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Abstract—We consider a single-cell massive multiple-input
multiple-output (MIMO) system in which a base station (BS)
with a large number of antennas simultaneously transmits to
K single-antenna users in the presence of an attacker. Massive
MIMO systems often operate in a time division duplexing (TDD)
fashion. The BS estimates the channel state information (CSI)
at receivers based on their uplink pilot transmissions. Downlink
transmission rates are highly dependent on these estimates, as the
BS utilizes the CSI to exploit the beamforming gain offered by
massive MIMO. However, this CSI estimation phase is vulnerable
to malicious attacks. Specifically, an attacker can contaminate
the uplink pilot sequences by generating identical pilot signals
to those of legitimate users. We formulate a denial of service
(DoS) attack in which the attacker aims to minimize the sum-
rate of downlink transmissions by contaminating the uplink
pilots. We also consider another attack model where the attacker
generates jamming signals in both the CSI estimation and data
transmission phases by exploiting in-band full-duplex techniques.
We study these attacks under two power allocation strategies
for downlink transmissions. Our analysis is conducted when
the attacker knows or does not know the locations of the BS
and users. When the attacker does not have perfect location
information, stochastic optimization techniques are utilized to
assess the impact of the attack. The formulated problems are
solved using interior-point, Lagrangian minimization, and game-
theoretic methods. We obtain a closed-form solution for a special
case of the problem. Our results indicate that even though the
attacker does not have the perfect location information, proposed
pilot contamination attacks degrade the throughput of a massive
MIMO system by more than 50%, and reduce fairness among
users significantly. In addition, we show that increasing the
number of pilot symbols does not prevent the proposed attacks,
if the BS uniformly allocates powers for downlink transmissions.

Index terms—Massive MIMO, pilot contamination attack,
physical layer security, stochastic optimization, game theory.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is one of
the key technologies in the upcoming 5G systems. It is
envisioned that a cellular base station (BS) in 5G systems will
be equipped with a very large antenna array, e.g., hundreds
of antennas or more, boosting the transmission rate by orders
of magnitude compared to conventional MIMO systems. Even
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though MIMO is a well-studied concept in wireless communi-
cations, massive MIMO requires novel techniques to overcome
new design challenges, and as such it has received significant
attention from researchers over the last few years (see, for
example, [1], [2], [3], and the references therein).

One of the important issues in massive MIMO systems is
pilot contamination (PC) [4]. Because of the large number of
antennas at the BS and the relatively short channel coherence
time, the channel state information (CSI) between the BS
and various users must be estimated frequently using uplink
pilot transmissions. The BS utilizes these CSI estimates for
downlink data transmissions, assuming channel reciprocity.
However, due to the limited number of orthogonal pilot se-
quences (e.g., 42 [4]), users in neighboring cells may share the
same pilots. Interference among these pilots causes erroneous
channel estimates at the BS, which lead to poor system
performance.

In [5], the authors studied an attack that exploits vulner-
abilities in time division duplexing (TDD) systems during
the channel training phase. The idea behind this attack is to
contaminate uplink pilot transmissions and cause an erroneous
uplink channel estimation. Typically, if the CSI is available,
the BS would use MIMO beamforming techniques such as
maximum-ratio transmission (MRT) to maximize the signal-
to-noise-ratio (SNR) at users. However, the benefits of these
techniques vanish rapidly if the CSI estimates are erroneous.
A self-contamination technique was proposed in [6] to detect
this type of attack. The authors in [7] also proposed several
attack-detection methods. Secure transmissions for TDD-based
massive MIMO systems was studied in [8] in the presence of
an active eavesdropper. The authors derived the optimal power
allocation for the information and artificial noise (AN) signals
at the BS such that secrecy is guaranteed asymptotically, i.e.,
as the number of BS antennas (M ) tends to infinity. Notably,
none of above works proposed countermeasures to prevent
PC attacks. In [9], the authors proposed providing secrecy
against PC attacks by keeping pilot assignments hidden and
using a pilot set that scales with M . However, there are two
main problems with this scheme. First, it requires a longer
pilot transmission phase, which increases the overhead and de-
creases the throughput. Second, computational cryptographic
methods are required to keep pilot assignments hidden. All of
the papers discussed above consider an attacker that targets a



single user. Even when a multiuser system is considered, the
attacker randomly selects one user and contaminates its pilot
sequence. Given that one of the key aspects of massive MIMO
systems is to serve tens of users simultaneously, the vulner-
abilities of these systems to a multiuser pilot contamination
attack should be investigated.

