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Abstract

WWW caching is used to improve network latency and bandwidth usage by storing previously requested files in a cache. Ideally,

the cache replacement policy should account for the intrinsic characteristics of WWW traffic, which include temporal locality, spatial

locality, and popularity. In this paper, we accurately capture these three characteristics in a stochastic model, which can be used

to generate synthetic WWW traces and assess WWW cache designs. To capture temporal and spatial localities, we use a modified

version of Riedi et al.’s multifractal model, where we reduce the complexity of the original model from O(N) to O(1); N being

the length of the synthetic trace. Our model has the attractiveness of being parsimonious (characterized by few parameters) and that

it avoids the need to apply a transformation to a self-similar model (as often done in previously proposed models), thus retaining

the temporal locality of the fitted traffic. Furthermore, because of the scale-dependent nature of multifractal processes, the proposed

model is more flexible than monofractal (self-similar) models in describing irregularities in the traffic. Trace-driven simulations are

used to demonstrate the goodness of the proposed model in terms of generating representative WWW streams and approximating the

cache performance of actual WWW traffic.

keywords — WWW modeling, web caching, multifractals, stack distance, self-similarity.

I. INTRODUCTION

As the World Wide Web (WWW) continues to grow at an astounding rate, its clients are experiencing excessive response times

and its servers are frequently stretched to their capacity limits. One way to deal with this problem is to use WWW caching.

Caches are placed either in the proximity of clients to reduce their perceived latency or close to servers to reduce their loads. To

be of any practical benefit, the cache should only store the most popular documents. Determining which documents are important
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and which ones are to be flushed out in case of cache saturation is the primary function of a cache replacement policy. An ideal

replacement policy tries to take into account the intrinsic properties of WWW traffic in its design. These properties include

temporal locality, spatial locality, and popularity. Temporal locality measures the closeness in time between requests to the same

document. Spatial locality measures the correlation between requests to different documents (e.g., if document A is currently

being requested, then there is a good chance that document B will be requested in the near future). Popularity refers to the overall

likelihood of requesting a particular document, independent of other documents.

The ability to assess the performance of WWW caching policies hinges on the availability of a representative workload that can

be used in trace-driven simulations [4], [13]. Measured (“real”) traces can be used for this purpose. However, due to the difficulty

associated with capturing real traces, only a handful of such traces are available in the public domain (see [19] for public domain

traces). This makes it hard to provide simulation results with reasonable statistical credibility. A more feasible alternative is to

rely on synthetic traces that are derived from an approximate stochastic model. The need for such a model is the main motivation

behind our work.

In this paper, we present a modified version of Riedi et al.’s multifractal model [17]. We use this modified version to si-

multaneously capture the temporal and spatial localities of WWW traffic. Riedi’s model has the attractiveness of being able to

simultaneously approximate the (lognormal) marginal distribution and the correlation structure of the traffic. Its main disadvan-

tage is its complexity, which grows linearly with the size of the generated trace. We modify this model, reducing its complexity

to O(1). The resulting model is parsimonious in that it is characterized by four to five parameters representing the mean, vari-

ance, and correlation structure of the “normalized stack distance” string (explained below). The popularity profile of the traffic

is incorporated in the model during the trace generation phase, assuming that the popularity profiles for all documents are given

beforehand. Our model is mainly intended for offline generation of the traffic demand seen by a WWW server. Accordingly, the

popularity profiles can be easily computed from the server logs.

The rest of the paper is organized as follows. Section II describes the related work. In Section III we describe the data sets

used in our study. In Section IV we give a brief overview of Riedi et al.’s multifractal model and the modification we make to it to

render it parsimonious. The proposed WWW traffic generation approach is given in Section V, followed by simulation studies in

Section VI. We conclude the paper in Section VII

II. RELATED WORK

WWW traffic modeling has been the focus of several previous studies; examples of which are given in [1], [3], [7], [15], [14].

In these studies, the temporal locality of the traffic was represented by the marginal distribution of the stack distance string. This

distribution was found to follow a lognormal-like shape. The stack distance string, which is an equivalent representation of a
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reference string, is obtained by transforming the reference string using the least recently used (LRU) stack , as follows. Let the

reference string be Rt = {r1, r2, ..., rt}, where rj is the document (or object) requested at time j. Note that a document may

appear multiple times inRt. Let the LRU stack at time t be St = {Obj1, Obj2, Obj3, ..., Objn}, where Obj1, Obj2, . . . , Objn are

distinct documents; Obj1 is the most recently requested document, Obj2 is the second most recently requested document, and so

on. Let dt be the stack distance of the document referenced at time t (the position of the document in the LRU stack at time t−1).

Whenever a reference is made to a document, the LRU stack must be updated. If rt+1 = Obji, then the LRU stack becomes

St+1 = {Obji, Obj1, Obj2, . . . , Obji−1, Obji+1, . . . , Objn} and dt+1 = i. Thus, for any reference string Rt = {r1, r2, . . . , rt},

there is a corresponding stack distance string Dt = {d1, d2, . . . , dt}.

