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Abstract—Relative to half-duplex (HD) radios, in-band Full-
duplex (FD) radios have the potential to double a link’s capacity.
However, such gain may not necessarily extend to the network-wide
throughput, which may actually degrade under FD radios due to
excessive network interference. This paper identifies the unique
advantages of FD radios and leverages multi-input multi-output
(MIMO) communications to translate the FD spectral efficiency
gain at the PHY level to the throughput and power efficiency gain
at the network layer. We first derive sufficient conditions under
which FD-MIMO radios can asymptotically double the throughput
of the same network of HD-MIMO ones. Specifically, if a network
of 2N HD radios (N links) can achieve a total throughput of dN
bps (i.e., d bps per link), then an FD-capable network with the
same number of links and network/channel realization can achieve
2N(d − 1) bps (i.e., (d − 1) bps per direction of a bidirectional
link). To leverage this theoretical gain, we exploit the “spatial
signature” readily captured in the network interference to design
a MAC protocol that allows multiple FD links to concurrently
communicate while adapting their radiation patterns to minimize
network interference. The protocol does not require any feedback
nor coordination among nodes. Extensive simulations show that
the proposed MAC design dramatically outperforms traditional
CSMA-based and the non-orthogonal multiple access (NOMA)
protocols with either HD or FD radios w.r.t. both throughput and
energy efficiency. Note that in the literature, network interference
is often treated as colored noise that then gets whiten during the
signal detection process. However, through our MAC protocol, we
emphasize that, unlike random noise, network interference has
its own structure that can be “mined” for “intelligence” to better
align the transceiver’s signal.

Index Terms—Full-duplex, MIMO, Nash equilibrium, green
communications, energy efficiency, capacity, networking, MAC
layer.

I. INTRODUCTION

The United Nations Climate Change Conference (COP21)
has set an ambitious target to keep global warming below 2
degrees Celsius. To that end, every nation has committed to
cut its annual greenhouse gas emission, e.g., carbon dioxide,
to as low as zero before 2030. Such a target strongly moti-
vates all industries, including wireless systems (only its clouds
generate about 27 megatonnes of Carbon dioxide, equal to the
environmental impact caused by 4.9 million new cars [2]) to
look for greener alternatives. In this paper, we demonstrate
that recent advances in self-interference suppression (SIS) at
the wireless PHY layer can help to significantly conserve
transmission power/energy. SIS allows a wireless device to
transmit and receive simultaneously, i.e., perform full-duplex
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(FD) communications, on the same frequency [3] [4] and
even using the same antenna array. Over the last few years,
various SIS techniques have been demonstrated, including
antenna cancelation, analog RF, and digital cancelation (see [5]
and references therein). Latest developments have successfully
suppressed self-interference down to the noise floor for both
single [6] and multi-antenna (i.e., MIMO) [7] devices.

The spectral efficiency of an FD link has been shown to be
nearly double that of a conventional half-duplex (HD) link [6]
[7]. However, it has been reported (e.g., [8] [9] [10] [11]) that
the network-wide (multiple links) throughput gain under FD
radios is unexpectedly marginal or even negative compared to
HD-based systems for both ad hoc and cellular setups. Most
previous works on SIS focused on the throughput gain, with
few exceptions (e.g., [12] [13] [14]), which investigated the
energy/power efficiency of FD systems. This article attempts
to translate the FD spectral efficiency gain at the link level
into both throughput and energy/power efficiency gains at the
network level.

Unlike HD radios, both ends of an FD link transmit at the
same time. Thus, a set of mutually interfering FD links will
now experience higher network interference, and subsequently,
reduction in the spatial reuse. Although previous works (e.g.,
[8] [9] [10] [15]) identified the roots of throughput reduction
in a network of FD radios, they didn’t rigorously answer the
question whether FD network throughput can ever double that
of a HD network and how the FD network’s power efficiency
compares to that of an HD network. If throughput doubling
is possible, then under what conditions? Seeking an answer to
this question is critical in designing efficient MAC protocols
for FD-based multi-user systems.

Fig. 1. Bidirectional link i is comprised of two FD MIMO radios il and
ir . From the product of precoding and channel gain matrices of an interfering
FD MIMO radio jl (captured at the RF chains of ir), ir can infer the SPs of
information signal of link j (implicitly embedded in the precoding matrix of
jl) and SPs of interference induced on jl from ir (via channel reciprocity). il
then can configure its radiation pattern to reduce its interference on jr .

The SIS capability not only improves the spectral efficiency
but also allows a wireless device to instantaneously discern the



state of the medium while transmitting and instantly adjust its
transmission strategy. This was leveraged in [16] to combat
hidden/exposed terminals in CSMA-based protocols or and in
[17] [18] to improve the spectrum sensing/awareness of an
opportunistic access systems. For MIMO communications, the
interference/signal perceived by an FD MIMO radio provides
it with much more valuable information other than just the
busy/idle status of the medium: It helps a node partially infer the
“spatial signatures” (SPs) [19] [20] of the information signals
intended to other nodes as well as the interference from the
underlying node onto other nodes. That can be referred to as
the “deep sensing” capability of an FD MIMO radio.

Recall that in MIMO communications, signal alignment can
be realized via precoding, in which the information symbol
vector is pre-multiplied with a precoding matrix before being
placed on a Tx antenna array. A precoding matrix, or precoder,
is a matrix of complex elements whose phase and amplitude
can be tuned to control the radiation directions/beams of the
signal [19]. SP of the mth data (or interfering) stream is the
mth column vector of the corresponding channel gain matrix
that describes the spatial direction along which the stream’s
received power is maximized. Note that for FD radios that use
the same antenna array to transmit and receive simultaneously
[7], channel reciprocity holds, i.e., the channel gain matrix on
one direction is the transpose of that of the other direction.
Hence, as shown in Fig. 1, the interference seen at the RF chains
of radio ir (product of channel gain matrix from jl to ir and
jl’s Tx precoder) contains the SPs of link j’s information signal
(implicitly embedded in jl’s Tx precoder that is used to align
jl’s signal along link j’s SPs) and the SPs of the interference
induced on jl from ir (via channel reciprocity).

Learning the above SPs together with the ability to adjust
the radiation pattern instantaneously by tuning the phase and
the amplitude of elements of its precoding matrix allow a FD
MIMO node to minimize its required Tx power and reduce its
interference on others. This ability does not exist in HD radios
(where Tx and Rx have to take turns) nor single-antenna radios,
which cannot control their radiation beams. Note that previous
works (e.g., [9] [10] [16]) considered a protocol model (e.g.,
at most one single active link in a collision area) that does not
allow links to coexist, and hence ignored the above advantage
of FD MIMO radios, which in fact facilitates concurrent FD
transmissions.

Although there have been recent reports on FD MIMO, e.g.,
[21], only MIMO beamforming has been considered. Note that
for multi-antenna systems, precoding is a generalized form of
beamforming (beamforming is precoding with a single data
stream, i.e., precoder of rank one, e.g., [21]). In our work, we
consider a general precoder with no constraint on its matrix
rank. Various recent works, e.g., [22] [23] reported the energy
inefficiency of FD systems, compared with HD one and even
suggested using FD radios for short distances only (as in micro-
or pico-cells) due to their excessive interference. In this work,
we present a precoding design for FD MIMO that achieves
much higher energy efficiency than HD radios by exploiting
the spatial signatures in the network interference.