In this paper, we consider a single-cell multiuser massive
MIMO network in the presence of an attacker. We study an
attack model in which the attacker aims at minimizing the
sum-rate of downlink transmissions, i.e., a denial of service
(DoS) attack, by contaminating uplink pilot transmissions. We
derive the downlink transmission rates, with and without the
PC attack, exploiting the channel hardening effect (effect of
small-scale fading on channel gains vanishes as M tends to
infinity) in massive MIMO to analyze the attack strategies. Op-
timal attack strategies are investigated for two different cases:
when the attacker knows the locations of the BS and users and
when she does not have this information. Considering a fixed
power allocation strategy at the BS (for downlink information
signals), convex problems are formulated for the optimal
PC attack. These problems are solved by the interior-point
and Lagrangian minimization methods. We obtain a closed-
form solution for the case of perfect information, i.e., known
topology at the attacker. This solution represents a lower bound
on the downlink sum-rate of massive MIMO systems under
an optimal PC attack and a fixed BS transmission power.
Then, we study the scenario where the BS optimizes its own
power allocation scheme in the presence of PC attacks. For
this case, a game-theoretic problem formulation is considered
in which the BS and attacker are the players of the game.
In particular, we obtain a convex-concave game, and propose
an iterative algorithm that converges to the Nash equilibrium
(NE) of the game. Our analysis provides an upper bound on
the downlink sum-rate of massive MIMO systems under an
optimal PC attack. Further, we study an attack model where
the attacker generates jamming signals in both the pilot and
downlink data transmission phases (hybrid attack). For this
attack, the attacker is required to have a full-duplex radio.
Stochastic optimization techniques are used to find the optimal
power allocation at the attacker so as to minimize the downlink
sum-rate of the system. In particular, the attacker estimates
the channels between the users and itself while jamming the
uplink pilot transmissions. These estimates are then used to
strengthen the DoS attack during the downlink data transmis-
sion phase. Numerical results show that the downlink sum-rate
significantly decreases under such an attack. Particularly, when
the attacker is close to the BS, the downlink sum-rate of all
users is reduced by more than 50%. Another important result
of our paper is that an attacker without perfect information
about the user locations is almost devastating as one with
perfect information. This fact emphasizes the vulnerability of
massive MIMO systems to PC attacks.

The rest of the paper is organized as follows. Section II
describes the system model. In Section III, we compute the
downlink transmission rates with/without the pilot contami-
nation attack. Our PC attack under a fixed and optimal BS

transmission power is analyzed in Section IV. We investigate
the hybrid attack model in Section V. We provide numerical
results in Section VI, and conclude the paper in Section VII.

Throughout the paper, we adopt the following notation. E[·]
indicates the expectation of a random variable. Row vectors
and matrices are denoted by bold lower-case and upper-
case letters, respectively. (·)∗ and (·)T represent the complex
conjugate transpose and transpose of a vector or matrix,
respectively. Frobenius norm and the absolute value of a real
or complex number are denoted by ‖ · ‖ and | · |, respectively.
A ∈ CM×N means that A is an M × N complex matrix,
and IM is an M × M identity matrix. CN (µ, σ2) denotes
a complex circularly symmetric Gaussian random variable of
mean µ and variance σ2. [x]+ is defined as max(x, 0). For
simplicity, log2(·) is referred to as log(·).

II. SYSTEM MODEL

We consider a single-cell massive MIMO system in which
the BS (Alice) uses a large array of M antenna elements to
transmit/receive independent data streams to/from K single-
antenna users (Bobs), M � K. Because of the large M ,
the channel coherence time is not long enough to estimate
the CSI of all M downlink channels per user [3]. Therefore,
TDD is used instead of FDD (in the latter case, the downlink
and uplink channels are estimated separately). In TDD, Alice
estimates the CSI for uplink channels after receiving pilot
sequences transmitted by Bobs. If these pilot symbols are
not perfectly orthogonal to each other, interference among
them causes erroneous channel estimates at the BS. Assuming
channel reciprocity, these estimates are used for downlink data
transmissions. There is no standardization for massive MIMO
systems regarding the orthogonality of the pilot sequences.
However, the authors in [4] suggested assigning an orthogonal
time-frequency pilot sequence to each Bob. Orthogonal space-
time block codes can also be utilized, as in 802.11ac systems,
to increase the number of orthogonal pilot sequences. Fig. 1
shows an example of eight pilot sequences. Pilot sequences p1

and p2 are orthogonal space-time coded sequences. They are
sent in the same time interval (t1) over the same frequency (f1)
by two different Bobs. On the other hand, the orthogonality
of p1 and p5 is guaranteed by transmitting them in different
time intervals t1 and t2, e.g., p1 = 0 during t2. Similarly,
p1 and p3 are transmitted in different frequencies f1 and
f2, respectively. The received signal at Alice during the pilot
transmission phase is given by:

YA =

K∑
i=1

√
Pkh

T
k pk + W (1)

where hTk ∈ CM×1 represents the uplink channel from Bobk
(kth Bob) to Alice. The mth entry, m ∈ {1, · · · ,M}, of
this vector is given by h

(m)
k =

√
θkg

(m)
k , where θk and

g
(m)
k ∼ CN (0, 1) represent the path-loss component (large-

scale fading) and small-scale effects of the channel (Rayleigh
fading), respectively. Note that θk is the same for all antennas,
so hk can be written as hk =

√
θkgk, where gk is a vector
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Fig. 1. Orthogonality of pilot sequences in space-time-frequency domain.

of all g(m)
k , m ∈ {1, · · · ,M}. pk ∈ C1×L is the transmitted

pilot sequence by Bobk, where L is the number of symbols
in the pilot sequence. As these pilot sequences are orthogonal
to each other, pkp∗l = 0 ∀ k and l ∈ K, where k 6= l and
K = {1, · · · ,K}. Pk is the pilot transmission power at Bobk,
while pk is a unit vector (i.e., pkp∗k = 1). W is the additive
white Gaussian noise (AWGN) matrix, whose entries are zero-
mean, unit-variance normal random variables. Without loss
of generality, consider the estimation of hi at Alice. Let ĥi
represent this estimate. Under a priori knowledge of pi, Alice
post-multiplies the received signal by p∗i and divides it by√
Pi and L to obtain:

ĥTi =
YAp

∗
i√

PiL
=

K∑
k=1

√
Pkh

T
k pkp

∗
i√

PiL
+

Wp∗i√
PiL

= hTi + w̃T
i (2)

where w̃T
i , Wp∗

i√
PiL
∼ CN (0, 1

PiL
IM )

A. Attack Model

The attacker aims to contaminate pilot transmissions by
imposing his signal. We assume that the attacker knows the
pilot sequences used by Bobs (generally, pilots are publicly
known sequences). Because the total number of orthogonal
pilots is limited, after eavesdropping on the channels for a
while, the attacker can learn which pilot is assigned to which
Bob . If xJ ∈ C1×L is the signal generated by the attacker,
the received signal at Alice will be modified as follows:

YA =

K∑
k=1

√
Pkh

T
k pk + hTJ xJ + W (3)

where hTJ ∈ CM×1 represents the channel vector from the
attacker to Alice. In the literature, xJ is often designed such
that only a single user is targeted by the attacker [5], [9] (this
user is selected randomly without any optimization). More
specifically, xJ is often set to

√
PJpk, where PJ is the average

jamming power. In our model, we extend this strategy by
setting xJ to:

xJ =
√
PJ

K∑
k=1

√
αkpk (4)

where αk is the ratio between the power allocated for pk
and the average jamming power. Note that

∑K
k=1 αk ≤ 1. In

our model, the objective of the attacker is to minimize the
downlink sum-rate. Let Rk be the downlink transmission rate
at Bobk. The attacker’s goal can be formulated as follows:

minimize
{αk ∀k∈K}

∑
k∈K

Rk (5)

subject to αk ≥ 0 ∀k ∈ K and
∑K
k=1 αk ≤ 1

III. DOWNLINK TRANSMISSION RATES

In this section, we review and analyze the downlink sum-
rate with/without the PC attack.

A. No PC Attack

In massive MIMO systems, the BS often applies MRT
precoder [1]–[3], [10]. In conventional MIMO systems, MRT
results in inter-user interference. However, as the number of
antennas at the BS tends to infinity, the channels between BS
and individual users become orthogonal to each other, and
they individually reduce to single-input single-output (SISO)
channels. In this case, MRT is the optimal precoder. Let sk
be the information signal intended to Bobk ∀k ∈ K, and
vTk ∈ CM×1 be its normalized precoder, i.e., vkv

∗
k = 1.

The received signal at Bobk in the downlink data transmission
phase is given by:

yk =

K∑
i=1

√
P

(d)
i hkv

T
i si + w

(d)
k (6)

where P (d)
k and w

(d)
k are the allocated power to sk at Alice

and the AWGN with zero-mean and unit-variance at Bobk,
respectively. Employing MRT precoding, vTk is given by vTk =
(ĥ∗k/‖ĥk‖). The achievable downlink rate at Bobk becomes:

Rk = log

(
1 +

P
(d)
k |hkvTk |2∑

l∈{K\k} P
(d)
l |hkvTl |2 + 1

)
, k ∈ K. (7)

Note that the precoding vectors are computed based on channel
estimates. Next, we study the asymptotic behavior of Rk as
M → ∞, with the objective of simplifying its expression.
Such asymptotic analysis is needed later on for comparison
with the case under a PC attack.

Consider the inter-user interference term P
(d)
l |hkvTl |2 in

(7). Scaling this term by M and taking the limit as M →∞,
we end up with [10, Lemma 1]:

lim
M→∞

P
(d)
l |hkvTl |2

M
= lim
M→∞

P
(d)
l |

hkĥ
∗
l

M
|2

‖ĥl‖2/M
= 0 (8)



∀k and l ∈ K, where k 6= l. The reason is that entries of small-
scale channel components of Bobk and Bobl are independent
random variables of zero-mean and unit-variance. Hence,
limM→∞ glg

∗
k/M = 0. Similarly, limM→∞ glw̃

∗
k/M = 0.

This is a result of the channel orthogonality in massive MIMO
systems. On the other hand, for the term in the numerator in
(7), we have

lim
M→∞

P
(d)
k |hkvTk |2

M
= lim
M→∞

P
(d)
k |

hkĥ
∗
k

M
|2

‖ĥk‖2/M

=
P

(d)
k θ2

k

θk + 1
PkL

> 0. (9)

The last step follows from the Continuous Mapping Theorem
and the fact that given a vector x ∈ C1×M with a distribution
CN (0, cI), limM→∞ xx∗/M = c [10, Lemma 1]. Hence, the
downlink rate at Bobk asymptotically behaves as:

Rk ∼ log

(
1 +

P
(d)
k θ2

k

(θk + 1
PkL

) 1
M

)
. (10)

In our paper, we consider a finite but sufficiently large M , with
M � K, so the channels are near-orthogonal. As a result, the
inter-user interference can be neglected as in (8). Moreover,
for a sufficiently large M , |hkvTk |2/M approaches the result
in (9) ([3], [4], [10]). In Section VI, we will numerically
verify these results. As explained before, θk is the large-scale
channel components at Bobk. Equation (10) indicates that the
SINR does not depend on the small-scale fading components,
as they are averaged out by the large antenna array (channel
hardening). The term (1/M) in the equation comes from the
AWGN w

(d)
k at Bobk. For example, as M → ∞, the noise

term vanishes and the SINR tends to infinity. Another noise
term arises due to the channel estimation errors. For example,
as the length of the pilots, L, increases, the second term in
the denominator becomes smaller. This leads to an increase in
the downlink rate. The same effect is also observed when the
power allocated for pilots increases.