In [1] the authors showed that spatial locality can be captured (at least, in part) through the autocorrelation structure (ACF)

of the stack distance string. They argued that the stack distance string exhibits long-range dependence (LRD) behavior. Thus,

to simultaneously model the marginal distribution (temporal locality) and the correlation structure (spatial locality) of the stack-

distance string, they relied on the work in [12], which proved the invariance of the Hurst parameter to transformations of the

marginal distribution of an LRD process. More specifically, the authors in [12] proved that under some mild assumptions, a

point-by-point transformation Y = F−1
y (Fx(X)) of a Gaussian self-similar process X with Hurst parameter H results in a self-

similar process Y with the same Hurst parameter, where Fx and Fy are the CDFs for X and Y , respectively. It should be noted,

however, that this result is valid asymptotically and only for Gaussian processes (e.g., fractional ARIMA). More importantly,

while this result assures the invariance of H , it does not necessarily preserve the shape of the ACF. As an example, consider

the transforming of the Gaussian distribution of a F-ARIMA model into a lognormal distribution, which adequately models the

marginal distribution of the stack distance string. The resulting ACFs are shown in Figure 1, along with the ACF of a real WWW

stack distance string. The figure illustrates the two main drawbacks of the transformation. First, while the transformation may

capture the asymptotic behavior of the ACF (the H parameter), it destroys the overall shape of the original ACF of the F-ARIMA

model. Second, the original F-ARIMA model itself is not accurate in representing the real ACF at finite lags.

To avoid the problems stated above, we resort to multifractal modeling to simultaneously capture the correlation structure

and the marginal distribution of the stack distance string. Figure 2 shows the accuracy of the multifractal model (which we

describe in Section IV) in capturing the ACF of the stack-distance string of a WWW trace. Multifractality is a generalization

of self-similarity (monofractality), whereby the Hurst parameter (the scaling exponent) is not fixed, but varies with scale. This

variability makes multifractal processes more flexible than monofractal processes in describing “irregularities” in the traffic (e.g.,

contrasting short-term and long-term behaviors). The reader is referred to [8], [9], [18], [11], [17], [10] and the references therein

for comprehensive discussions of multifractal processes. In [17] the authors used a wavelet-based construction of a multifractal



4

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F−ARIMA (before transformation)

Real

F−ARIMA (after transformation)

Lag

A
C

F

Fig. 1. Impact of transforming the marginal distribution of a F-ARIMA model on the correlation structure.

process to show that the correlation behavior of a strongly correlated time series can be approximately captured by appropriately

setting the second moments of the wavelet coefficients of the multifractal process. This result provides the basis for modeling the

ACF of the stack distance string. Combined with the fact that the above multifractal model exhibits an approximately lognormal

marginal distribution, it can be used to model both the temporal and spatial localities in WWW traffic.
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Fig. 2. Accuracy of the multifractal model in capturing the ACF of the stack distance string of a real WWW trace.

In [16], the authors studied the temporal locality in WWW traffic and concluded that such phenomenon is induced by both

temporal correlations and long-term popularity. More specifically, references to long-term popular documents tend to be close to

each other in time. Moreover, references to certain unpopular documents (in the long term) exhibit strong temporal correlations,

whereby these references appear “clustered” in time (e.g., a document that is extensively requested but only during a short period

of time). It is important to differentiate between the two aspects of temporal locality since this can help in cache design [15],

[16]. The standard stack-distance-string approach does not differentiate between the two sources of temporal locality, since its

distribution is predominantly affected by the popularity profile (i.e., long-term popularity). To solve this problem, there is a need
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to equalize the effect of popularity. The authors in [5] introduced a new measure for temporal locality, called the scaled stack

distance, to deal with this problem. The scaled stack distance string is a normalization of the stack distances by their expected

values (assuming that requests to a given document are evenly distributed over the duration of the trace). This normalization is

a measure of short-term temporal correlations and is insensitive to long-term popularity, which by itself is captured during the

trace generation process. For our WWW traffic model, we use the same measure, which we refer to as the normalized stack

distance. Accordingly, equally popular documents have the same expected stack distance. The normalized stack distance string

was found to have a lognormal-like distribution and a slowly decaying correlation structure (i.e., LRD behavior). We employ the

multifractal model to capture both the marginal distribution and the correlation structure of the normalized stack distance string.

We use extensive simulations to evaluate the performance induced by our WWW traffic model and contrast it with the self-similar

model in [1] and the model in [5], using the original (real) traces as a point of reference. Our evaluation measures include sample

statistics of the synthetic traces (e.g., mean, variance, correlations, percentiles) as well as the cache and byte hit ratios for a trace-

driven LRU cache. The results indicate marked improvement in accuracy when using the proposed multifractal-based WWW

model. We hope that this model can be subsequently used in cache design and evaluation studies.

III. EXPERIMENTAL DATA

We briefly describe the three data sets used in the modeling study. These sets were obtained from three separate WWW servers:

the Computer Science Department WWW server at the University of Calgary, the WWW server at ClarkNet (a commercial

Internet provider in Baltimore, Washington DC), and from the Worldcup98 WWW servers [19]. Table I provides a summary of

the main features of the data sets. More details can be found in [19], [2]. Note that the three traces have contrasting loads (in

requests/second). The Calgary’s load is the lightest while the Worldcup98’s load is the heaviest.