To establish the conditions that guarantee the superiority
of FD over HD radios in a network setting, we consider the
transmit power minimization problem for the entire network

subject to rate constraints. Note that there is a large literature
on sum-rate maximization subject to power constraints, e.g.,
[8] [9] [10]. Considering the power minimization problem
allows us to derive sufficient conditions under which a set
of rate demands can be met. We can then identify sufficient
conditions under which the FD radio network can asymptoti-
cally double the throughput of the same network but with HD
radios. Note that due to interference, the network-wide transmit
power minimization problem is nonconvex. Hence, even with
the availability of global network information, solving such a
problem is prohibitively expensive. Seminal approaches (e.g.,
[20] [24] [25]) that studied the power minimization problem
subject to SINR requirements for single-antenna HD radios
are inapplicable to our FD MIMO setup that involves matrix
operations. These matrix operations prevent us from obtain-
ing a closed-form expression/projection (e.g., the well-known
standard interference function in [24]) of precoders in terms of
SINR/rate requirements.

Given the above, we formulate a noncooperative game in
which FD links are players who aim to meet their rate demands
by optimizing their precoders. To exploit captured SPs, instead
of simply minimizing the transmit powers as in HD radios, an
FD radio minimizes the sum of transmit powers on its antennas,
weighted by the transpose of its interference covariance matrix
(as locally perceived by the radio). Following our approach
in [26], we use recession analysis [27] and the variational
inequality theory [28] to provide sufficient conditions under
which a Nash Equilibrium (NE) exists and a set of rates can
be met. We also prove that the NE is unique. At this NE,
if a network of 2N HD radios (N links) can achieve a total
throughput of dN bps (i.e., d bps per link), then an FD-capable
network with the same number of links and network/channel
realization can achieve 2N(d − 1) bps (i.e., (d − 1) bps per
direction of a bidirectional link).

Extensive simulations show that for a given set of rate
demands, the proposed approach is much more power-efficient
than when HD radios are used or when FDs do not exploit
SPs. The total power consumption under our approach is sig-
nificantly less than N times that of the CSMA-based approach
(where only one link is allowed to use the medium at a time)
while the network throughput is N times higher. We also
observe that the game converges quickly to its NE, facilitating
the design of a practical MAC protocol, which we refer to as
FD-MAC. As a performance benchmark, we use the augmented
Lagrangian method to develop a centralized algorithm for
the FD network-wide power minimization problem. Our main
contributions can be summarized as follows:
• We establish sufficient conditions under which FD radios

can double the network throughput.
• We identify and exploit the unique advantages (i.e., “deep

sensing”) of FD MIMO radios to enable the coexistence of
multiple links, leading to significant energy/power savings.
This is done by having FD MIMO radios instantly discern
the medium at a finer scale (i.e., spatial signatures of other
radios) and instantaneously adjust/adapt their radiation
beams.

• We design an efficient MAC protocol for a network of
FD radios. The proposed FD-MAC protocol does not
require any feedback from or coordination between links,
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as precoders are designed using only local information. Via
simulations, FD-MAC is shown to achieve almost the same
performance as its centralized (yet locally optimal) version
(which aims to minimize the total network Tx power). FD-
MAC yields much higher energy efficiency and throughout
gain than traditional CSMA-based and the non-orthogonal
multiple access (NOMA) protocols with either HD or FD
radios. We extend the above two results to the multi-carrier
scenario.

• We prove the existence of a unique NE to which the FD-
MAC protocol converges. Simulations show that the FD-
MAC converges to this NE fairly fast.

Throughout the paper, we use (.)∗ to denote the conjugate of
a matrix, (.)H for its Hermitian transpose, tr(.) for its trace, |.|
for the determinant, and (.)T for the matrix transpose. diagm(.)
indicates the diagonal element (m,m) of a matrix, and sum(.)
gives the summation of all elements of a vector. ||.|| denotes
the Euclidean norm. Matrices and vectors are bold-faced.

The rest of the paper is as follows. In Section II, we
present the network model and problem formulation. Conditions
for the existence and uniqueness of the NE and rate-demand
satisfaction, optimal precoders, and the MAC protocol are
presented in Section III. The centralized algorithm is developed
in IV. Numerical results are discussed in Section V, followed
by concluding remarks in Section VI.

II. NETWORK MODEL

Consider an ad hoc network of N FD-MIMO bidirectional
links. The two ends of each link i, i ∈ N def

= {1, ..., N}, operate
simultaneously as a transmitter and a receiver. For simplicity,
we denote the two FD radios/nodes of link i by the left radio
il and the right radio ir. Without loss of generality, each node
is equipped with M antennas (our analysis is still applicable
when nodes have different numbers of antennas). Let Hrl

ii (Hlr
ii )

denote the M×M channel gain matrix of the left-to-right (right-
to-left) direction of link i. Due to channel reciprocity, Hrl

ii =
(Hlr

ii )
T . Each element of Hrl

ii is the multiplication of a distance-
and frequency-dependent attenuation term and a random term
that reflects multi-path fading (complex Gaussian variables with
zero mean and unit variance). Let Hll

ij and Hlr
ij denote the

M ×M interfering channel matrices from radios jl and jr of
link j to radio il of link i, respectively, for any i, j ∈ N , i 6= j.
Hrl
ij is defined similarly.
Note that latest advances in SIS (e.g., [7] [5] and therein

references) are able to suppress self-interference to the noise
floor level (achieving 110dB or above SIS). However, to be
pragmatic, we still account for the imperfect SIS by having
Hll
ii and Hrr

ii denote the self-interference channel matrices at
radio il and ir, respectively. gsis denotes the self-interference
suppression level (the ratio of residual suppressed signal to the
transmit signal). Let Gl

i and Gr
i be the transmit precoding

matrices at il and ir, respectively. Let xri denote the vector
of transmit information symbols being placed on the antennas
of radio ir (for the right-to-left transmission of link i). The
received signal vector yli at the antennas of radio il is:

yli = Hlr
iiG

r
ix
r
i+
√
gsisH

ll
iiG

l
ix
l
i+

N∑
j=1|j 6=i

(
Hll
ijG

l
jx
l
j + Hlr

ijG
r
jx
r
j

)
+No

(1)
where the first term is the intended signal, the second term is the
self-interference induced by the transmit chains of radio il, the
third and fourth terms represent interference from the left and
right radios of link j, and No is an M × 1 complex Gaussian
noise vector with identity covariance matrix I, representing the
normalized noise floor. The noise-plus-interference covariance
matrix at radio ir, Qr

i , is:

Qr
i = I + gsisH

rr
ii Gr

iG
r
i
HHrr

ii
H

+
N∑

j=1|j 6=i

(
Hrl
ijG

l
jG

l
j

H
Hrl
ij

H
+ Hrr

ij Gr
jG

r
j
HHrr

ij
H
)
.

Let cli (cri ) denote the achieved throughput at node il (ir)
of link i. G

def
= [Gl

1 ×Gr
1 . . .×Gl

N ×Gr
N ] denotes the set of

precoders from all radios and G−ir is the set of all precoders
except that of ir radio. Treating interference from other radios
as colored noise, we have:

cli(G) = log |I + Gr
i
HHlr

ii

H
[Ql

i]
−1Hlr

iiG
r
i |

cri (G) = log |I + Gl
i

H
Hrl
ii

H
[Qr

i ]
−1Hrl

iiG
l
i|

(2)

The network-wide power minimization problem subject to
rate demands dli (to be granted to receiver il) and dri (to be
granted to receiver ir) is stated as follows:

minimize
{Gl

i,G
r
i ,∀i}

N∑
i=1

{tr(Gl
iG

lH
i ) + tr(Gr

iG
rH
i )}

s.t. C1: dli ≤ cli, ∀i ∈ N
C2: dri ≤ cri , ∀i ∈ N

(3)

In the above optimization, each radio is practically subject
to a power constraint. However, to study the feasibility of
any given set of rate demands (based solely on the network
interference) regardless of the power budget constraint, we
ignore the transmit power constraint. Seminal works (e.g., [24]
[20] [25]), that studied the power minimization problem subject
to rate demands, also neglected these constraints. Imposing a
power budget would put a constraint on the set of rate demands
that would have be achievable given the network geometry
and interference. In terms of the optimization methodology, the
power constraint at each node is an inequality with trace matrix
operation that is convex w.r.t. the precoding matrix. As such, the
following solution using convex optimization is still applicable.