In this paper, we consider two different transmit power
allocation strategies at Alice: “fixed” and “optimal”. Both
strategies are subject to an average power constraint PA.
Under the fixed power allocation, P (d)

k ∀k ∈ K is known
to the attacker. For example, based on a fairness criterion,
these values may be determined before the pilot transmission
phase (e.g., when Bobs are registered with the network), and
Alice may convey this information to Bobs through a feedback
channel. If the attacker eavesdrops on this channel, she can
obtain the power allocation values. In an instance of this setup,
Alice may simply allocate powers uniformly to the information
signals, i.e., P (d)

1 = · · · = P
(d)
K = PA/K. On the other hand,

under the “optimal” power allocation strategy, Alice relies on
the well-known water-filling technique to assign powers, using
(θk + (PkL)−1)/(Mθ2

k) as the water levels [11].

B. Presence of PC Attack

Under the attack model in (4), the following channel esti-
mation is performed at Alice for each Bobk:

ĥk = hk +
√
αkukhJ + w̃k (11)

where uk is the ratio between the average power at the attacker
and the pilot transmission power at Bobk, i.e., uk = PJ/Pk.
In the rest of the paper, we assume that uk is known to the
attacker. Previously, we assumed that the attacker learns the
pilot sequences by eavesdropping on the uplink transmissions.
The attacker can similarly learn the pilot transmission power.
Note that Alice is not aware of the presence of the attacker,
so she treats ĥk as the correct channel estimate. Employing
MRT precoding based on this estimation, the precoder vector
of sk is given by:

vTk =
(hk +

√
αkukhJ + w̃k)∗

‖hk +
√
αkukhJ + w̃k‖

. (12)

Using this precoder vector in (7) leads to a non-convex prob-
lem in (5). To obtain a tractable problem for the underlying
attack model, we analyze the asymptotic behavior of Rk as
M → ∞. Following the same steps as in the case of no
attacker, the following expression is obtained:

Rk = log

(
1 +

P
(d)
k Mθ2

k

θk + αkukθJ + 1
PkL

)
. (13)

Expectedly, as M increases, the massive MIMO system be-
comes more resilient to PC attacks. However, the vulnerability
of the system against such an attack can be observed from (13),
which shows that the SINR decreases with an increase in the
jamming power αkuk.

As in the previous section, a fixed or “optimal” power
allocation strategy can be employed to calculate each P

(d)
k .

Fixed power allocation is performed exactly as before, whereas
“optimal” power allocation corresponds to the following strat-
egy. Let φk , θk + αkukθJ + 1

PkL
. Then, Alice tries to

maximize Rsum =
∑K
k=1Rk to obtain the “optimal” power

allocation vector:[
P

(d)
1 · · ·P (d)

K

]
= argmax

xk∀k∈K

K∑
k=1

log

(
1 +

xkMθ2
k

φk

)
(14)

subject to
∑K
k=1 P

(d)
k ≤ PA and P (d)

k ≥ 0, ∀k ∈ K. Because
Alice is unaware of the attack, she will not necessarily solve
the above problem. However, our goal is to observe the effect
of PC attack, even if Alice employs the least favorable power
allocation scheme from the perspective of the attacker. This
way, we can establish an upper-bound on the downlink sum-
rate under a PC attack.

IV. ANALYSIS OF OPTIMAL PC ATTACK

A. Fixed Power Allocation at Alice

In this section, we study the optimal PC attack strategy.
Our analysis provides a lower bound on the downlink sum-
rate under a PC attack for a given power allocation at Alice.



We incorporate (13) into problem (5), considering fixed power
allocation for the information signals at Alice:

P1 : minimize
{αk ∀k∈K}

K∑
k=1

log

(
1 +

P
(d)
k Mθ2

k

θk + αkukθJ + 1
PkL

)

s.t. αk ≥ 0 ∀k ∈ K,
K∑
k=1

αk ≤ 1.

For a given k ∈ K, we assume that θk = Az−γk , where A is a
constant that depends on the transmit and receive antennas,
operating frequency etc., while γ and zk are the path-loss
exponent and the distance between Alice and Bobk, respec-
tively. Similarly, zJ is the distance between Alice and the
attacker. For simplicity, the antennas at Bobs and the attacker
are assumed to be identical, so the same A is considered for all
of them. As a result, the objective function of P1 is converted
to the following one:

Rsum =

K∑
k=1

log

(
1 +

P
(d)
k MAz−2γ

k

αkukz
−γ
J + z−γk + 1

APkL

)
(15)

Next, we discuss two different scenarios based on the infor-
mation available to the attacker.

1) Perfect Information: Here, we assume that the attacker
has perfect knowledge of the distances between Alice and
individual Bobs as well as her own distance to Alice. Indeed,
this is an idealized scenario (from the attacker’s point of view),
and is merely studied to provide a benchmark for comparison
with the case of uncertainty in distances. P1 is a convex
programming problem, and we obtain the optimal solution as
follows.

Theorem 1: P1 has the following closed-form solution:

αk =

[√
Ak(Ak + 4/λ)−Ak − 2Bk

2

]+

∀k ∈ K (16)

where

Ak ,
P

(d)
k MAzγJ
ukz

2γ
k

and Bk ,
zγJ
ukz

γ
k

+
zγJ

ukAPkL
.