Trace
Feature Calgary ClarkNet Worldcup98
Log duration one year one week One day
Start date Oct 24, 1994 August 28, 1995 May 6, 1998
Log size (MB) 52.3 120.1 107
Total number of requests before reduction 726,739 1,164,868 1,193,353
Total number of requests after reduction 567,519 1,125,092 1,033,567
Number of unique files 8,220 20,168 3,824
Number of files referenced only once 1,752 5,279 665

TABLE I
SUMMARY OF THE DATA SETS USED IN THE MODELING STUDY.

The data sets contain several pieces of information, including the name of the host that generated the URL request, the day

and time the request was recorded, the name of the requested file, the HTTP reply code (explained below), and the number of
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transferred bytes in response to the request. Four types of HTTP reply codes were recorded: successful, not modified, found, and

unsuccessful. A successful code indicates that the requested file was found at the server and was returned to the client. The client

may have a copy of a file, but may want to verify if this copy is up-to-date or not. If the file is up-to-date, the server responds with

a not modified code. The found code indicates that the requested file is available at a different server whose address is provided in

the response. Finally, the unsuccessful code indicates that the requested file is not available, the client has no permission to access

the file, or that there is an error. In our analysis, we only included the requests with successful code, since they are the ones that

result in actual data transfer from the server. We also excluded dynamic files (e.g., cgi and pl files).

IV. MULTIFRACTAL ANALYSIS OF WWW TRAFFIC

As indicated earlier, multifractality is a generalization of monofractality (self-similarity), where the fixed (scale independent)

H parameter of a self-similar process is now scale dependent. The variability in the H value gives added flexibility to multifractal

processes, allowing them to characterize irregularities in the data being modeled. Furthermore, certain multifractal processes,

including the one considered in this paper, inherently exhibit an approximately lognormal-like marginal distribution, in line with

the shape of the (fitting) marginal distribution of typical WWW traces. This convenient feature allows us to avoid the risky step of

transforming the marginal distribution, leaving us with the task of fitting the ACF. In this section, we first briefly describe Riedi

et al.’s multifractal model [17]. This model uses a wavelet-based construction to approximately capture the correlation behavior

of a given time series by appropriately setting the second moments of the wavelet coefficients at each scale. Its main deficiency

is its complexity, which grows linearly (in the number of parameters) with the size of the generated trace. We then describe how

we modify this model to reduce its complexity to O(1), and then we apply the modified model to characterize the temporal and

spatial localities of WWW traffic.

A. Riedi et al.’s Multifractal Model

Riedi et al.’s model relies heavily on the discrete wavelet transform. The idea behind the wavelet transform is to express a signal

(time function) X(t) by an approximated (smoothed) version and a detail. The approximation process is repeated at various levels

(scales) by expressing the approximated signal at a given level j by a coarser approximation at level j − 1 and a detail. At each

scale, the approximation is performed through a scaling function φ(t), while the detail is obtained through a wavelet function

ψ(t). More formally, a wavelet expansion of the signal X(t) is given by:

X(t) =
∑

k

UJ,kφJ,k(t) +

∞
∑

j=J

∑

k

Wj,kψj,k(t) (1)
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where

Wj,k
4
=

∫ ∞

−∞

X(t)ψj,k(t)dt (2)

Uj,k
4
=

∫ ∞

−∞

X(t)φj,k(t)dt (3)

and ψj,k and φj,k, j, k = 0, 1, 2, . . . , are shifted and translated versions of the wavelet and scaling functions ψ(t) and φ(t),

respectively, and are given by:

ψj,k(t)
4
= 2−j/2ψ(2−jt− k) (4)

φj,k(t)
4
= 2−j/2φ(2−jt− k). (5)

In (1), the index J indicates the coarsest scale (the lowest in detail). The coefficients Wj,k and Uj,k are called, respectively,

the wavelet and scale coefficients at scale j and time 2jk. Together, they define the discrete wavelet transform of the signal

X(t), assuming that φ(t) and ψ(t) are specified. Several wavelet and scale functions have been used in the literature, giving rise

to different wavelet transforms. One popular (and simple) transform is the Haar wavelet transform. This transform, which is

specified by the coefficients Wj,k and Uj,k for all j and k, can be obtained recursively as follows (we adopt the same convention

of [17], where the higher the value of j, the better is the approximation of the original signal):

Uj,k =
Uj+1,2k + Uj+1,2k+1√

2
(6)

Wj,k =
Uj+1,2k − Uj+1,2k+1√

2
(7)

To initialize the recursion, the values of Uj,k, k = 0, 1, . . . , 2j − 1, at the highest value of j are taken as the empirical trace to

be modeled. Figure 3 depicts the generation process of the scale coefficients (from top to bottom).