III. NONCOOPERATIVE GAME FORMULATION

A. Formulation

The network-wide power minimization problem (3) is not
convex, and hence is computationally expensive to solve even
in a centralized manner. Additionally, collecting the required
network information to solve (3) often involves excessive over-
head. Existing works on HD-based systems formulate strategic
noncooperative games to suboptimally solve such optimization
in a distributed manner where the players are transmitting
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nodes. The transmit precoder G̃r
i of radio ir is found from:

minimize
{Gr

i }
tr(Gr

iG
rH
i )

s.t. dli ≤ cli.
(4)

Similarly, the transmit precoder Gl
i of radio il can be found by

solving:
minimize
{Gl

i}
tr(Gl

iG
lH
i )

s.t. dri ≤ cri .

As mentioned above, an FD radio ir can use its receive chain
to gauge how much interference its antennas induce on others.
Specifically, consider the transpose of the covariance matrix of
interference-plus-noise perceived by radio ir:

[Qr
i ]
T =I+ gsis(H

rr
ii Gr

iG
r
i
HHrr

ii
H)T

+
N∑

j=1|j 6=i

(
(Gl

j

T
Hlr
ji)

H(Gl
j

T
Hlr
ji)+(Gr

j
THrr

ji )
H(Gr

j
THrr

ji )
)

Let

Sri
def
= gsis(H

rr
ii Gr

iG
r
i
HHrr

ii
H)T

+

N∑
j=1|j 6=i

(
(Gl

j

T
Hlr
ji)

H(Gl
j

T
Hlr
ji)+(Gr

j
THrr

ji )
H(Gr

j
THrr

ji )
)
.

(5)

Sri contains the spatial signatures (SPs) of the interference
signal induced by radio ir onto radio jl (Hlr

ji) and onto radio
jr (Hrr

ji ). It also captures the SPs of the information signals
(Hlr

jj , Hrl
jj) intended for radios jl and jr that are implicitly

embedded in transmit precoders Gl
j and Gr

j (as radio jl aligns
its data streams with the sub-channels directions of Hrl

jj while
Hlr
jj = (Hrl

jj)
T ).

Intuitively, for an interfering channel, SPs capture the vul-
nerable directions that interference is most harmful. For an
information signal, SPs are directions along which the trans-
mit/receive beamformers should align the signal to maximize
the signal’s received power [19]1. Exploiting knowledge of
other nodes’ SPs, learned while transmitting, an FD radio can
meet its rate demand while minimizing both transmit power and
interference induced on other radios. To that end, the precoder
of radio ir can be obtained by solving:

minimize
{Gr

i }
tr(Gr

iG
rH
i ) + tr(Gr

iS
r
iG

rH
i )

s.t. dli ≤ cli
(6)

where tr(Gr
iG

rH
i ) + tr(Gr

iS
r
iG

rH
i ) = tr(Gr

iQ
r
i
TGrH

i ) is
interpreted as the summation of transmit power and interference
caused by ir.

Note that we area considering M bi-directional FD links.
The key difference between this model and the case with 2M
directional links is the channel reciprocity (thanks to the co-
location of Tx and Rx of a FD radio) and the self-interference.
If one was to replace our model of M bidirectional links with
2M directional links then the channel reciprocity does not
hold. That makes the spatial signature exploitation not possible.
As such, recruiting the game (6) does not lead to an energy-

1For example, the minimum mean square error (MMSE) receiver at jl is
capacity-optimal when its receive beamformer is set to [Ql

j ]
−1Hlr

jj [19].

efficient NE as observed in our case. Additionally, using the bi-
directional link model, the Ql

i and Qr
i (noise-plus-interference

covariance matrix at radio il and ir) are readily available at the
Rx antennas without requiring any feedback from other radios
in the network. We do not require any CSI feedback from
neighboring links. The observation of channel reciprocity in
FD radios, interference interpretation, and the game (6) follow
a similar setting but of conventional HD MIMO radios in [29].

B. Nash Equilibrium Existence and Uniqueness

The two games (4) and (6) have identical strategic space,
defined as the union of all players’ strategic spaces [30] and
shaped by the rate constraints C1 and C2. We can thus focus on
analyzing game (6); game (4) then follows by replacing Qr

i
T

in (6) with the identity matrix I.
Optimizing the precoder Gr

i of radio ir embodies computing
the optimal radiation directions and power allocation across ir’s
antennas. We can rewrite Gr

i as:

Gr
i = G̃r

i ×Pr
i
1/2 (11)

where G̃r
i is an M ×M unit-norm column matrix that controls

the radiation directions of radio ir. Pr
i is an M × M diag-

onal matrix whose diagonal element Pr
i (m,m) is the power

allocated on the mth data stream of radio ir.
Let pri

def
= [Pr

i (1, 1),Pr
i (2, 2), . . . ,Pr

i (M,M)] denote the
power allocation of radio ir for its various data streams.
Let p

def
= [pl1,p

r
1, , . . . ,p

l
N ,p

r
N ] ∈ R2NM

+ denote the power
allocation on all data streams of all 2N radios in the network.
Qr
i is positive definite, and so is its transpose. The objective

function in (6) is non-decreasing in every element of pri . Thus,
at a NE of the game (if one exists), the rate demand inequality
constraint becomes an equality. Otherwise, a radio would be
able to lower its transmit power and reduce the objective
function in (6) while fulfilling its rate demand. This defines a
feasible set for p, denoted by Pfeasible(d) in (7), corresponding
to a given requested rate profile d

def
= [dr1, d

l
1, . . . , d

r
N , d

l
N ] at a

NE.
Theorem 1: If a given set of rate demands (at all links) can

be supported with a finite power vector p, then the game (6)
admits at least one NE for this set of rate demands.
Proof: A player’s strategic space in Theorem 1 is defined by
all possible precoding matrices Gr

i that satisfy the rate demand
constraint dli ≤ cli of the playeri. This strategic space is also
the feasible region of the player’s optimization problem (6). It
is non-empty if the feasible region is non-empty or the problem
(6) is feasible.

Note that in the standard game theory, it is often implicitly
understood that there is always an action/strategy for a player,
i.e., the strategic space is non-empty. However, for the under-
lying power minimization problem subject to rate demands. If
the rate demands are too high, then a feasible solution may
not exist.We refer to this scenario as having an empty strategic
space. By contrast, for all other cases, the strategic space is
said non-empty.

The NE existence proof in [30] states that a game with
a concave utility function and compact and convex strategic
space for each player admits at least one NE. As stipulated in
Theorem 1, a given set of rate demand can be fulfilled. Hence
then all per-user optimization problems in (6) are feasible, i.e.,
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Pfeasible(d)
def
=
{
p ∈ R2NM

+ |cli(p)
def
= log |I + GrH

i HlrH
ii Ql

i

−1
Hlr
iiG

r
i | = dli,∀ir, , il

}
(7)

Γ
def
=


|HlrH

11 Hlr
11|

1
M −gsis(2d

l
1−1)

tr(HllH
11 Hll

11)
M −(2d

l
1−1)

tr(HllH
12 Hll

12)
M · · · −(2d

l
1−1)

tr(HllH
1N Hll

1N )
M −(2d

l
1−1)

tr(HlrH
1N Hlr

1N )
M

−gsis(2d
r
1−1)

tr(HrrH
11 Hrr

11)
M |HrlH

11 Hrl
11|

1
M −(2d

r
1−1)

tr(HrlH
12 Hrl

12)
M · · · −(2d

r
1−1)

tr(HrlH
1N Hrl

1N )
M −(2d

r
1−1)

tr(HrrH
1N Hrr

1N )
M

...
...