λ is the Karush-Kuhn-Tucker (KKT) multiplier and is chosen
such that

∑K
k=1 αk = 1. It can be easily computed by the

bisection method as
∑K
k=1 αk is a decreasing function of it.

Proof: See Appendix A.
2) Uncertainty in Distances: Suppose that the attacker does

not have perfect knowledge about various distances. Let Zk
and ZJ be random variables (rvs) that correspond to the Alice-
Bobk and Alice-attacker distances, respectively. In this case,
the expected value of Rsum is given by:

E[ Rsum ] =E

[
K∑
k=1

log

(
1 +

P
(d)
k MAZ−2γ

k

αkukZ
−γ
J + Z−γk + 1

APkL

) ]

=

K∑
k=1

E

[
log

(
1 +

P
(d)
k MAZ−2γ

αkukZ
−γ
J + Z−γ + 1

APkL

) ]
(17)

where Z is a generic rv that has the same distribution as Zk for
all k. In (17), the expectation is taken over Z and ZJ . The last
equality follows from the assumption that the distributions of
the distances between individual Bobs and Alice are identical.
We further assume that Bobs and the attacker are randomly
and uniformly located in a circular area around Alice. Hence,
the CDF of Z is given by Pr[Z ≤ x] = x2/D2

max for x ≥
0, where Dmax is the maximum possible distance between
Alice and any Bob (e.g., the maximum communication range).
Accordingly, the PDF of Z is given by fZ(x) = 2x/D2

max,
for x ≥ 0.

Let Φk , αkukZ
−γ
J +Z−γ + 1

APkL
. Under fixed downlink

power allocation, the optimal PC attack can be formulated by
the following stochastic programming problem:

P2 : minimize
{αk ∀k∈K}

K∑
k=1

E

[
log

(
1 +

P
(d)
k MAZ−2γ

Φk

) ]

s.t. αk ≥ 0 ∀k ∈ K,
K∑
k=1

αk ≤ 1.

The objective function in P2 can be rewritten as:

K∑
k=1

∫ Dmax

0

∫ Dmax

0

2x

D2
max

2y

D2
max

log(Ψ(x, y)) dx dy (18)

where

Ψ(x, y) , 1+
P

(d)
k MAx−2γ

αkuky−γ + x−γ + 1
APkL

, for x, y ∈ [0, Dmax]

This is a convex programming problem, as the objective
function and inequality constraints are all convex functions.
The integral in (18) can be approximated by Simpson’s Rule
for double integrals, and can be solved efficiently by applying
the interior point method. Note that P2 need only be solved
offline, so the time complexity of this solution method is not a
concern. We also note that although we only study a uniform
distribution for the locations of Bobs and the attacker, any
arbitrary distribution can be considered. The integral operation
preserves the convexity, so the same steps can be followed
to solve P2. Our numerical results (not shown for brevity)
indicate that for typical values of PA, A, K, and Dmax,
the attacker should target all Bobs by equally allocating its
average power to various pilot sequences under uniform power
allocation when uk = ul ∀k, l ∈ K. That is, αk = PJ/K
∀k ∈ K. This is due to the symmetry of Bobs for this special
case, as will be discussed in Section VI.

3) Discussion: Let z , [z1, · · · , zK ] be the vector of
distances from Alice to various Bobs (known to the at-
tacker). Let α∗(z, zJ) = [α∗1(z, zJ), · · · , α∗K(z, zJ)] and
α∗ = [α∗1, · · · , α∗K ] be the optimal solutions to P1 and
P2, respectively. In this case, the objective function of P2
becomes EZ,ZJ

[Rsum(α∗)], and EZ,ZJ
[Rsum(α∗(Z, ZJ))] be-

comes the expectation of the optimal solution of P1 under
perfect information, where Z is the vector of i.i.d. distances
Z1, · · · , ZK . The expectations are taken over the random



distances, as previously explained. The expected value of
perfect information (EVPI) is defined as follows:

EVPI , EZ,ZJ
[Rsum(α∗)]− EZ,ZJ

[Rsum(α∗(Z, ZJ))]. (19)

Note that EVPI is always greater than or equal to zero, as
the case with perfect information outperforms the one with
uncertainty. If EVPI is small, the attacker does not gain much
by knowing the exact distances. It can perform attacks almost
as powerful as when perfect information is available. On the
other hand, if EVPI is high, the attacker may try to acquire
distance information by estimating Bobs’ locations relative to
its own. For example, a group of colluding adversaries can
employ localization techniques (e.g., RSSI and time-of-arrival)
to estimate Alice-to-Bobs distances [12], [13]. This requires
more complex and costly systems at the attacker. In Section
VI, we study the behavior of EVPI.