Uj,k

Uj+1,2k Uj+1,2k+1

Uj+2,4k Uj+2,4k+1 Uj+2,4k+2 Uj+2,4k+4

Fig. 3. Process of generating the scaling coefficients in the DWT.
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In order to generate synthetic traces with a given autocorrelation structure, the Haar transform is reversed by rewriting (6) and

(7) as:

Uj+1,2k =
Uj,k +Wj,k√

2
(8)

Uj+1,2k+1 =
Uj,k −Wj,k√

2
(9)

Now to generate nonnegative data, which in our case represent the stack distance string, we need to have |Wj,k| ≤ Uj,k. To

satisfy this constraint, the wavelet coefficients can be defined as:

Wj,k = Aj,kUj,k (10)

where Aj,k is a random variable (rv) defined on the interval (−1, 1). Using (8), (9), and (10), the following recursion can be

obtained for synthesizing the scale coefficients:

Uj+1,2k = (
1 +Aj,k√

2
)Uj,k (11)

Uj+1,2k+1 = (
1 −Aj,k√

2
)Uj,k (12)

The rvs Aj,k must also satisfy the following additional constraints [17]:

1) Aj,k, k = 0, 1, ...., 2j − 1, are i.i.d rvs that can be represented by the generic rv Aj having the same CDF as Aj,k.

2) For each j, the probability density function of the rvs Aj,k, k = 0, 1, . . . , 2j − 1, is symmetric with zero mean.

3) Aj is independent of Al for l > j and is also independent of U0,0.

The wavelet energy at a given scale is given by the variance of the wavelet coefficients at that scale. It has been shown that the

correlation structure of the signal can be approximately captured by controlling the wavelet energy decay across scales [17]. The

ratio of the energy at scale j − 1 to the one at scale j (j is finer than j − 1) was found to be [17]:

ηj =
E[W 2

j−1]

E[W 2
j ]

= 2
E[A2

j−1]

E[A2
j ](1 + E[A2

j−1])
(13)

Assuming that E[W 2
j ] is given for all j, Equation (13) can be used to solve for E[A2

j ], j = 1, 2, . . .. The recursion can be
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initialized using E[A2
0] =

E[W 2

0
]

E[U2

0
]
, where W0 and U0 are the wavelet and scale coefficients at the coarsest scale.

In [17], the authors suggested two different distributions for Aj . One of them is a symmetric beta distribution that has the

following pdf:

fAj
(x) =

(1 + x)ρj−1(1 − x)ρj−1

β(ρj , ρj)22ρj−1
(14)

where ρj is the parameter of the rv and β(., .) is the beta function. The variance of this random variable is given by:

var[Aj ] =
1

2ρj + 1
. (15)

The other distribution is a point-mass distribution defined as:

Pr[Aj = cj ] = Pr[Aj = −cj ] = rj

Pr[Aj = 0] = 1 − 2rj

In the case of a beta distributed Aj , the parameter ρj at each scale can be found by solving (13) and (15), resulting in:

ρj =
ηj

2
(ρj−1 + 1) − 1/2 (16)

This, however, assumes that E[W 2
j ] is given for j = 1, 2, 3, . . .. Since ηj , j = 1, 2, . . ., cannot be obtained using a parametric

model, it must be computed from the empirical data, which makes the number of fitted parameters in the model in the order of N ;

N being the trace length.

On the other hand, if Aj has a point-mass distribution, then (13) by itself is not sufficient to compute both parameters of Aj

(cj and rj). An alternative approach for computing these parameters is to rely on the following expression for the moments of the

scaling coefficients at different scales:

E[U q
j ]

E[U q
j−1]

= 2−q/2E[(1 +Aj−1)
q], q = 1, 2, . . . (17)

However, to apply (17) one needs to have two moments (i.e., two values for q) for each scale j. Again, unless we can compute

these values using a parametric model, we have to rely on the empirical data to do so, which makes the model more complex than

if a beta distributed Aj were to be used.
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With either distribution of Aj , it was shown in [17] that the above model generates positive-valued autocorrelated data with an

approximately lognormal marginal distribution.

B. Reducing the Number of Parameters

As shown in the previous section, whether Aj is a beta or a point-mass rv, one needs to provide the second moments of the

wavelet coefficients or two moments of the scale coefficients at each scale in order to completely determine Aj , j = 1, 2, . . ..

This significantly increases the complexity of the model, as the number of parameters to be computed a priori is in the order of

the trace length. Moreover, the point-mass rv is not rich enough and takes only three possible values.

To reduce the complexity of the model, we select Aj to be a continuous-valued rv with one parameter. Then using (17) with

q = 2, we compute the parameter of Aj , j = 1, 2, . . ., assuming that we can compute the ratio E[U 2
j ]/E[U2

j−1] using a small

number of parameters (the mean µ, the variance σ, and the correlation structure of the modeled data), as shown later. The selection

of the rv Aj will be discussed in Section IV-C.

