play another game. In our nested
rendezvous game, the outcome of any choice of pure strategies
(i.e., outer-most quorums in our case) of the players will
consist of two parts. One part is obtained directly based on
the selected pure strategies, and the other part depends on
the subsequent games that will be played. In particular, our
nested rendezvous game can be formulated as a multi-stage
matrix game with games as components as follows. Consider,
for example, the case of m = 16, hence the nesting degree is√
16 − 1 = 3. Let us consider the two-player R/J game. To

simplify the notation, let us refer to each quorum by one index.
We will refer to the quorum that consists of row i and column

j by the index (i− 1)
√
m+ j. Let UR4

be the receiver utility
matrix of the game. Then, UR4

can be written as follows.

UR4
=













a1,1 + U
(1,1)
R3

. . . a1,16 + U
(1,16)
R3

a2,1 + U
(2,1)
R3

. . . a2,16 + U
(2,16)
R3

...
. . .

...

a16,1 + U
(16,1)
R3

. . . a16,16 + U
(16,16)
R3













(27)

where the (i, j) element in (27) consists of two parts: ai,j
and U

(i,j)
R3

. ai,j is the utility (i.e., the number of successful
rendezvous slots − the number of jammed rendezvous slots)

obtained from the outer-most quorums i and j, and U
(i,j)
R3

is
the expected utility of the subsequent game that will be played
on the two 3× 3 grids resulted after removing the outer-most
quorum i from R’s quorum system and outer-most quorum j

from J’s quorum system. However, U
(i,j)
R3

is in turn a matrix
game with games as components, which can be written as
follows:



U
(1,1)
R3

=













b1,1 + U
(1,1)
R2

. . . b1,9 + U
(1,9)
R2

b2,1 + U
(2,1)
R2

. . . b2,9 + U
(2,9)
R2

...
. . .

...

b9,1 + U
(9,1)
R2

. . . b9,9 + U
(9,9)
R2













. (28)

Again, bi,j is the utility obtained from the 3× 3 quorums

i and j, and U
(i,j)
R2

is the expected utility of the subsequent
game that will be played on the two 2× 2 grids resulted after
removing the outer-most quorum i from R’s quorum system
and outer-most quorum j from J’s quorum system.

Detailed analysis of the nested rendezvous game is left for
future research.

X. CONCLUSIONS

In this paper, we studied the rendezvous problem in the
presence of an insider attack using a game-theoretic frame-
work. We considered the synchronous and asynchronous cases.
Moreover, we investigated the cases when the rendezvous
channel is known as well as when it is unknown. Our numerical
results revealed that uncertainty about the transmitter’s strategy
improves the anti-jamming rendezvous performance. More-
over, the rendezvous performance improves if the receiver and
jammer are synchronized, and also improves if the receiver and
jammer have a common guess about the transmitter’s strategy.
Finally, we provided a direction for extending the developed
game-theoretic framework to the case when SUs use multiple
rendezvous channels per frame (i.e., when the nesting degree
is greater than one).
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