B. Optimal Power Allocation

In this section, we derive the optimal PC attack strategy
when Alice adopts optimal (the least favorable from the per-
spective of the attacker) power allocation strategy for downlink
data transmissions. Note that Alice is assumed to be unaware
of the attack. Therefore, she cannot customize her power
allocation strategy to combat such an attacker. However, while
the attacker tries to minimize the downlink sum-rate, Alice
tries to maximize this rate, without knowing about the attack.
This is a min-max problem, and its solution is found as follows.
As seen from (15), Rsum is a function P(d) =

[
P

(d)
1 · · ·P (d)

K

]
and α = [α1, · · · , αK ]. Thus, the problem can be formulated
as a convex-concave game; for a fixed P(d), Rsum(P(d),α) is
a convex function of α, and for a fixed α, Rsum(P(d),α) is a
concave function of P(d). This means that the attacker needs
to solve the following game:

P3 : minimize
{α}

{
maximize
{P(d)}

Rsum(P(d),α)

}

s.t. αk ≥ 0 ∀k ∈ K,
K∑
k=1

αk ≤ 1

P
(d)
k ≥ 0 ∀k ∈ K,

K∑
k=1

P
(d)
k ≤ PA

Let an optimal solution of this game, or a saddle point, be
(P(d)∗,α∗). That is (for any possible power allocation P(d)),

Rsum(P(d),α∗) ≤ Rsum(P(d)∗,α∗) ≤ Rsum(P(d)∗,α).

This relationship shows that an upper-bound on Rsum(P(d),α)
is obtained by solving P3. For instance, when α = α∗, P(d)∗

maximizes Rsum(P(d),α∗). This optimal solution is obtained
by a well-known water-filling technique. Specifically,

P
(d)∗
k =

[
η −

α∗kukz
−γ
J + z−γk + 1

APkL

MAz−2γ
k

]+

(20)

where η is a water-filling level chosen such that
∑K
k=1 P

(d)
k =

PA. η can be computed by bisection method as this summation

Attacker

Bobs

Alice

(a)

Attacker

Bobs

Alice

(b)

Fig. 2. (a) Attacker contaminates the CSI estimation at Alice while over-
hearing the pilots from Bobs, (b) attacker generates the jamming signals to
reduce the signal strength at Bobs during data transmission.

is an increasing function of it. Similarly, when P(d) = P(d)∗,
α∗ minimizes Rsum(P(d)∗,α). We propose to solve this game
by using an iterative Gauss-Seidel method. To do that, we
first solve Rsum(P(d),α) for some initial values of αk, e.g.,
αk = 0 ∀k ∈ K (initially, there is no PC attack). Then, the
obtained P

(d)
k values are used in Rsum(P(d)∗,α), and this

problem is solved with respect to αk ∀k ∈ K as explained
in Theorem 1. After this step, the second iteration starts by
solving Rsum(P(d),α∗) using the new values of αk’s. As the
number of iterations increases, a better approximation for the
saddle point is obtained. We evaluate the number of iterations
required to reach the Nash equilibrium of this game, and
observe that the algorithm almost always converges after 10
iterations. Due to space limitations, we omit the results here.

Theorem 2: Gauss-Seidel iterations converge when used to
solve P3.

Proof: See Appendix B.
Note that the above analysis applies to the case of perfect
information where distances are known to the attacker. It can
be easily extended to the case where only the probability distri-
bution of distances is known. The same steps in Section IV-A2
are applied to account for the uncertainty. In particular, the
expectation of Rsum(P(d),α) over ZJ and Zk’s is considered
in the objective function of P3. The resulting problem is still a
convex-concave game that can be solved by the Gauss-Seidel
method. We skip this analysis here due to space limitations.

V. HYBRID FULL-DUPLEX ATTACK

So far, we have considered jamming the pilot transmission
phase. However, if the attacker is equipped with a full-duplex
(FD) radio that allows it to transmit and receive signals
simultaneously over the same frequency, a more sophisticated
attack can be launched. Further, a stronger attack can also be
launched with a multi-antenna (MIMO) FD-based attacker. In
particular, consider an attacker with an average power con-
straint over the whole transmission phase (pilot and downlink
data phases). Using an FD radio, the attacker can generate
jamming signals during both phases. For instance, the attacker
may contaminate the CSI estimation process at Alice, as in



Fig. 2(a), without knowing the channels between itself and
Bobs. At the same time, the attacker can overhear the pilots
(dashed lines in Fig. 2(a)) from Bobs using the FD radio, and
exploit this knowledge to transmit jamming signals during the
downlink transmission phase, as shown in Fig. 2(b). We call
this attack a hybrid attack, as it combines the PC attack and
conventional data-jamming attack. Notice that even though the
hybrid attack performs at least as good as the PC attack, it
requires an additional hardware capability (FD radio) at the
attacker.

Even though the attacker needs one antenna to generate a
jamming signal in data transmission phase, we study a more
general scenario where she is equipped with N + 1 antennas,
where N > 0. Our goal is to find an optimal strategy for
the attacker to minimize the downlink sum-rate, exploiting its
multiple antennas. One of these antennas is reserved for the PC
attack, while the others receive the pilot signals from Bobs.
The attacker estimates hJk ∈ C1×N , the channel between
Bobk and itself, during the pilot transmission phase. The self-
interference signal at the receiving antennas of the attacker
is canceled by employing FD radio design techniques in [14],
[15]. For example, the self-interference channel is obtained by
transmitting a pilot from the antenna that jams the pilot signal.
Then, the self-interference signal is extracted from the received
signals using this information. Let ni be the ith jamming signal
in the downlink transmission phase, i ∈ N = {1, · · · , N}. Let

h
(i)
Jk = g

(i)
Jk

√
Az−γJk , i ∈ N and k ∈ K, be the channel gain

between the ith antenna of the attacker and Bobk, where zJk
denotes the distance between the attacker and Bobk and g(i)

Jk is
the small-scale fading. βi ∀i ∈ N denotes the ratio between
the allocated power for ni and PJ . By using the same PC
attack model in Section II-A and MRT precoding at Alice, the
received signal at Bobk during the downlink data transmission
phase is given by:

yk =

K∑
i=1

√
P

(d)
i hk

ĥ∗i

‖ĥi‖
si +

N∑
i=1

√
βiPJh

(i)
Jkni + w

(d)
k .