. . .
...

−(2d
r
N−1)

tr(HrlH
N1 Hrl

N1)
M −(2d

r
N−1)

tr(HrrH
N1 Hrr

N1)
M −(2d

r
N−1)

tr(HrlH
N2 Hrl

N2)
M · · · −gsis(2d

r
N−1)

tr(HrrH
NN Hrr

NN )
M |HrlH

NNHrl
NN |

1
M


(8)

Pasymp(d)
def
=

{
f ∈ R2NM

+ |∃{pn} ∈ Pfeasible(d) and {νn} → +∞ so that lim
n→∞

pn
νn

= f

}
(9)

P(d)
def
=

f ∈ R2NM
+ |c′li(f)

def
=log

1+ tr(GrH
i Gr

i )|HlrH
ii Hlr

ii |
1
M

gsis
tr(HllH

ii Hll
ii)

M tr(GlH
i Gl

i) +
N∑

j=1|j 6=i

( tr(HllH
ij Hll

ij)

M tr(GlH
j Gl

j)+
tr(HlrH

ij Hlr
ij)

M tr(GrH
j Gr

j)
)
 ≤ dli,∀i


(10)

their strategic spaces are non-empty. Additionally, the feasible
region (or the strategic space) of each player in problem (6)
is convex, as the achievable throughput cli for each player i is
concave w.r.t. the radio’s precoder Gr

i [19]. The only remaining
requirement is the compactness of the strategic space. The
precoder (or strategy) Gr

i , rewritten as Gr
i = G̃r

i × Pr
i
1/2

is finite/bounded because the elements in the power allocation
matrix Pr

i are bounded. As a set of rate demands can be met
with finite power, these technical constraints can be set by a
sufficiently high, yet finite, power. In short, the strategic space
of problem (6) is nonempty, convex, and compact. Moreover,
the player in problem (6) minimizes a convex objective function
(by verifying its Hessian is positive semidefinite w.r.t. Gr

i ), i.e.,
the player maximizes a concave utility function. Citing [30],
problem (6) admits at least one NE. �

For the existence of a NE, it suffices to find conditions
under which the feasible set Pfeasible(d) of p is nonempty
and bounded. This is formally stated in the following theorem:

Theorem 2: Let Γ be the 2N×2N matrix defined in (8). If
Γ is a P-matrix2, then Pfeasible(d) ∈ R2NM

+ is nonempty and
bounded, and hence game (6) admits at least one NE.
Proof: We first prove that Pfeasible(d) contains at least one
bounded vector p ∈ RNKM+ or the rate remand can be met
with finite transmit power.

Lemma 1: Given that Γ is a P-matrix, there exists at least
one bounded vector p ∈ Pfeasible(d) ∈ R2NM

+ .
Proof: See Appendix A. �

Next, to show that Pfeasible(d) is bounded, we rely on the
concept of asymptotic cone of a nonempty set in recession
analysis [27]. Specifically, for a nonempty set P ∈ RN+ , its
asymptotic cone, Pasymp, is comprised of vectors f ∈ RN+ ,
called limit directions. Each limit direction vector f is defined
through the existence of a sequence of vectors pn ∈ P and a
sequence of scalars νn that tend +∞ such that [27]:

lim
n→∞

pn
νn

= f . (12)

P is bounded if its asymptotic cone Pasymp = {0} [27]. To

2A P-matrix is one for which all principal minors are positive [31].

show that Pfeasible(d) is bounded, it suffices to prove that its
asymptotic cone Pasymp(d) contains only the zero vector. The
asymptotic cone Pasymp(d) is formally defined in (9).

Since Pfeasible(d) has at least one bounded p (Lemma 1),
by the definition of limit directions, the vector zero 0 belongs
to its asymptotic cone Pasymp(d). We now construct a set P(d)
of which Pasymp(d) is a subset and prove that P(d) = {0} if
Γ is a P-matrix.

Lemma 2: If f ∈ Pasymp(d) then f belongs to P(d),
defined in (10).

Proof: See Appendix B. �

Assuming that there exists at least one f 6= 0 and that f ∈
P(d), we have:

Γ× [tr(GlH
1 Gl

1), . . . , tr(GrH
N Gr

N )]T ≤ 0. (13)

As Γ is a P-matrix and [tr(GlH
1 Gl

1), . . . , tr(GrH
N Gr

N )]T is
a nonnegative vector, (13) implies that tr(GlH

i Gl
i) = 0 and

tr(GrH
i Gr

i ) = 0 ∀i [31] or f = 0. This contradicts the above
assumption. Hence, P(d) and its subset Pasymp(d) equal to
{0}. Theorem 2 is proved. �

Intuitions behind Theorem 2 can be drawn as follows. If the
diagonal elements of Γ are positive, then a sufficient condition
for Γ to be a P-matrix is |Γ(i, i)| ≥

∑
j 6=i
|Γ(i, j)| (i.e., row

diagonally dominant) [31]. Hence, the following inequality
guarantees that game (6) has at least one NE:

Mdet(HlrH
ii Hlr

ii )
1
M

gsistr(HllH
ii Hll

ii)+
N∑

j=1|j 6=i
(tr(HllH

ij Hll
ij)+tr(HlrH

ij Hlr
ij))

≥(2d
l
i−1),∀i ∈ N .

(14)

To better interpret inequality (14), let’s assume perfect SIS
(i.e., gsis is sufficiently small to be neglected) and rewrite
Hlr
ii = 1√

slrii
n H̄lr

ii , where n is the path loss exponent, siilr

is the transmission distance from radio ir to radio il, and H̄lr
ii

is a complex Gaussian matrix with with zero mean and unit
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variance. Inequality (14) can be rewritten as:

Mdet(H̄lrH
ii H̄lr

ii )
1
M

N∑
j=1|j 6=i

((
slrii
sllij

n )ntr(H̄llH
ij H̄ll

ij)+(
slrii
slrij

)ntr(H̄lrH
ij H̄lr

ij))

≥(2di
l

−1)∀ i.

(15)

The nominator of the LHS in (15) represents the strength of
the channel gain matrix from ir to il, while its denominator de-
scribes the strength of (interfering) channel gain matrices from
all other radios jl and jr (j 6= i) on radio il. For the game in (6)
to have at least one NE, the multi-user interference should not
be too strong. This is the case if the (transmission) distance slrii
between il and ir is small enough compared with (interfering)
distances (sllij and slrij) between il and radios other than ir, the
channel gain matrix of link i is full-rank (this is often the case
in a rich-scattering environment), and its requested rate is not
too high. The acceptable multi-user interference is explicitly
quantified in (14), and is a function of the rate demand dli
of radio il. For higher rate demands, inequality (14) becomes
stringent, meaning that network interference must be lowered.

Remark 1: The denominator of (15) captures the interfer-
ence to il from radios on the left side jl and right side jr sides
of all links j 6= i. If all FD radios choose to operate in HD
fashion, e.g., all left radios transmit and all right radios receive,
then the second term in the denominator should disappear.
Consequently, the denominator reduces roughly by half. If (15)
holds for the new denominator for all radios with rate demands
dri = d and dli = 0 (i.e., all left radios are transmitters only) for
all i, then when all radios return to FD mode, (15) should also
hold for all radios with rate demands dri = d−1 and dri = d−1.
This is because (2d−1)

2 > 2d−1−1. The network throughput in
the FD case is then 2N(d− 1), which is asymptotically twice
that of the HD case (Nd). Hence, we can conjecture that if (15)
holds for all radios, the network throughput can double with FD
radios. Note that, in general, d� 1 (d = 1 corresponds to the
extreme case when the signal-to-noise-plus-interference ratio is
1 or signal strength is equal to the noise plus interference).
Conditions in (15) are also in line with the findings in [9]
[10], where it was observed that FD radios outperform HD
ones if network interference is mild (i.e., interfering links are
sufficiently separated from each other). However, [9] [10] did
not quantify how mild network interference should be for FD
radios to double the network throughput.