For a discrete time series X = {Xi : i = 1, 2, . . .}, we define X(m) = {X(m)
i : i = 1, 2, . . .} to be the aggregated time series

of X at aggregation level m:

X(m)
n =

nm
∑

i=nm−m+1

Xi, n = 1, 2, 3, . . . , N/m (18)

where m = 1, 2, 4, 8, ...N ; N is the length of X . Note that if the aggregation level m corresponds to scale j, then the aggregation

level 2m corresponds to scale j − 1. From the definition of the Haar wavelet transform, the following holds:

E[(X(m))q]

E[(X(2m))q]
= 2−q/2

E[U q
j ]

E[U q
j−1]

, for q = 1, 2, . . . (19)

From (19) and (17) we get:

E[(X(m))q]

E[(X(2m))q]
= 2−qE[(1 +A(2m))q] (20)

where A(2m) = Aj−1. Evaluating (20) at q = 2, we obtain the following expression:

E[(A(2m))2] = 4
E[(X(m))2]

E[(X(2m))2]
− 1 (21)

To reduce the number of parameters in the multifractal model, we need to analytically obtainE[(X (m))2] for all possible values

of m. The variance at aggregation level m, var[X (m)]
4
= V (m), can be expressed in terms of the autocorrelation function of the
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signal [6]:

V (m) = mv + 2v

m
∑

k=1

(m− k)ρk (22)

The mean, E[(X(m))] = µ(m), is given by:

µ(m) = mµ (23)

where µ and v are the mean and variance of the original signal, respectively. The second moment of X (m) is then given by:

E[(X(m))2] = mv + 2v
m

∑

k=1

(m− k)ρk +m2µ2 (24)

From (21) and (24), the parameter of the rv Aj can be computed for all scales j = 1, 2, . . ., given µ, v, and the correlation

structure of the time series being modeled. For normalized stack distance strings, we found that the form ρk = e−β n
√

g(k), k =

0, 1, . . . , fits the correlation structure very well, where g is a function of the lag k. For both the ClarkNet and the Worldcup98

traces, g(k) = k produced a good fit to the empirical ACF, while for the Calgary trace, g(k) = log(k+ 1) was found appropriate.

Figure 4 shows the fitting of the ACF functions for the three traces.
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Fig. 4. Fitting the correlation structure of the normalized stack distance string.

In summary, to use the multifractal model for modeling the normalized stack distance string, we only need five parameters:

• Mean of the normalized stack distance string (µ).

• Variance of the normalized stack distance string (v).

• Autocorrelation structure (parameterized by β, n, and g).

Using these parameters, along with (24) and (21), one can compute the parameter of the rv Aj at each aggregation level (scale).

The synthesis process starts from the highest level of aggregation. At this level we can start with l data points that are normally

distributed with mean mhµ (the mean at aggregation level mh) and variance of var[X(mh)], where mh is the highest aggregation
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level. After that, the process can be carried out using (11) and (12).

C. Selecting the Random Variable Aj

As indicated earlier, the rv variable Aj must be symmetric with zero mean and defined on the interval (-1,1). To reduce

the number of parameters of the multifractal model, we require that the Aj is specified by one parameter only. There are

many rvs that can satisfy these conditions. The difference between one rv and another is the range of the values that the ra-

tio E[(X(m))2]/E[(X(2m))2] can take. It can be shown that for any distribution, this ratio satisfies the following inequalities:

0.25 ≤ E[(X(m))2]

E[(X(2m))2]
≤ 0.5 (25)

The lower bound follows immediately from (21) and the fact that E[(A(2m))2] ≥ 0. The proof for the upper bound is provided

in the appendix. As an example, consider the uniform rv in the range [−c, c], where |c| < 1. The variance of this rv is given by

V = c2/3. Solving (21) for c, we get:

c = 3(4
E[(X(m))2]

E[(X(2m))2]
− 1).

Since c < 1,

E[(X(m))2]

E[(X(2m))2]
<

1

3

Using similar calculations, Table II shows the upper bound for a number of popular rvs.

Random variable Upper bound
Symmetric beta(ρ, ρ) 0.5000
Uniform(−c, c) 0.3333
Triangular(−c, 0, c) 0.2917
Normal(0, σ) 0.2778

TABLE II
UPPER BOUND ON THE RATIO E[(X(m))2]/E[(X(2m))2] FOR VARIOUS DISTRIBUTIONS.

For the three traces we use in this work, the ratio E[(X (m))2]/E[(X(2m))2] did not exceed 0.3333, and as a result, we decided

to use the uniform rv since it is the simplest one.

V. MODELING WWW TRAFFIC

In this section, we describe our approach for modeling the stream of file objects generated by a WWW server. Let U be the

number of unique files (or objects) at the server and let fri be the fraction of times that the ith file, i = 1, 2, ..., U , appears in the
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reference string (fri is the popularity profile of file i). The modeling approach proceeds in three steps. First, we extract the stack

distance string from the URL reference string. Then, we apply some form of normalization to capture both sources of temporal

locality (temporal correlation and long-term popularity). The modified multifractal model described in the previous section is

then applied to model the normalized stack distance string. Finally, we incorporate the popularity profile of the traffic during the

process of generating synthetic reference strings. These steps are described next.