Adding the jamming term to (10), the following downlink
sum-rate is obtained:

Rsum =

K∑
k=1

log

1 +
Ck

Dk

(∑N
i=1 βiPJ |g

(i)
Jk|2Az

−e
Jk + 1

)


(21)

where

Ck , P
(d)
k MAz−2γ

k and Dk , αkukz
−γ
J + z−γk +

1

APkL
.

Given the setup above, we formulate a two-stage stochastic
optimization problem to find the optimal attacking strategy.
This problem can be solved for various scenarios (e.g., perfect
information, uncertainity in the distances and channels, etc.) by
utilizing the techniques in Section IV and the ones presented
in this section. The solutions of these problems are discussed
in Section VI. For now, we explain our solution approach
for one of these scenarios. Specifically, we assume that the

distances, powers of information signals, and other constants
in (21) are known to the attacker. In the first stage of the
problem, the attacker finds the optimal values of αk ∀k ∈ K
without knowing any g

(i)
Jk ∀k ∈ K and ∀i ∈ N . In the

second stage (after learning g(i)
Jk ∀k ∈ K and ∀i ∈ N during

the pilot transmission phase), the attacker optimally allocates
the remaining power to the N jamming signals in the data
transmission phase, i.e., βi ∀i ∈ N . Let ω represent a certain
realization of the channel, g(i)

Jk, and let Ω be the set of all
realizations. (Note that g(i)

Jk and βi are functions of these
realizations.) Let tp and td be the duration of pilot and data
transmission phases, respectively. The two-stage stochastic
problem can be formulated as follows:

P4 : minimize
{αk ∀k∈K}
{βi(ω) ∀i∈N , ∀ω∈Ω}

Eω

[
K∑
k=1

log

(
1 +

Ck
Dk (Ek + 1)

)]
s.t. αk ≥ 0 ∀k ∈ K

βi(ω) ≥ 0 ∀i ∈ N , ∀ω ∈ Ω

Fk
tp + td

≤ 1 ∀ω ∈ Ω

where Fk , tp
∑K
k=1 αk + td

∑N
i=1 βi(ω) and Ek ,∑N

i=1 βi(ω)|g(i)
Jk(ω)|2PJAz−eJk . Note that g(i)

Jk is a continuous
random variable. P4 can be approximately solved by creating
T realizations, e.g., Ω has a cardinality of T . In particular, we
replace the expectation in P4 by the sum of these equiproba-
ble T realizations. Therefore, we end up with K first-stage
decision variables, namely αk ∀k ∈ K, and NT second-
stage decision variables, namely βi(ω) ∀i ∈ N and ∀ω ∈ Ω.
The underlying problem is a convex programming problem,
and can be solved by the interior point method. When T is
large (for better approximation), the complexity of solving the
problem increases. However, as the problem is solved offline,
the time complexity is not a concern.

VI. NUMERICAL RESULTS AND DISCUSSION

We model the channel gain from each transmit antenna
to each receive antenna as h = g

√
Ad−3.522, where g ∼

CN (0, 1) and A = 3.0682 × 10−5. The path-loss is modeled
using the COST-Hata Model with center frequency is 2 GHz
[16]. The average transmit powers at Alice, Bobk, and the
attacker are 46, 20, and 30 dBm, respectively. The durations
of the pilot and data transmission phases are set to be equal [4].
We consider a 20 MHz channel with noise floor of −101 dBm.
Bobs and the attacker are uniformly and randomly distributed
within a circle whose center is Alice and whose radius is Dmax

and Dmax,J, respectively. We set Dmax to 750 meters. Our
results are averaged over 105 different network realizations.

We set the number of users K = 10. In Fig. 3(a), we
consider uniform power allocation for both the information
signals at Alice and the jamming signals at the attacker. The
figure depicts the downlink sum-rate vs. M . It shows that (10)
and (13) are good approximations for the downlink rates in (7).
Note that the approximation-based sum-rate is slightly higher
than the exact values, as the inter-user interference does not
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Fig. 3. (a) Downlink sum-rate vs. M under uniform power allocation at both Alice and the attacker, (b) downlink sum-rate vs. Dmax,J, (c) Jain’s fairness
index vs. Dmax,J, (d) downlink sum-rate vs. number of pilot symbols, (e) downlink sum-rate vs. number of antennas at the attacker.

perfectly vanish at a finite M . In our subsequent results, we
set M to 1000.