To analyze the uniqueness of the NE, we rely on variational
inequalities (VI) theory, casting (6) as a VI problem. A tutorial
on VI can be found in [28] and the references therein.

Theorem 3: If game (6) has a NE, this NE is unique.

Proof: We prove that the mapping of the equivalent VI problem
of (6) is continuous uniformly-P function. Hence, if a NE exists,
it is unique. See Appendix C for details. �

Remark 2: The conditions in Theorem 2 or inequality (15)
are sufficient for throughput doubling but not necessary. FD
radios can still double network throughput even when these
conditions do not hold. Theorem 3 indicates that (6) does not
have multiple NEs. In our simulations, we observed that the
game always converges to its unique NE as long as the rate
demands are not unreasonably high.

C. Best Response

The optimal precoder Gr
i of radio ir is obtained by solving

(6). Notice that (6) is convex, hence can be solved efficiently
using the interior-point method. To gain insight into how power
is allocated over ir’s antennas, we follow the approach in [29].
Specifically, the Lagrange function of (6) is:

Lri (G
r
i , γ

l
i)

= tr(Gr
iQ

rT
i GrH

i )+γli(d
l
i−log |I+GrH

i HlrH
ii [Ql

i]
−1Hlr

iiG
r
i |)

= tr(Ḡr
iḠ

rH
i )+γli(d

l
i−log |I+ḠrH

i Er
i
−1HlrH

ii [Ql
i]
−1Hlr

iiE
rH
i

−1
Ḡr
i |)

≤ tr(Ḡr
iḠ

rH
i )

+γli(d
l
i−

M∑
m=1

log(1+diagm(ḠrH
i Er

i
−1HlrH

ii [Ql
i]
−1Hlr

iiE
rH
i

−1
Ḡr
i |)))

(16)

where γli and γri are nonnegative Lagrangian multipliers, and
ḠrH
i = GrH

i Er
i with Cholesky decomposition QrT

i = Er
iE

rH
i ,

and diagm(∗) denotes the diagonal element (m,m) of the
matrix. The last inequality is obtained by applying Hadamard
inequality [32].

Problem (6) can be solved by finding the maximum of its
lower bound Lri (G̃

r
i , γ

l
i). Inequality (16) becomes an equality

if there exists an orthonormal matrix Ḡr
i that diagonalizes

Er
i
−1HlrH

ii [Ql
i]
−1Hlr

iiE
rH
i
−1. After some manipulations, we

can prove that the optimal Gr
i must be in the form a generalized

eigen matrix of HlrH
ii [Ql

i]
−1Hlr

ii and QrT
i . This is realized by

setting G̃r
i in (11) as a unit-norm generalized eigen matrix of

HlrH
ii [Ql

i]
−1Hlr

ii and QrT
i . It follows from [33] that:

G̃rH
i HlrH

ii Ql
i

−1
Hlr
iiG̃

r
i = Πl

i and

G̃rH
i QrT

i G̃r
i = Ωr

i

(17)

where Πl
i and Ωr

i are diagonal matrices.
The Lagrangian Lri (G

r
i , γ

l
i) becomes:

Lri (G
r
i , γ

l
i)

=
M∑
m=1

(diagm(Ωr
i )P

r
i (m,m)− γli log(1 + Pr

i (m,m)diagm(Πl
i))).

The optimal power for data stream m is obtained by equating
the derivative of Lri (G

r
i , γ

l
i) to zero. Accordingly:

Pr
i (m,m) = max

(
0, γli

1

diagm(Ωr
i )
− 1

diagm(Πl
i)

)
(18)

where the Lagrange multiplier γli is computed (e.g., using
bisection search) to meet the rate demand dli.

From (18), more power is allocated on data streams with
lower diagm(Ωr

i ) and higher diagm(Πl
i). This means more

power is allocated to higher-gain streams and less power on
directions that cause higher interference to others.

Ql
i and Qr

i in Equations (17) and (18) are the noise-
plus-interference covariance matrix at radio il and ir. These
quantities are readily available at the Rx antennas without
requiring any feedback from other radios in the network. To
compute the precoder at a radio of a link i, no CSI between the
radio of link i and any other radio of link j, j 6= i, is required.
One only needs the local CSI of link i that can be easily
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Γk
def
=


|HlrH

11kHlr
11k|

1
M −gsis(2λ

l
1kd

l
1−1)

tr(HllH
11kH

ll
11k)

M · · · · · · −(2λ
l
1kd

l
1−1)

tr(HllH
1NkH

ll
1Nk)

M −(2λ
l
1kd

l
1−1)

tr(HlrH
1NkH

lr
1Nk)

M

−gsis(2λ
r
2kd

r
2−1)

tr(HrrH
11k Hrr

11k)
M |HrlH

11kHrl
11k|

1
M · · · · · · −(2λ

r
2kd

r
2−1)

tr(HrlH
1NkH

rl
1Nk)

M −(2λ
r
2kd

r
2−1)

tr(HrrH
1NkH

rr
1Nk)

M
...

...
. . .

...

−(2λ
r
Nkd

r
N−1)

tr(HrlH
N1kH

rl
N1k)

M −(2λ
r
Nkd

r
N−1)

tr(HrrH
N1kH

rr
N1k)

M · · · · · · −gsis(2λ
r
Nkd

r
N−1)

tr(HrrH
NNkH

rr
NNk)

M |HrlH
NNkH

rl
NNk|

1
M


(20)

acquired using various channel estimation and training methods
(similar to that in existing systems, e.g., 802.11ac, LTE). MIMO
CSI estimation and training have a well-established literature,
hence we choose not to dwell on it. Note that estimating the
CSI for the “main channel” between a Tx and its intended Rx”
is also needed for HD MIMO networks.

D. Multi-carrier FD MIMO

In this section, we extend the above setup and results
to multi-carrier setting (e.g., OFDM with channel bond-
ing/aggregation). Assume that on each direction, a FD radio can
transmit simultaneously over K channels/subcarriers in ΦK . Let
Hrl
iik (Hlr

iik) denote the M×M channel gain matrix of the left-
to-right (right-to-left) direction of link i and Gl

ik (Gr
ik) denote

the transmit precoding matrices at the left il (right ir) radios
of link i on channel k ∈ ΦK . The game in (6) can be rewritten
as follows for the case of K carriers:

minimize
{Gr

ik}

K∑
k=1

tr(Gr
ikG

rH
ik ) + tr(Gr

ikS
r
ikG

rH
ik )

s.t. dli ≤ cliK
(19)

where Srik is equivalent to Sri in (5) but over channel k and

cliK
def
=

K∑
k=1

clik with clik is the achieved rate of il on channel k.

The following theorem states the sufficient conditions for the
existence of a unique NE.