A. Extracting the Empirical Normalized Stack Distance String

In our model, we use the concept of stack distance to model the temporal and spatial localities in WWW traffic. The authors

in [3] extract the stack distances from the original trace assuming an arbitrary initial ordering of the stack. Whenever an object

is requested, its depth in the stack (stack distance) is recorded and the object is pushed to the top of the stack. In our model, we

avoid making any assumptions on the initial ordering of the stack, which we have found to disturb the marginal distribution and

the correlation structure of the stack distance string. We start with an empty stack and process the empirical reference string in the

reverse direction, starting from the last reference. If a file is referenced for the first time (in the reverse direction), it is put on top

of the stack but no stack distance is recorded. Otherwise, if the file has already been referenced before (hence, it is already in the

stack), then it is pushed from its previous location in the stack to the top of the stack and its depth is recorded as a stack distance.

Finally, the resulting trace of stack distances is reversed to get the correct stack distance string. The following example illustrates

the idea. Consider the reference string [a d c b c d d a b], where each letter indicates the name of a file. If we process this string

starting from the end, the first reference is to file b. Since this is the first time file b is being referenced, we push it to the top of the

stack without recording any distance. The same procedure is performed for the next two references (for files a and d). The fourth

reference (from the end) is for file d. Since this file has been referenced before, it gets pushed to the top of the stack and its stack

depth is recorded (in this case, the stack depth for file d is one). The procedure continues until all references are processed (see

Figure 5). The end result of this process is the stack distance stream [4 3 2 4 1].

 b
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 d

 b

 a

 d

 b

 a

 d

 c  b

 c

 d

 a

 d

 a

 c

 b

 b

 a

 b
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 d

 c

 b

 −  −  −  1  −  4  2  3  4Stack distance

Reference string

                         Time

 a

 d

 c

 b

 c  b  c  d  a b  a  d  d

Fig. 5. Example showing our approach for extracting stack distances from a real trace.

Temporal locality in a stream of WWW requests is attributed to two factors: long-term popularity and short-term temporal
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correlations. Both factors are important for cache design [15], [14], and must therefore be incorporated in the model for temporal

locality. In [15], it was found that the (lognormal) distribution of the stack distance string is predominantly affected by the

popularity profile (i.e., long-term popularity). So the marginal distribution of the stack distance (without normalization) does not

capture the effect of short-term temporal correlations.

To accurately capture the temporal locality of the traffic, we need to isolate the effect of popularity from that of short-term

correlations. One solution is to have a separate stack-distance-string model for equally popular objects. Another solution, used in

our work, is to capture how much a stack distance deviates from its “expected” value. This deviation is captured by normalizing

(scaling) the stack distances by their expected values. The resulting scaled stack distance string is a measure of how objects

are clustered over the trace length (temporal correlation). This measure is insensitive to the popularity profile, so it allows us to

separately model the popularity profile and the short-term temporal correlations.

The expected stack distance for a file i is computed as follows:

E[di] =
∑

g 6=i

fg

fg + fi − 1
(26)

where fi is the number of references to file i [5]. For the three studied traces, we found that the normalized stack distance string

has an approximately lognormal marginal distribution. Figure 6 shows the fitting of the lognormal marginal distribution of the

normalized stack distance string.
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Fig. 6. Marginal distribution of the normalized stack distance string.

B. Modeling the Normalized Stack Distance String

To model the normalized stack distance string, we need to determine µ, v, β, and n. Once the values of these parameters are

determined, the multifractal model described in Section IV can be used to capture the marginal distribution and the correlation

structure of the normalized stack distance string. Note that spatial locality is captured by modeling the autocorrelation function

of the unscaled stack-distance string. However, since the multifractal model is applied to the scaled version of the stack-distance
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string, we have to invert back the synthesized trace of the multifractal model so that the resulting trace models the unscaled version

of the data. The pseudo-code in Figure 7 describes the modeling process. The function GenNormStackDistance takes five input

parameters. The first three parameters are µ, v, and the ACF of the normalized stack distance string to be generated. The fourth

parameter, N , is the length of the synthetic normalized stack distance string. The fifth parameter, l, is the number of data points

at the coarsest scale. GenNormStackDistance starts by computing the number of aggregation levels, NumAggLevels (line 2). In

line 4, the second moment of the normalized stack distance string at aggregation level m = 1 is computed. The for loop starting

in line 5 is used to compute the second moment for the remaining aggregation levels. The for loop that starts from line 8 computes

the summation in (24). In line 11, the second moments at higher aggregation levels are computed using (24). The second moments

ratio, E[(X(m))2]/E[(X(2m))2], is computed in line 12. The parameter of the rv A(2m) is computed in line 13 using (21) and

substituting for the variance of the uniform rv in E[(X (2m))2]. After computing these parameters, the mean of the time series at

the highest aggregation level is computed in line 15 using (23). The variance at the highest aggregation level is computed in line

16. In line 17, l data points are generated to represent the coarsest level. The while loop starting from line 19 is used to continue

the generation process using (11) and (12).