We observe the effect of the maximum distance between
Alice and the attacker (Dmax,J) in Figs. 3(b) and 3(c). In the
case of a single-user PC attack, only one randomly selected
Bob is targeted by the attacker. This attack can also be
interpreted as an unintentional interference from a user in an
adjacent cell. It does not have a big impact on the sum-rate.
PC with uncertainty (Unc-PC) and PC with perfect information
(PI-PC) were explained in Section IV-A, and optimal PI-PC
was studied in Section IV-B. Note that optimal PI-PC gives
an upper-bound on the sum-rate of a massive MIMO system
under an optimal PC attack. As the attacker moves farther from
Alice, the sum-rate increases in all attack schemes. In Fig.
3(b), EVPI is around 20 Mbps. This says that when the attacker
knows the distribution of Bobs, it can launch attacks that are
almost as powerful as when the attacker has complete CSI.
Note that Alice uniformly allocates downlink transmission
powers in no PC attack scheme, whereas she employs optimal
power allocation in the optimal PI-PC. Therefore, the downlink
sum-rate without an attack is less than the one with the optimal
PI-PC when Dmax,J > 700 meters. In Fig. 3(c), we depict
Jain’s fairness index for different schemes. Jain’s fairness
index ranges from 1/K to 1 for the worst and best cases,
respectively (if all users have the same downlink rate, the
fairness index is 1). The figure shows that fairness among Bobs
is significantly reduced when PC attacks take place. Unc-PC

decreases the fairness more than PI-PC. The reason behind
this phenomena is that when the attacker is close to Alice
and knows the distances, Bobs with higher downlink rates are
targeted. Therefore, Bobs are forced to have closer downlink
rates, which increases the fairness index.

In Fig 3(d), we set Dmax,J to 250 meters, and study the
effect of the number of pilot symbols L. As L increases,
the sum-rate increases as well in no PC, single-user PC,
and optimal PI-PC attacks. The reason is that the error in
MRT precoding vectors due to erroneous channel estimates
decreases, and the signal strength at Bobs increases. On the
other hand, the sum-rate does not increase under the Unc-PC
and PI-PC attacks. Note that in these cases, a fixed power is
allocated for the information signals at Alice, and she does
not exploit the decrease in channel estimation errors.

In Fig. 3(e), we compare hybrid and PC attacks under a
similar average jamming power constraint. We observe that as
the number of antennas at the attacker increases, the sum-rate
slightly decreases for the hybrid attack. Note that the hybrid
attacks utilizes multiple antennas, whereas PC attacks use a
single-antenna. Interestingly, even though the hybrid attacks
outperform PC attacks with respect to the sum-rate, a larger
number of antennas at the attacker does not lead to more
powerful attacks. EVPI for the hybrid attacks is around 60
Mbps, which is much higher than the one for PC attacks. The
reason is that the hybrid attack includes one more source of
uncertainty due to the channels between Bobs and the attacker.



Another important result is that attacking only downlink data
transmissions (no jamming during pilot transmission phase)
does not have as a great of an impact on performance as the
impact of the PC attack.

VII. CONCLUSION

We considered a single-cell massive MIMO system with
several mobile users, and demonstrated vulnerabilities of up-
link pilot transmissions against jamming attacks. Specifically,
the attacker generates pilot sequences similar to those of users
and contaminates the pilot transmissions to distort channel
estimation at the BS. This PC attack reduces the downlink
transmission rates, as the beamforming techniques utilized
by the BS heavily depend on accurate CSI estimates. We
formulated an optimization problem from the standpoint of the
attacker to minimize the downlink sum-rate. Both cases when
the attacker knows or does not know the distances between the
BS and users were considered. Using (stochastic) optimization
and game theory, we derived the optimal attacking strategies
when the BS employs either fixed or optimal power allocation
for downlink transmissions. Numerical results showed that the
downlink sum-rate is reduced by more than 50% if the average
distance between the attacker and the BS is less than the one
of the users. We also observed that even if the attacker does
not know the channels and the locations of the users, it can
launch powerful attacks as if it has the perfect information. In
this work, we assumed that the BS and users are not aware of
the attacker. An interesting future work is to develop counter
algorithms to prevent PC attacks.

APPENDIX A
PROOF OF THEOREM 2

Let us define

Ak =
P

(d)
k MAzγJ
ukz

2γ
k

and Bk =
zγJ
ukz

γ
k

+
zγJ

ukAPkL

∀k ∈ K. Therefore, the objective of P1 can be written by

Rsum =

K∑
k=1

log

(
1 +

Ak
αk +Bk

)
(22)

Hence, the Lagrangian function of this problem is given by

L(α) =

K∑
k=1

log(1 +
Ak

αk +Bk
) + λ(

K∑
k=1

αk − 1). (23)

Its first derivative with respect to αk becomes

∂L(α)

∂αk
=

−Ak
(αk +Bk)(αk +Ak +Bk)

+ λ. (24)

Let α∗k ∀k ∈ K be the optimal value that minimizes the
objective function of P1. These values are also the roots of the
polynomial functions where the equation (24) is equal to zero.
Also, note that α∗k ∀k ∈ K is a nonnegative number. Thus,

α∗k =

[√
Ak(Ak + 4/λ)−Ak − 2Bk

2

]+

(25)

where λ is chosen such that
∑K
k=1 α

∗
k = 1.

APPENDIX B
PROOF OF THEOREM 3

The players of the game described in P3 are Alice and
the attacker. In this game, the utility function of Alice is
Rsum(P(d),α), and her strategy is to choose the optimal
power allocation for the downlink transmissions. Similarly,
−Rsum(P(d),α) is the attacker’s utility, and her strategy is
to find the optimal α to maximize this utility. The strategy
sets of both players are non-empty, compact, and convex
subsets of real numbers (the constraints in P3 are linear
functions). Furthermore, their utility functions are continuous
and diagonally strictly concave. As a result, the existence and
uniqueness of NE is proved for this game, and Gauss-Seidel
method converges to this point [17].
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