Theorem 4: If there exists a non-negative 1 × 2NK vec-
tor λ

def
= {λl11, λr11, . . . , λl1k, λr1k, . . . , λlNK , λrNK} such that

K∑
k=1

λrik = 1,
K∑
k=1

λlik = 1,∀i = 1...N and Γk (defined in (20))

is a P-matrix for all k = 1...K, then game (19) admits a unique
NE.
Proof:

First, consider a channel k. As Γk is a P-matrix, Theorem
2 implies that rates {λl1kdl1, λr1kdr1, . . . , λlNkdlk, λrNkdrk} are

achievable on channel k. Thus, for
K∑
k=1

λrik = 1,
K∑
k=1

λlik =

1,∀i = 1...N and that Γk is a P-matrix for all k = 1...K, the
rates [dr1, d

l
1, . . . , d

r
N , d

l
N ] are achievable by aggregating over

all K channels under the game (19). Analogous to Theorem
1, we can easily prove (by appealing the convex/concave game
analysis) that if the rates [dr1, d

l
1, . . . , d

r
N , d

l
N ] can be supported,

then game (19) admits at least one NE. To prove that the NE
is in fact unique, one can follow the routine of Theorem 3’s
proof using VI theory. �

E. MAC Protocol

We briefly present a MAC protocol, called FD-MAC, that
implements game (6) in a distributed fashion. Unlike typical
CSMA-based protocols, FD-MAC exploits information per-
ceived by FD radios to enable concurrent transmissions on

multiple links. Each transmission session in FD-MAC consists
of two phases: a training phase and a data phase. In the first
phase, an FD radio, say A, that has data packets to send, starts
by transmitting a hand-shaking message (HSK). This HSK
contains a training sequence for CSI estimation purposes (to
rendezvous with its intended radio B). HSKs are sent at the
lowest (most robust) rate, referred to as a base rate, so as to
improve the chances of delivering them.

As each FD radio can transmit and receive at the same
time and a two-way channel exists between the two radios of
a bidirectional link, FD radios of a link can instantaneously
update each other regarding CSI as well as the noise-plus-
interference covariance matrix. This information is needed to
solve (6). If either A or B fails to transmit or receive at the
base rate to hand-shake with the intended partner, it then backs
off for a random duration before trying again. Upon receiving
an HSK, radio B replies with a message to trigger the training
process by solving problem (6) to achieve the rate demand.
The data transmission phase ensues with multiple back-to-back
packets. Note that under FD-MAC, radios of different links do
not need to coordinate or exchange any signaling packets but
precoders are computed on the fly using only local information.

To ensure that the training phase in FD-MAC is not too
long, the iterating process should converge after a reasonable
time. The iterative process of updating the best responses of
players/links can be done in a synchronous or asynchronous
manner. In the former, players update and execute their best
responses/strategies either in a sequential (i.e., Gauss-Seidel) or
parallel (i.e., Jacobi) manner3. To facilitate synchronous update,
players have to coordinate with each other or must be in sync.
Such a requirement is quite challenging due to the dynamic
nature of the network topology. The Jacobi, Gauss-Seidel or
synchronous updates are special forms of the asynchronous
update scheme in which players are allowed to update their best
responses in an arbitrary manner, or even sporadically skip their
responses. To prove the convergence of the best response in FD-
MAC to the unique NE under the asynchronous updates, one
can rely on the Asynchronous Convergence Theorem in [34].
For brevity, we omit this detailed proof. Interested readers are
referred to a similar proof in [35] and therein references.

IV. NETWORK-WIDE PROBLEM

Note that even if the network-wide problem can be optimally
solved in a centralized manner, collecting the global network
information for this network-wide problem requires excessive
amount of overhead. As such, finding a distributed and optimal
centralized solution to this network-wide problem is, yet very
much desirable, remains an open problem.

3The parallel (or Jacobi) update is often observed to converge faster than the
sequential (or Gauss-Seidel) one [28].
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To seek a performance benchmark for our distributed solution
above, in this section we use the augmented Lagrange multiplier
method [36] to derive the centralized algorithm for the network-
wide problem (3). The centralized algorithm provides locally
optimal solution. The augmented Lagrange of (3) is given in
(23), where qli

def
= dli−cli, qri

def
= dri−cri and p is a positive penalty

factor for violating rate constraints. At an optimal solution, (24)
holds.

Since qlj is continuously differentiable w.r.t every entry of
G̃r
j , the third and fourth terms in (24) are also continuously

differentiable [36]. Their derivatives are as follows:

∂{(max{0, γli+pqli})2}
∂Gr∗

j

}=


0 if γli+pq

l
i ≤ 0

−2p
∂cli
∂Gr∗

i
if γli+pq

l
i > 0 and i = j

−2p
∂cli
∂Gr∗

j
if γli+pq

l
i > 0 and i 6= j

∂{(max{0, γri +pqri })2}
∂Gr∗

j

}=

{
0 if γri +pqri ≤ 0 or j = i

−2p
∂cri
∂G̃r∗

j

if γri +pqri > 0 and j 6= i

where:

∂cli(G)

∂Gr∗
i

= −HlrH
ii (Ql

i + Hlr
iiG

r
iG

rH
i HlrH

ii )−1Hlr
iiG

r
i (21)

and

∂cli(G)

∂Gr∗
j

=HlrH
ij Ql

i

−1
Hlr
ij [(G

r
iG

rH
i )−1

+ HlrH
ii Ql

i

−1
Hlr
ii ]
−1HlrH

ii Ql
i

−1
Hlr
ijG

r
j

(22)

We use the gradient search algorithm with Armijo step size
[36] to find (Gl

i,G
r
i , γ

l
i, γ

r
i , p) such that (24) holds for all

radios. The running time can be high as it involves NM2

complex variables (or 2NM2 real ones).

V. SIMULATIONS RESULTS

We numerically evaluate the performance of the above cen-
tralized and distributed algorithms using MATLAB simulations.
We compare these algorithms in terms of the total network
power required to meet a given set of rate demands when the
FD capability to capture spatial signatures is exploited (game
(6), FD-MAC) and when it is not exploited (game (4), referred
to as “without SPE”). We also compare the total required
power under the proposed FD-MAC protocol with that when
FD links take turn to access the channel (e.g., CSMA-based
protocols). Eight pairs of radios are randomly placed in a field

of dimensions 1000 × 1000 m2. Each radio has 4 antennas.
Channel bandwidth is 20 MHz. We assume perfect SIS with
gsis = 0. Noise floor is set as −90dBm/Hz. The channel fading
is flat with a free-space attenuation factor of 2. All algorithms
have identical initializations of precoding matrices.

Fig. 2 shows snapshots of radiation patterns of FD radios
under different algorithms (at their converged points). The
digital beamforming radiation pattern at each node is a function
of the node’s precoder, e.g., matrix G̃r

i . We first normalize the
matrix with its norm and then compute the distance ρ in the
polar coordinate from this normalized precoder. After that, we
convert the polar coordinates to Cartesian coordinates to plot the
pattern. As can be seen, when nodes cooperate so that (3) can
be solved in a centralized manner, we visually notice that FD
radios try to steer their beams away from unintended receivers.
This is also observed for the distributed FD-MAC algorithm
with SPE, where nodes minimize their Tx power weighted by
SPs of others. Interestingly, the beam patterns of the distributed
FD-MAC are quite similar to that of the centralized algorithm,
suggesting the efficiency of using SPs. These two algorithms
seem to induce less network interference, compared with the
beam patterns when SPs are not exploited (game (4)).

In the following power comparison, we choose to focus
on the transmit power at the air interface that is much more
significant than the circuitry energy, especially for medium and
long distances. It is also worth noting that most existing FD
transceivers, e.g., [6] [7] [5], share similar RF components
(e.g., frequency synthesizer and the power amplifier) with
HD ones. These account for more than 85% of the circuitry
energy [37]. Moreover, the extra power for the self-interference
suppression/canceller of FD radios is quite negligible [38].