GenNormStackDistance(µ, v, ρk, N, l)
2 NumAggLevels = dlog2(N/l)e
3 m = 1
4 SecMom(1) = mv + m2µ2

5 for i = 2 to NumAggLevels Do
6 m = 2m
7 sum = 0
8 for k = 1 to m Do
9 sum = sum + (m − k)ρk

10 end for
11 SecMom(i) = mv + 2vs + m2µ2

12 SecMom ratios(NumAggLevels − i + 1) = SecMom(i−1)
SecMom(i)

13 AParm(NumAggLevels − i + 1) =
√

3(4 SecMom ratio(NumAggLevels − i + 1) − 1))
14 end for
15 µh = 2(NumAggLevels−1) ∗ µ
16 Vh = SecMom(NumAggLevels) − µ2

h

17 NormStkDist = norm random(µh,
√

Vh, l)
18 i = 1
19 While(length(NormStkDist) < N ) Do
20 A = Uniform random(−AParm(i), AParm(i), length(NormStkDist))

21 NormStkDist = [NormStkDist (1+A)
2

NormStkDist (1−A)
2

]
22 i = i + 1
23 end while
END

Fig. 7. Algorithm for generating synthetic scaled stack distance strings.
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C. Modeling Popularity and Generating Synthetic Reference Strings

To generate a synthetic WWW reference string, we first generate a synthetic normalized stack distance string, as shown in

the previous section. The process of generating a synthetic WWW reference string starts by arranging the unique documents of

the WWW server in an LRU stack. This is done by sampling from a probability distribution that is weighted by the popularity

profiles of the various documents (i.e., the more popular a document is, the more likely it will be placed closer to the top of the

stack). This ordering approach was used in [5]. It is known to provide more accurate results than using an arbitrary ordering.

Note that even though the probability of selecting a given unpopular document is small, the probability of selecting any of the

unpopular documents is relatively large (because of the large number of unpopular documents). So, probabilistically, there is a

good chance that some unpopular documents will be placed near the top of the stack. To generate a reference string of length

N , we first compute the number of references a document can get according to its popularity profile. Then, the top document

in the LRU stack is considered as the next referenced document in the synthetic reference string. If the required number of

references for this document is reached, then this document is flushed out of the stack. Otherwise, it is pushed down the stack

according to the next value in the normalized stack distance string. This is done after scaling back the normalized stack distance

by multiplying it by the corresponding expected stack distance for the object in hand (objects with the same popularity profile

have the same expected stack distance). Note that our notion of a “stack” allows for the insertion of an object in between two

objects in the stack, which does not happen in a regular LRU stack. This process continues until the popularity profiles of all

objects are satisfied (no documents are left in the LRU stack). The pseudo-code in Figure 8 describes the generation process.

Function GenTrace accepts three parameters: the synthetic normalized stack distance (NormStkDist), the number of requests

each file gets (req), and the lru stack with the files ordered according to the popularity profile (i.e., placed randomly according

to the empirical distribution of the popularity profiles). The while loop in line 4 is used to generate the reference string. Line 5 is

used to record the next reference, Ref(i), taken as the file at the top of the LRU stack. Then the number of outstanding references

to this file, req(Ref(i)), is reduced by one (line 7). If this number reaches zero, then the file is dropped out the stack. Otherwise,

the next stack distance, StkDist, is computed in line 11 by scaling back the normalized stack distance according to the popularity

of the file. The file is then pushed StkDist positions down the stack. The while loop in line 4 is continued until the LRU stack is

empty.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the accuracy of the proposed multifractal model and contrast it with two other models. The first

model is a self-similar (monofractal) model [1], [3]. This model involves transforming the Gaussian marginal distribution of a

fractional ARIMA process into a lognormal distribution. We simply refer to this model as the LRD model. The second model
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GenTrace(NormStkDist, req, lru)
2 i = 0
3 k = 0
4 While(stack is not empty) Do
5 Ref(i)=top(lru)
6 i = i + 1
7 req(Ref(i)) = req(Ref(i)) − 1
8 if (req(Ref(i)) == 0) then
9 drop document from the stack
10 else
11 StkDist = Scale-Back(NormStkDist(k),Ref(i))
12 Push-Top-Document-Down-Stack(StkDist)
13 k = k + 1
14 endif
15 end while
END

Fig. 8. Algorithm for generating synthetic WWW strings.

was proposed by Cherkasova et al. [5]. The three investigated models were mainly designed for offline traffic generation, with the

primary purpose of generating synthetic traces for use in cache design studies. Accordingly, we compare these models in terms of

the file and byte miss ratios seen at an LRU cache that is driven by synthetic traces from these models. The comparison is made

with reference to the cache performance seen under the real traffic. The results are shown in Figures 9, 10, and 11.
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Fig. 9. File/byte miss ratio versus cache size (Clarknet trace).

It is clear that of the three models, the proposed multifractal model produces the most accurate results, especially for small

cache sizes. The relative accuracy in terms of capturing the behavior of the real data is greater in the case of the Calgary data.