Fig. 3 depicts the total network transmit power when nodes
demand a rate of 40 Mbps (i.e., 2 bps/Hz). Notice that the
CSMA-based approach where FD links take turn in accessing
the channel (i.e., only one FD link operates at a time), requires
the least Tx power. This is because in such cases, a link does
not need to cope with interference from others, but obviously
this occurs at the expense of low network throughput (equals
to that of one FD link’s, 80 Mbps). The proposed FD-MAC
algorithm converges after about 9 iterations and consumes
almost the same total power as the centralized algorithm. This
is in line with the similarity in the radiation behavior observed
in Fig. 2. Being compared with the CSMA-based approach, by
advocating concurrent links’ transmission, FD-MAC requires
about 5 times higher Tx power but attains 640 Mbps network

L(Gl
i,G

r
i , γ

l
i, γ

r
i , p) =

N∑
i=1

{tr(Gl
iG

lH
i )+tr(Gr

iG
rH
i )+

p

2
((max{0, γli+pqli})2−(γli)

2 + (max{0, γri +pqri })2−(γri )2)} (23)

0 =
∂L(Gl

i,G
r
i , γ

l
i, γ

r
i , p)

∂Gr∗
j

= 2Gr
j +

p

2

N∑
i=1

{∂(max{0, γli+pqli})2

∂Gr∗
j

+
∂(max{0, γri +pqri })2

∂Gr∗
j

} (24)

xli=
[
<[vec(Gl

i)]
T
,=[vec(Gl

i)]
T
]T

;xri=
[
<[vec(Gr

i )]
T
,=[vec(Gr

i )]
T
]T

(25)

∇xL = 2

[
<[vec(

∂L

∂Gl∗
1

)]
T

, ...,<[vec(
∂L

∂Gr∗
N

)]
T

,=[vec(
∂L

∂Gl∗
1

)]
T

, ...,=[vec(
∂L

∂Gr∗
N

)]
T
]T

(26)
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(a) Centralized Algorithm (b) FD-MAC with SPE (c) Without SPE

Fig. 2. A snapshot of antenna patterns of FD radios under the centralized, distributed FD-MAC (exploiting SPs), and without exploiting SPs algorithms.

Fig. 3. Total transmit power under different algorithms and a rate demand of
40 Mbps per node.

throughput (8 times higher). This gain is very significant due
to the fact that throughput/rate does not scale linearly w.r.t.
transmit power.

In contrast to the CSMA approach, in FD-MAC a link does
not give up when the medium is busy. Instead, it proceeds
but in a “responsible” way by exploiting SPs to minimize
interference to ongoing receptions. We also observe that for
the same amount of throughput (640 Mbps), if SPs are not
exploited, the required transmit power is 77.4 W (compared to
13.1 W under FD-MAC).

Fig. 4. Convergence of transmit power at different links under FD-MAC.

Fig. 5. Convergence of transmit power at different links when SPEs are not
exploited (game (4)).

The convergence of Tx power for different links under FD-
MAC is shown in Fig. 4. We notice that the consumed power
values converge with different speeds (to the NE) but all
intermediate Tx powers are in a similar range of the Tx power
under the CSMA-based approach (Table I). This is critically
important: If intermediate Tx power are excessive e.g., higher
than nodes’ power budget (like the case when SPs are not
exploited, in Table I and Fig. 5), nodes can’t follow the game
to reach the NE, even if the NE itself is power-efficient. Fig. 4
and Fig. 5 (and Table I) show that by being responsible for their
interference (using (6) instead of (4)) all links can reduce their
Tx power. It is also seen that the nodes of game (4) (Fig. 5) take
longer time to converge, compared with (6) (Fig. 4), as higher
network interference makes them more dependent on each other
and need more time to “negotiate”. Note that the transmit power
in Fig. 5 is excessively high, compared with the conventional
maximum transmit power of wireless devices (about 1W). In
existing radio designs, multiple radios are often not allowed to
simultaneously transmit (but follow a MAC protocol). As such,
the excessive transmit power in Fig. 5 would not happen in
practice. However, from the simulated scenario, we observe that
under our proposed scheme, FD-MAC can sustain simultaneous
transmissions of FD-MIMO radios with reasonable transmit
power (as in Fig. 4, always less than 3W or less than 2W on
average).

To investigate the power/energy efficiency, Fig. 6 compares
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TABLE I
LINKS’ TX POWER (IN WATTS).

Links HD CSMA-based FD-MAC without SPE
1 1.45 0.856 2.66 14.2
2 0.0.46 0.744 1.08 1.44
3 0.39 0.29 1.32 16.2
4 0.73 0.268 1.89 12.6
5 0.24 0.327 1.01 7.3
6 0.26 0.46 1.96 10.62
7 0.322 0.43 0.88 1.9
8 0.642 0.63 2.87 13.1

Fig. 6. Total transmit energy per bit of a HD v.s. a FD network (for the same
throughput of 640 Mbps).

the total transmit power of HD (under NOMA) vs. FD radios
(under FD-MAC) for the same network throughput of 640
Mbps. To that end, the rate demand for each direction of each
FD link is 40 Mbps and the rate demand for each HD link is
80 Mbps. As can be seen, FD-MAC with its better capability
in managing network interference and higher spectral efficiency
requires much less transmit power than that of HD radios for the
same network throughput. Note that the energy efficiency per
bit of FD-MIMO is thanks to its spectral efficiency. However,
translating this spectral efficiency at the PHY layer (of a single
link) to the overall (network) energy efficiency is not trivial
(as observed in Fig. 3 and its discussion) and that is the main
contribution of our work (the FD-MAC protocol with the SPE).

We also observe that, when the network becomes denser, i.e.,
with more links (as shown in Fig. 7), FD becomes more and
more energy-efficient.

To further evaluate the network interference, we adopt the
network interference function (NIF) introduced in [39], as
follows:

NIF , tr{
∑
i∈N

(Qr
i + Ql

i)} (27)

Fig. 8 compares the network interference under the FD-
MAC and the conventional FD (without SPE) protocols for
FD radios, and HD (under NOMA) radios using the above
scenario with the same network throughput of 640 Mbps. We
observe FD-MAC that consumes the least power also yields the
least network interference. In the case of HD, its radios require
the highest transmit power (Fig. 6) but then cause the largest
network interference.

Fig. 7. Total transmit energy per bit of a HD v.s. a FD network w.r.t. the
number of links (for the same throughput of 640 Mbps).

Fig. 8. Network interference comparison of a HD, a FD-MAC, and a FD-
without-SPE network for the same throughput of 640 Mbps.

VI. CONCLUSIONS

To leverage the potential of FD MIMO radios at the network
layer, we first investigated the transmit power minimization
problem of an FD MIMO network subject to rate demands
under a noncooperative game framework. We then established
the conditions under which FD radios can asymptotically dou-
ble the network throughput over HD ones. These conditions
quantify the exact level of network interference that allows
multiple FD radios/links to efficiently coexist. Consequently,
we developed a novel MAC mechanism that enables concurrent
operation of FD links while exploiting the unique advantages
of FD radios (in learning radio medium at a much finer level
than just carrier sensing and the ability to instantaneously ad-
just/adapt transmission behavior) to reduce network interference
(that, in return, facilitates FD links’ co-existence). The FD-
MAC is fully distributed and converges to the unique NE
whose efficacy is almost the same as that of the centralized
algorithm. By leveraging SPs and SIS capability, the FD-MAC
protocol significantly outperforms a CSMA-based design or the
NOMA MAC with HD radios in terms of both throughput and
energy/power efficiency.