Consider, for example, the Calgary data with a normalized cache size of 0.3. The percentage inaccuracies in the file miss rate

for the multifractal model, the LRD model, and Cherkasova et al.’s model are 0.5%, 53%, and 111%, respectively. In the case

of the byte miss rate, the corresponding values are 4.9%, 65%, and 109%. The overall improvement in the accuracy of the file

and byte miss rates due to the use of the multifractal model is significant. Moreover, our model captures the spatial locality
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Fig. 10. File/byte miss ratio versus cache size (Calgary trace).
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Fig. 11. File/byte miss ratio versus cache size (Worldcup98 trace).

which is not reflected through the file/byte miss ratios of the LRU caching policy. To show how well our model captures this

property, we also compared the inter-request times (number of requested files between any two references to a given file) in the

real data to those in the synthetic traces of the models. We found that the sequence of inter-request times is non-stationary (has

a clear decreasing trend). So we normalized this sequence by the expected inter-request time, which is equal to 1/fri, for file

i. The mean, variance, percentile values, and some values of the autocorrelation function for the normalized inter-request times

are shown in Tables III,IV, and V. Note that the mean, variance, percentile values of the inter-request times are measures of the

temporal locality, while the autocorrelation is a measure of the spatial locality.

From these results, it is clear that the multifractal model is more accurate than the other two models in capturing these statistics.
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Statistics Real data Multifractal model Cherkasova’s model LRD model
µ 0.954 0.937 0.806 0.905
σ 1.032 1.164 1.918 1.428
ρ1 0.130 0.118 0.000 0.060
ρ5 0.076 0.075 0.000 0.020
ρ10 0.061 0.058 0.000 0.009
ρ25 0.039 0.039 0.000 0.001

Percentiles 75% 1.306 1.149 0.778 1.063
90% 2.233 2.210 1.697 2.161
98% 3.976 4.230 4.980 5.051

TABLE III
STATISTICAL COMPARISONS FOR CLARKNET TRACE.

Statistics Real data Multifractal model Cherkasova’s model LRD model
µ 0.714 0.68 0.62 0.907
σ 1.541 2.010 7.080 4.224
ρ1 0.192 0.185 0.000 0.030
ρ5 0.070 0.063 0.000 0.030
ρ10 0.036 0.036 0.000 0.027
ρ25 0.009 0.010 0.000 0.023

Percentiles 75% 0.813 0.813 0.771 0.326
90% 1.790 1.790 2.293 2.046
98% 4.289 5.241 5.531 6.644

TABLE IV
STATISTICAL COMPARISONS FOR CALGARY TRACE.

Statistics Real data Multifractal model Cherkasova’s model LRD model
µ 0.990 0.951 0.823 0.941
σ 0.986 1.137 1.718 1.289
ρ1 0.054 0.054 0.000 0.098
ρ5 0.027 0.037 0.000 0.089
ρ10 0.025 0.030 0.000 0.071
ρ25 0.022 0.023 0.000 0.034

Percentiles 75% 1.373 1.136 0.856 1.134
90% 2.266 2.099 1.727 2.101
98% 3.843 4.210 4.666 4.726

TABLE V
STATISTICAL COMPARISONS FOR WORLDCUP98 TRACE.
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VII. CONCLUSIONS

In this work, we demonstrated the potential of multifractal processes as a viable approach for WWW traffic modeling. We

started with the multifractal model of Riedi et al., which is capable of generating approximately lognormal synthetic traces with

any desired autocorrelation structure. However, to apply this model in traffic fitting and trace generation, one needs to match as

many parameters of the model as the length of the trace to be generated. To make the model parsimonious, we modified it by

using a different distribution for the multiplier Aj (which relates the wavelet and scale coefficients) and by analytically expressing

the parameter of Aj , j = 1, 2, . . ., in terms of the mean, variance, and ACF of the modeled data. As a result, the modified

multifractal model is specified by five parameters only. We fitted this model to the normalized stack distance strings of three

WWW traffic traces. The proposed model captures the spatial and temporal localities of the real traffic as well as the popularity

profile. Trace-driven simulations of the LRU cache policy indicates that the proposed model gives much more accurate cache

miss rates than two previously proposed WWW traffic models. Statistics of the normalized inter-request distances support the

goodness of our model. Our future research will focus on designing new cache replacement and prefetching policies that exploit

the characteristics of the traffic and that rely on model predictions in making file replacement and prefetching decisions.

APPENDIX

Let X
4
= {Xi : i = 1, 2, . . .} be a positive valued stationary random process, and let Y

4
= {Yi : i = 1, 2, . . .} be an aggregation

of X that is defined as follows:

Yn = X2n−1 +X2n

Note that X(m) in (25) represents X , while X(2m) represents Y . We now prove that E[X2
n]/E[Y 2

n ] ≤ 0.5.

E[X2
n]

E[Y 2
n ]

=
E[X2

n]

E[(X2n−1 +X2n)2]

=
E[X2

n]

E[X2
2n−1 + 2X2n−1X2n +X2

2n]

=
E[X2

n]

E[X2
2n−1] + 2E[X2n−1X2n] + E[X2

2n]

Since X is stationary, then E[X2
2n−1] = E[X2

2n] = E[X2
n], which leads to:
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E[X2
n]

E[Y 2
n ]

=
E[X2

n]

2E[X2
n] + 2E[X2n−1X2n]

=
1

2 + 2E[X2n−1X2n]
E[X2

n]

≤ 0.5

since E[X2n−1X2n]/E[X2
n] ≥ 0.
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