The key idea behind exploiting SPs is inspired by the network
duality [40] and the concept of spatial signature [19] [24].
Although network interference is often treated as colored noise
then that gets whiten during the signal detection process, unlike

10



random noise, network interference has its own structure. This
structure is determined by the channel state information, signal
precoding methods, and modulation. It can be “mined” for
insights or intelligence to better align the transceiver’s signal.
This interference mining approach can be very helpful in facil-
itating concurrent transmissions in NOMA. Our future works
will focus on investigating other applications of FD radios
to NOMA. Additionally, it is also interesting to evaluate the
energy efficiency of FD radios for short transmission distances,
where the circuitry energy consumption is quite significant
compared to transmission energy.
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APPENDIX A
PROOF OF LEMMA 1

We first introduce the following proposition:
Proposition 1: Let P ∗ = tr(GrH

i Gr
i ) and cl∗i = dli be the

transmit power by radio ir and the corresponding throughput
received by radio il after updating its precoder as Gr

i . This
precoder Gr

i must be a solution to:

maximize
{Gr

i }
cli

s.t. tr(GrH
i Gr

i ) ≤ P ∗.
(28)
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ijG
lH
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j) + tr(HlrH
ij Hlr

ijG
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dli≥ log(1+
tr(GrH

i Gr
i )|HlrH

ii Hlr
ii |

1
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1+ gsis
tr(HllH

ii Hll
ii)

M tr(GlH
i Gl
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ij Hlr

ij)
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ij Hll
ij)

M tr(GlH
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Proof: If Gr
i is not a solution to problem (28) (given it can

attains rate dli as being assumed) then there exists a precoder Ḡr
i

that requires at most power of P ∗ but achieves a rate c̄li > dli.
In other words, it is possible for radio ir to reduce its transmit
power to achieve a rate of dli. This contradicts to the fact that
Gr
i is the optimal solution (or best response) of ir (i.e., transmit

at lower power). Thus, Gr
i must be a solution of (28). �

From the definition of Pfeasible(d) (7), we have the following
inequality ∀i radios:

dli ≥ log |I + GrH
i HlrH

ii Ql
i

−1
Hlr
iiG

r
i | (29a)

≥ log
(

1 + tr(GrH
i Gr

i )eigmax(HlrH
ii Ql

i

−1
Hlr
ii )
)

(29b)

where the (29a) comes from the Proposition 1 and the RHS
of (29b) is a lower-bound of the rate cli in problem (28),
obtained by allocating all power tr(GrH

i Gr
i ) on the subchannel

eigmax(HlrH
ii Ql

i
−1

Hlr
ii ) and zero power on others.

Besides, let Vl
ii be the unitary matrix that diagonalizes

matrix HlrH
ii Ql

i
−1

Hlr
ii and the diagonal matrix Wl

i contain
eigenvalues of matrix HlrH

ii Ql
i
−1

Hlr
ii , we have:

VlH
ii HlrH

ii Ql
i

−1
Hlr
iiV

l
ii = Wl

i (30a)

tr(Ql
i) = tr(Hlr

iiV
l
iiW

l−1
i VlH

ii HlrH
ii ) (30b)

Then we have equations (30a),(30b),(30c),(30d). (30a) fol-
lows by recalling the noise-plus-interference covariance matrix
on the LHS of (30b) and applying the identity tr(A)

n ≥ |A|1/n
[33] (for any n×n positive semi-definite matrix A) to the RHS
of (30b). (30c) follows from applying the identity tr(AB) ≤
tr(A)tr(B) to the LHS of (30b).

From inequalities (30d) and (29b), we get (30e). We then
have:

(2d
l
i − 1)≥Γ(2i− 1, :)× (31a)

[tr(GlH
1 Gl

1), tr(GrH
1 Gr

1), . . . , tr(GlH
N Gl

N ), tr(GrH
N Gr

N )]T

(31b)

Γ−1×[2d
l
1−1, 2d

r
1−1, . . . , 2d

l
N−1, 2d

r
N−1]T ≥ (31c)

[tr(GlH
1 Gl

1), tr(GrH
1 Gr

1), . . . , tr(GlH
N Gl

N ), tr(GrH
N Gr

N )]T

where the inequality (31c) comes from the assumption Γ is a
P-matrix, hence invertible [31].

Hence the RHS in (31c) is bounded or rate demands can be
fullfilled with a bounded power allocation vector p. In other
words, Pfeasible(d) contains at least one bounded p. �

APPENDIX B
PROOF OF LEMMA 2

For f ∈ Qasymp(d), by the definition of limit directions,
there exists sequences {pn} and {νn}. Consequently, we have
equations (32) where (32b), (32c), and (32d) follow from (30d),
(11), and the definition of d, respectively. �

APPENDIX C
PROOF OF THEOREM 3

Variational Inequality (VI) problem: [41] Given a subset
K of the Euclidean n-dimensional space Rn and a mapping
F : K→ Rn, a VI(K,Rn) problem is to find a vector xopt ∈ K
so that:

(x− xopt)TF (xopt) ≥ 0, ∀x ∈ K. (33)

If the set K has a Cartesian structure, i.e., K = K1 ×K2 ×
. . . × KN (where Ki ∈ Rni and

N∑
i=1

ni = n), we have the

following theorem regarding the existence and uniqueness of a
solution to the above VI problem (Proposition 3.5.10 in [41]).

Theorem 5: If set K has a Cartesian structure, the
VI(K,Rn) problem has a unique solution xopt provided Ki is
closed and convex and F is a continuous uniformly-P function,
i.e, there exists a positive constant α such that:

max
{1≤i≤N}

(xi − x′i)
T (Fi(xi)− Fi(x′i)) ≥ α‖x− x′‖2, ∀x,x′ ∈ K.

(34)

To cast the game (6) as a VI problem, we use the vec()
operator in (25) to map the complex matrix in (6) to the
Euclidean domain, by stacking columns (from left to right) of
an m× n matrix to form an mn× 1 vector. The gradient of a
matrix function (.) w.r.t Gr

i is in (26).
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n→+∞
= c′

l
i(f) ∀il, ir. (32d)

If the condition in Theorem 2 holds, the strategic space of
player ir, denoted by Gri ∈ CM×M , is nonempty. Moreover, it
can be verified that Gri is convex and bounded. Hence, problem
(6) is convex. The following inequality captures the necessary
(and also the sufficient) condition for strategy Ĝr

i to be the
optimal response:

(Gr
i − Ĝr

i ) • ∇Uri ≥ 0 ∀Gr
i ∈ Gi (35)

where A •B
def
= vec(A)T vec(B) and Uri

def
= tr(Gr

iQ
r
i
TGrH

i )

Define G def
= Gl1×Gr1 . . .GlN×GrN and F def

= F l1×F r1 . . .×F lN×
F rN with F ri

def
= ∇Uri . By comparing (35) with the definition of

a VI problem, the set Ĝ
def
= [Ĝl

1× Ĝr
1 . . .× Ĝl

N × Ĝr
N ] is a NE

of the game (6) iff Ĝ is a solution of the VI(G, F ) problem.
Note that the existence of a NE guarantees that Ku is closed
and convex. The next step is to show that given a NE existence,
F is a continuous uniformly-P function.

Let G
def
= [Gl

1×Gr
1 . . .×Gl

N×Gr
N ] and Ğ

def
= [Ğl

1×Ğr
1 . . .×

Ğl
N × Ğr

N ] be two different strategy sets of the strategic space
G of the game (6), then:

F ri (Ğr
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H
Hrr
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Consequently:
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(37)

where the above inequality follows from the fact that
||Aa|| ≥ eigmin(A)||a|| and αri

def
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r
i

H
Hrr
ii ]

We then have:
N∑
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Similarly:
N∑
i=1
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l
i)−Fi(Gl
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where αli
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= eigmin[Sli + I + gsisH
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Summing up the above two inequalities for all i = 1, ..., N

and recalling the triangle inequality, we have:

max
{1≤i≤N}

{vec(Ğl
i −Gl

i)
T vec(Fi(Ğ

l
i)− Fi(Gl
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vec(Ğr
i −Gr

i )
T vec(Fi(Ğ

r
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≥α||vec((Ğ−G))||2
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where α = min
{≤i≤N}

{ α
r
i

2N ,
αl

i

2N }.

Since [Sri + I + gsisH
rr
ii
HĞr

i Ğ
r
i

H
Hrr
ii ] and [Sli + I +

gsisH
ll
ii
H

Ğl
iĞ

l
i

H
Hll
ii] are positive definite, so are αri , α

l
i, α.

Hence, the above mapping F is a continuous uniformly-P
function. The VI(G, F ) problem or game (6) has a unique NE.
�
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